用户名: 密码: 验证码:
有机(聚合物)/无机复合材料的设计、制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学不断朝着交叉领域的方向发展,人类对其研究不再局限于以往传统单一的材料,而是转向有机、无机、高分子以及生物材料的复合。在众多复合材料中,核/壳材料因其特殊结构和组成不同呈现光、电、磁和化学等特性而倍受关注。
     本论文利用自模板方法与溶胶-凝胶方法及其联合应用制备了核/壳型有机/无机纳米微球,聚合物/无机纳米微球和掺杂型聚合物/无机复合粒子。得到的核/壳微球具有光滑的表面、规整的球形形态及明显的核/壳结构。讨论了所得核/壳纳米粒子分散液在水溶液中的稳定性及各种反应条件(去离子水的用量、氨水的浓度、固化时间等)对粒子形貌、结构及粒径的影响,实现了粒径及壳厚的可控。另外通过活性自由基反应控制聚合物共轭长度,实现其发射波长的可控性。并对自模板法制备核/壳粒子的机理进行了探讨。最后针对生物高分子材料聚L-乳酸亲水性及热稳定性差的缺点,对其进行了无机材料的复合,复合后材料的性能有了很大的提高。这些研究工作实现了对核/壳型及掺杂型复合材料的设计、合成以及核/壳粒子形态的可控制备,为扩展复合材料特别是核/壳型复合材料在各领域的实际应用提供了可能。
In recent years, nanocomposites as novel materials with unique functions have been researched widely. They have vast range of application prospects in many fields, especially for the fields of photics, conductor materials, magnetic materials and sensing materials for sensor. Because organic/inorganic nanocomposites exhibit the advantages of both organic and inorganic materials, nanocomposites with unique functions which contain workability, flexibility, rigidity and electromagnetic property can be obtained by tuning constitution, structure and size of organic phase and inorganic phase. During numerous composites, core-shell materials attract great interest of researchers due to their special structure and composition. The shell can greatly improve the stability of the core-shell materials and protect the materials from reacting with the outside surroundings. In addition, the shell can endow the materials with optical, electric, and magnetic properties.
     Silica has many advantages. For example, it is chemical inert and can improve stability of particles. Silica was optically transparent, biocompatible and could protect the surface of the nanoparticles from oxidation. The silanol groups on the silica shell can offer versatile possibilities for further surface modification. Silica can also be easily doped with fluorophores and dyes.
     Octylmethoxycinamate (OMC) was a commonly used organic UV absorber. It had high UV absorptivity. However, free radical which was produced during photodegradation would damage organism macromolecule and many varied cells, and cause skin troubles and deteriorate quality of cosmetics. In this paper, core-shell nanoparticles with OMC as core and with nanosilica particles as shell were prepared to remedy the defect of OMC and improve compatibility of UV absorber and the skin. First, SiO2 colloid was prepared with Sol-gel method and the optimal H2O/Si and the amount of hydrochloric acid were obtained. Then OMC/SiO2 core-shell nanoparticles were synthesized with the self-templating technique. The resulting nanoparticles are perfectly spherical with smooth particle surfaces, and represent clear core-shell structures.
     1,4-bis(o-cyanostyryl)benzene (CSB) was a commonly used fluorescent agent. In this paper, core-shell CSB-SiO2 nanoparticles were prepared via an O/W emulsion system using the self-templating technique. The stability of nanoparticles in aqueous solutions was investigated. Agglomeration of particles in aqueous solutions didn’t occur until two months, and it was not obvious. In addition, effects of reaction conditions (amount of deionized water, ammonia concentration and solidification time) on their structure and morphologies were researched. Based on our experiment results, we concluded that the particle size and shell thickness could be readily controlled by altering reaction conditions. The UV absorption peaks of core-shell nanoparticles were blue-shifted from 222 nm and 302 nm to 207 nm and 289 nm respectively and the fluorescence emission maximum was also blue-shifted from 496 nm to 485 nm compared to those of CSB. The reason for the blue-shift could mainly be attributed to the different environments of CSB.
     Poly(p-phenylene vinylene)(PPV) and its derivatives have been widely investigated in electronics and photonics because of their excellent electrical and optical properties. First, Poly(2-methoxy,5-(2’-ethyl-hexoxy)-1,4-phenylenevinylene) (MEH-PPV) was synthesized with Gilch method. Then nanospheres with MEH-PPV cores coated by silica-based shells were prepared with the self-templating method. The resulting nanoparticles have clear core-shell structure and narrow size distribution. In addition, the glass transformation temperature (Tg) of core-shell nanaparticles increased compared to that of MEH-PPV. Afterwards, AIBN was used to regulate the conjugated length of MEH-PPV (MEH-PPVm) by the radical addition onto the double bonds of conjugated polymer, and MEH-PPVm was coated by silica-based shells with the self-templating technique. With the increase of reaction time the fluorescence emission peak of MEH-PPVm/SiO2 core-shell nanospheres was blue-shifted.
     Then, the mechanism of the self-templating method was discussed. One of the key techniques in preparing core-shell nanoparticles with the self-templating method is keeping the stability of the emulsion system. The whole process requires neither surface treatment for nanosilica particles nor additional surfactant or stabilizer but appropriate reaction parameters (amount of deionized water, ammonia concentration, stirring rate, etc.) to keep the stability of the emulsion system. The mechanism may be described as follows. The mixture of SiO2 nanoparticles and the core compounds in an appropriate amount of aqueous solutions forms an O/W emulsion system under the stirring of a homogenizer with high stirring rate, which prevents the agglomeration between emulsion droplets. After the outer surfaces of the emulsion droplets are solidified by the condensation reactions between the surface silanols, they may serve as self-templates. Subsequently, the un-reacted precursor within the emulsion droplets becomes solidified onto the templates as shell, while the core compounds stay inside as core, producing core-shell nanoparticles.
     There has been increasing interest in synthesis and development of poly (lactic acid) (PLA), because it was a nontoxic and biodegradable polymer. Here, poly (L-lactic acid) (PLLA) was prepared with L-lactic acid (LLA) as the raw material. First, L-lactide was synthesized with LA, and then PLLA was obtained through ring-opening polymerization of L-lactide. However, PLA also had many disadvantages. For example, it belonged to the polyester and had bad hydrophilic property, which reduced its biocompatibility. PLLA had low mechanical strength and couldn't meet many demands for applying in the filed of biomedicine. In order to broaden their applications, PLLA was modified in this paper. PLLA/SiO2 composites were prepared using 3-aminopropyltriethoxysilane (APS) as the coupling agent of PLLA and silica. The variations of PLLA/SiO2 composites water absorption rate as a function of different reaction conditions (the amount of APS, the amount of stannous octanoate (Sn(Oct)2), pH and the temperature) were researched. Compared to PLLA,the water absorption rate of PLLA/SiO2 composites had a great improvement. The optimal reaction conditions were obtained via orthogonal experiments: VTEOS=0.5 mL,pH=3,Sn(Oct)2=3d,T=50 oC。In addition, the weight loss temperature of PLLA/SiO2 increased obviously, which demonstrated the thermal stability of materials increased. Therefore, the preparation of PLLA/SiO2 composites was an effective means for improving the thermal stability of PLLA. Besides, the effect on transmittance was not obvious after modification.
     In summary, a series of core-shell composites and doped composites were prepared with self-templating method and Sol-gel method in this paper. The morphology, structure, particle size and shell thickness of nanoparticles obtained with self-templating method could be readily controlled by altering reaction conditions. In addition, the water absorption rate and thermal stability of PLLA/SiO2 composites had great improvements.
引文
[1] R. Roy, S. Komarneni, D. M. Roy, Multi-phasic ceramic composites made by so1-gel technique, Mater. Res. Soc. Sym. Proc., 1984, 32, 347-351.
    [2]徐国财,张立德,纳米复合材料,北京,化学工业出版社, 2003.
    [3]王铀,沈静妹,制备聚合物纳米复合材料展望,化工新型材料, 1998, l, 8-12.
    [4]孔晓丽,刘勇兵,杨波,纳米复合材料的研究进展,材料科学与工艺, 2002, 10, 436-441.
    [5] S. Affatato, R. Torrecillas, P. Taddei, et al., Advanced nanocomposite materials for orthopaedic applications. I. A long-term in vitro wear study of zirconi-toughened alumina, J. Biomed. Mater. Res. B, 2006, 78, 76-82.
    [6] P. Persico, C. Carfagna, P. Musto, Nanocomposite fibers for cosmetotextile applications, Macromol. Sympo., 2006, 2349, 147-155.
    [7]张恒,张力,纳米复合材料实用化进展,材料导报, 2001, 10, 20-22.
    [8] S. Pothukuchi, Y. Li, C. P. Wong, Development of a novel polymer-metal nanacomposite obtained through the route of in situ reduction for integral capacitor application, J. Appl. Polym. Sci., 2004, 93, 1531-1538.
    [9] A. K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, P. Gomez-Romero, Nanocomposite hybrid molecular materials for application in solid-state electrochemical surpercapacitors, Adv. Functional Mater., 2005, 15, 1125-1133.
    [10] J. J. Schneider, Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis, Adv. Mater., 2001, 13, 529-533.
    [11] J. W. Ha, I. J. Park, S. B. Lee, et al., Preparation and characterization of core-Shell particles containing perfluoroalkyl acrylate in the shell, Macromolecules, 2002, 35, 6811-6818.
    [12] S. Kirsch, A. Doerk, E. Bartsch, et al., Synthesis and characterization of highly cross-linked monodisperse core-shell and inverted core-shell colloidal particles.Polystyrene/poly(tert-butyl acrylate) core-shell and inverse core-shell particles, Macromolecules, 1999, 32, 4508-4518.
    [13] F. Caruso, Hollow capsule processing through colloidal templating and self-assembly, Chem. Eur. J., 2000, 6, 413-419.
    [14] F. Caruso, D. Trau, H. M?hwald, et al., Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules, Langmuir, 2000, 16, 1485-1488.
    [15] F. Caruso, H. Lichtenfeld, M. Giersig, et al., Electrostatic self-assembly of silica nanoparticle?polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc., 1998, 120, 8523-8524.
    [16] R. A. Caruso, A. Susha, F. Caruso., Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres, Chem. Mater., 2001, 13, 400-409.
    [17] T. Ji, V. G. Lirtsman, Y. Avny, et al., Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads, Adv. Mater., 2001, 13, 1253-1256.
    [18] F. Caruso, H. M?hwald, Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids, Langmuir, 1999, 15, 8276-8281.
    [19] F. Caruso, Nanoengineering of Particle, Adv. Mater., 2001, 13, 11-22.
    [20] D. Wang, R. A. Caruso, F. Caruso, Synthesis of macroporous titania and inorganic composite materials from coated colloidal spheres-A novel route to tune pore morphology, Chem. Mater. 2001, 13, 364-371.
    [21] S. F. Lascelles, S. P. Armes, Synthesis and characterization of micrometre-sized,polypyrrole-coated polystyrene latexes, J. Mater. Chem., 1997, 7, 1339-1347.
    [22] S. F. Lascelles, S. P. Armes, P. A. Zhdan, et al., Surface characterization of micrometre-sized, polypyrrole-coated polystyrene latexes: verification of a‘core–shell’morphology, J. Mater. Chem., 1997, 7, 1349-1355.
    [23] C. Barthet, S. P. Armes, S. F. Lascelles, et al., Synthesis and characterization of micrometer-sized, polyaniline-coated polystyrene latexes, Langmuir, 1998, 14, 2032-2041.
    [24] M. A. Khan, S. P. Armes, Synthesis and characterization of micrometer-sized poly(3,4-ethylenedioxythiophene)-coated polystyrene latexes, Langmuir, 1999, 15, 3469-3475.
    [25] M. A. Khan, S. P. Armes, Conducting polymer-coated latex particles, Adv. Mater., 2000, 12, 671-674.
    [26] Z. W. Niu, Z. Z. Yang, Z. B. Hu, et al., Polyaniline-silica composite conductive capsules and hollow spheres, Adv. Funct. Mater., 2003, 13, 949-954.
    [27]黄俐研,杜江,刘正平,壳层可控导电聚吡咯/聚苯乙烯复合微球及聚吡咯中空微胶囊的制备,高等学校化学学报, 2005, 6, 1186-1188.
    [28] J. H. Zhang, J. B. Liu, Facile methods to coat polystyrene and silica colloids with metal, Adv. Funct. Mater., 2004, 14, 1089-1096.
    [29] J. Yin, X. Qian, J. Yin, et al., Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells, Inorg. Chem. Commun., 2003, 6, 942-945.
    [30] J. Yin, X. Qian, J. Yin, et al., Preparation of ZnS/PS microspheres and ZnS hollow shells, Mater. Lett., 2003, 57, 3859-3863.
    [31] Z. Zhong, Y. Yin, B. Gates, et al., Preparation of mesoscale hollow spheres of TiO2 and SnO2 by template against crystalline arrays of polystyrene beads, Adv. Mater., 2000, 12, 206-209.
    [32] C. H. Zhou, J. F. Wu, Z. S. Zhang, et al., Synthesis and characterization of copolymer(core)-silver(shell) composite microspheres, Chinese J. Chem., 2005, 23, 1071-1075.
    [33] P. H. Wang, C. Y. Pan, Preparation of styrene/methacrylic acid copolymer microspheres and their composites with metal particles, Colloid Polym. Sci., 2000, 278, 581-586.
    [34] P. H. Wang, C. Y. Pan, Polymer-metal composite particles: Metal particles on poly(St-co-MAA) microspheres, J Appl. Polym. Sci., 2000, 75, 1693-1698.
    [35] W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci., 1968, 26, 62-69.
    [36] L. Zhao, J. Yu, B. Cheng, Preparation and characterization of SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell, J. Solid State Chem., 2005, 178, 1821-1827.
    [37] M. Zhu, G. Qian, Z. Hong, et al., Preparation and characterization of silica-silver core-shell structural submicrometer spheres, J. Phys. Chem. Solids, 2005, 66, 748-752.
    [38] P. Jin, Q. Chen, L. Hao, et al., Synthesis and catalytic properties of nickel-silica composite hollow nanospheres, J. Phys. Chem. B, 2004, 108, 6311-6314.
    [39] G. Liu, G. Hong, D. Sun, Synthesis and characterization of SiO2/Gd2O3: Eu core-shell luminescent materials, J. Colloid Interf. Sci., 2004, 278, 133-138.
    [40] C. Graf, A. van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications, Langmuir, 2002, 18, 524-534.
    [41] L. Hao, C. Zhu, Z. Chen, et al., Fabrication of silica core-conductive polymer polypyrrole shell composite particles and polypyrrole capsule on monodispersed silica templates, Synthetic Met., 2003, 139, 391-396.
    [42] F. Teng, Z. Tian, G. Xiong, et al., Preparation of CdS-SiO2 core-shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions, Catal. Today, 2004, 93, 651-657.
    [43] Y. Wang, X. Teng, J. S. Wang, et al., Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core-shell nanoparticles, Nano. Lett., 2003, 3, 789-793.
    [44] X. Xu, S. A. Asher, Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals, J. Am. Chem. Soc., 2004, 126, 7940-7945.
    [45] Y. Zhu, H. Da, X. Yang, et al., Preparation and characterization of core-shell monodispersed magnetic silica microspheres, Colloids Surfaces A, 2003, 231, 123-129.
    [46]胡永红,容建华,刘应亮等, SiO2/Au核/壳结构纳米粒子的制备及表征,无机化学学报, 2005, 21, 1672-1676.
    [47] L. Y. Hao, C. L. Zhu, W. Q. Jiang, et al., Sandwich Fe2O3@SiO2@PPy ellipsoidal spheres and four types of hollow capsules by hematite olivary particles, J. Mater. Chem., 2004, 14, 2929-2934.
    [48] S. M. Marinakos, J. P. Novak, L. C. Brousseau, et al., Gold particles as templateds for the synthesis of hollow polymer capsules, control of capsule dimensions and guest encapsulation, J. Am. Chem. Soc., 1999, 121, 8518-8522.
    [49] T. Ung, L. M. Liz-Marzán, P. Mulvaney, Optical properties of thin films of Au@SiO2 particles, J. Phys. Chem. B, 2001, 105, 3441-3452.
    [50] T. Ung, L. M. Liz-Marzán, P. Mulvaney, Redox catalysis using Ag@SiO2 colloids, J. Phys. Chem. B, 1999, 103, 6770-6773.
    [51] X. Teng, D. Black, N. J. Watkins, et al., Platinum-maghemite core-shell nanoparticles using a sequential synthesis, Nano. Lett., 2003, 3, 261-264.
    [52] X. L. Li, T. J. Lou, X. M. Sun, et al., Highly sensitive WO3 hollow-sphere gas sensors, Inorg. Chem., 2004, 43, 5442-5449.
    [53] A. M. Collins, C. Spickermann, S. Mann, Synthesis of titania hollowmicrospheres using non-aqueous emulsions, J. Mater. Chem., 2003, 13, 1112-1114.
    [54] S. Mishima, M. Kawamura, S. Matsukawa, et al., Preparation of a hollow microsphere composed of porous organic-inorganic hybrid wall in a W/O microemulsion system, Chem. Lett., 2002, 31, 1092-1093.
    [55] B. Putlitz, K. Landfester, H. Fischer, et al., The generation of armored latexes and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes, Adv. Mater., 2001, 13, 500-503.
    [56] J. H. Park, C. Oh, S. I. Shin, et al., Preparation of hollow silica microspheres in W/O emulsions with polymers, J. Colloid Interf. Sci., 2003, 266, 107-114.
    [57] Z. Wei, M. Wan, Hollow microspheres of polyaniline synththesized with an aniline emulsion template, Adv. Mater., 2002, 14, 1314-1317.
    [58] L. Zhang, M. Wan, Self-assembly of polyaniline-from nanotubes to hollow microspheres, Adv. Funct. Mater., 2003, 13, 815-820.
    [59] W. Li, X. Sha, W. Dong, et al., Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion, Chem. Commun., 2002, 20, 2434-2435.
    [60] C. Fowler, D. Khushalani, S. Mann, Interfacial synthesis of hollow microspheres of mesostructured silica, Chem. Commun., 2001, 19, 2028-2029.
    [61] C. E. Fowler, D. Khushalani, S. Mann, Facile synthesis of hollow silica microspheres. J. Mater. Chem., 2001, 11, 1968-1971.
    [62] J. S. Hu, Y. G. Guo, H. P. Liang, et al., Interface assembly synthesis of Inorganic composite hollow spheres, J. Phys. Chem. B, 2004, 108, 9734-9738.
    [63] Y. He, A novel emulsifier-free emulsion route to synthesize ZnS hollow microspheres, Mater. Res. Bull., 2005, 40, 629-634.
    [64] J. Bao, Y. Liang, Z. Xu, et al., Facile synthesis of hollow nickel submicrometer spheres, Adv. Mater., 2003, 15, 1832-1835.
    [65] J. Jang, J. H. Oh, X. L. Li, A novel synthesis of nanocapsules using identical polymer core/shell nanospheres, J. Mater. Chem., 2004, 14, 2872-2880.
    [66] T. Liu, Y. Xie, B. Chu, Use of block copolymer micelles on formation of hollow MoO3 nanospheres, Langmuir, 2000, 16, 9015-9022.
    [67] L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers, Adv. Mater.,2002, 14, 300-303.
    [68] D. Zhang, L. Qi, J. Ma, et al., Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions, Adv. Mater., 2002, 14, 1499-1502.
    [69] Y. Ma, L. Qi, J. Ma, et al., Facile synthesis of hollow ZnS nanospheres in block copolymer solutions, Langmuir, 2003, 19, 4040-4042.
    [70] Y. Ma, L. Qi, J. Ma, et al., Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer, Langmuir, 2003, 19, 9079-9085.
    [71] J. Du, Y. Chen, Y. Zhang, et al., Organic/inorganic hybrid vesicles based on a reactive block copolymer, J. Am. Chem. Soc., 2003, 125, 14710-14711.
    [72] Y. Wang, Y. Peng, X. Ji, et al., Preparation of gold nanopartilces with poly(styrene)-b-poly(acrylic acid), Polym. Mater. Sci. Eng., 2004, 20, 195-197.
    [73] Q. Sun, P. J Kooyman, J. G. Grossmann, et al., The formation of well-defined hollow silica spheres with multilamellar shell structure, Adv. Mater., 2003, 15, 1097-1100.
    [74] D. H. W. Hubert, M. Jung, P. M. Frederik, et al., Vesicle-directed growth of silica, Adv. Mater., 2000, 12, 1286-1290.
    [75] D. H. W. Hubert, M. Jung, A. L. German, Vesicle templating, Adv. Mater., 2000, 12, 1291-1294.
    [76] O. Makarova, A. E. Ostafin, H. Miyoshi, et al., Adsorption and encapsulation of fluorescent probes in nanoparticles, J. Phys. Chem. B, 1999, 103, 9080-9084.
    [77] C. A. McKelvey, E. W. Zadinski, J. A. Coldren, et al., Templating hollow polymeric spheres from catanionic equilibrium vesicles: Synthesis and characterization, Langmuir, 2000, 16, 8285-8290.
    [78] H. T. Schmidt, A. E. Ostafin, Liposome directed growth of calcium phosphate nanoshells, Adv. Mater., 2002, 14, 532-535.
    [79] L. Zhu, X. Zheng, X. Liu, et al., In situ vesicle-template-interface reaction to self-encapsulated microsphere CdS, J. Colloid Interf. Sci., 2004, 273, 155-159.
    [80] X. Zhang, Q. Zhao, Y. Tian, et al., Large scale fabrication of hollow palladium nanospheres by template-free approach, Chem. Lett., 2004, 33, 244-245.
    [81] Q. Peng, Y. Dong, Y. Li, ZnSe semiconductor hollow microspheres, Angew. Chem., 2003, 115, 3135-3138.
    [82] S. U. Pickering, J. Chem. Soc., 1907, 91, 2001-2021.
    [83] Y. He, Preparation of polyaniline/nano-ZnO composites via a novel Pickeringemulsion route, Powder Technol., 2004, 147, 59-63.
    [84] Y. He, Preparation of polyaniline microspheres with nanostructured surfaces by a solids-stabilized emulsion, Mater. Lett., 2005, 59. 2133-2136.
    [85] Y. He, Nanostructured CeO2 microspheres synthesized by a novel surfactant-free emulsion, Powder Technol., 2005, 155, 1-4.
    [86] Y. He, Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route, Mater. Chem. Phys., 2005, 92, 134-137.
    [87] Y. He, Preparation and modification of ZnO microspheres using a Pickering emulsion as template, Mater. Lett., 2005, 59, 114-117.
    [88] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, et al., Colloidosomes: selectively permeable capsules composed of colloidal particles, Science, 2002, 298, 1006-1009.
    [89] Z. P. Qiao, G. Xie, J. M. Huang, et al., One-pot monomer self-assembly route to PbS/poly(methylmethacrylate)core/shell nanocomposite thin coatings, J. Mater. Chem., 2002, 12, 611-613.
    [90] H. P. Liang, H. M. Zhang, J. S. Hu, et al., Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed., 2004, 43, 1540-1543.
    [91] Y. L. Wang, L. Cai, Y. N. Xia, Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles, Adv. Mater., 2005, 17, 473-476.
    [92] Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect, Science, 2004, 304, 711-714.
    [93] B. Y. Ahn, S. I. Seok, I. C. Baek, et al., Core/shell silica-based in-situ microencapsulation: A self-templating method, Chem. Commun., 2006, 189.
    [94] Q. Zhang, A. Dong, Y. Zhai, F. Liu, G. Gao, Synthesis of 1,4-bis(o-cyanostyryl)benzene-silica nanoparticles with core-shell structures and effect of reaction conditions, J. Phys. Chem. C, 2009, 113, 12033-12039.
    [95] Q. Zhang, Y. Zhai, F. Liu, M. Yang, G. Gao, Synthesis of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene-silica core-shell particles with a self-templating method and their fluorescent properties, Eur. Polym. J., 2008, 44, 3957-3962.
    [96] Q. Zhang, A. Dong, Y. Zhai, F. Liu, G. Gao, Synthesis and characterization of octylmethoxycinamate-silica core-shell nanoparticles with a self-templating method, Chem. Res. Chinese U., Acceptted.
    [97] L. R. Hirsch, R. J. Stafford, J. A. Bankson, et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, P. Natl. Acad. Sci. USA, 2003, 100, 13549-13554.
    [98]李朝辉,王柯敏,谭蔚泓等,硅壳包被的核/壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用,科学通报, 2005, 50, 1318-1322.
    [99]俞英,周震涛,核/壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶,分析化学, 2005, 33, 650-652.
    [100] J. I. Taylor, C. D. Hurst, M. J. Davies, et al., Application of magnetite and silica–magnetite composites to the isolation of genomic DNA, J. Chromatogr. A, 2000, 890, 159-166.
    [101]方菲,朱龙章,叶芹苹,沈鹤柏,于平国,核-壳型磁性纳米微球的制备及在核酸提取中的应用,现代生物医学进展, 2009, 9, 470-474.
    [102] T. Bahar, S. Serdar, Immobilization of glucoamylase on magnetic polystyrene particles, J. Appl. Polym. Sci., 2002, 76, 69-73.
    [103]周磊,杨海红,梁远,聂玉伦,胡春,王东升,核-壳结构的Fe-FeOxH2x-3催化UV/H2O2降解腐殖酸,环境科学学报, 2007, 27, 1968-1971.
    [104] S. W. Kim, M. Kim, W. Y. Lee, et al., Fabrication of hollow palladium spheres and their successful application to the recy-clable heterogeneous catalyst for Suzuki coupling reactions, J. Am. Chem. Soc., 2002, 124, 7642-7643.
    [105] L. Lu, G. Sun, H. Zhang, et al., Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate, J. Mater. Chem., 2004, 14, 1005-1009.
    [106]蒋红梅,王久芬,王香梅,新型核-壳结构丙烯酸酯乳胶涂料,化学世界, 1999, 198-200.
    [107] T. Teruo, Y. Hideo, Core-shell structured aqueous adhesive for dry laminate, JP2000-119618, 2000.
    [108] F. Akira, S. Yoshiaki, Core-shell emulsion composition for architecture, JP11-92708, 1999.
    [109] P. Reiss, J. Bleuse, A. Pron, Highly luminescent CdSe/ZnSe core/shellnanocrystals of low size dispersion, Nano letters, 2002, 2, 781-784.
    [110] Y. Cao, Banin U., Growth and properties of semiconductor core/shell nanocrystals with InAs cores, J.Am.Chem.Soc., 2000, 122, 9692-9702.
    [111] O. Cherniavskaya, L. Chen, M. A. isiam, et al., Photoionization of individual CdSe/CdS core/shell nanocrystals on silicon with 20nm oxide depends on surface band bending, Nano letters, 2003, 3, 497-501.
    [112] A. Rogach, A. Susha, F. Caruso, et al., Nano-and microengineering: three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells, Adv. Mater., 2000, 12, 333-337.
    [113] S. Q. Wang, J. Y. Zhang, C. H. Chen, Dandelion-like hollow microspheres of Cuo as anode material for lithium-ion batteries, Scripta Materialia., 2007, 57, 337-340.
    [114] C. Graf, A. Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications, Langmuir, 2002, 18, 524-534.
    [115] W. Zhao, Q. Y. Zhang, H. P. Zhang, et al., Preparation of PS/Ag microspheres and its application in microwave absorbing coating, J. Alloy Compd., 2009, 473, 206-211.
    [116]赵雯,核壳结构有机/无机电磁功能复合微球的制备技术与应用,西安,西北工业大学, 2008.
    [117]谭惠民,高分子新材料丛书-超支化聚合物,北京,北京化学工业出版社, 2005.
    [118]刘景春,韩建成,跨世纪高科技材料一员-纳米SiO2,涂料工业, 1998, 1, 34-35.
    [119]苏学军,郑典模,纳米SiO2的应用研究进展,江西化工, 2002, 1, 6-10.
    [120] J. Wang, K. Chen, R. Yang, et al., Application of nanometer silica in to coating of ink jet paper, J. Shanxi U. Sci. Technol., 2005, 23, 7-11.
    [121]陈国新,赵石林,纳米UV屏蔽透明涂料的研制,现代涂料与涂装, 2003,3, 1-3.
    [122]边蕴静,纳米材料在涂料中的应用,化工新型材料, 2001, 29, 31-32.
    [123] Y. Yu, W. C. Chen, Transparent organic-inorganic hybrid thin films prepared from acrylic polymer and aqueousmon-odispersed silica, Mater. Chem. Phys.,2003, 82, 388-395.
    [124]廖辉伟,童云,车明霞,改性无机高分子SiO2溶胶外墙涂料,化工新型材料, 2005, 33, 68-70.
    [125]吴吉生,吴光伟,吴光毅,内墙纳米漆及其制备方法, CN1287144, 2001.
    [1] K. K. Dong, N. Damaghi, S. D. Picart, et al., UV-induced DNA damage initiates release of MMP-1 in human skin, Exp. Dermatol., 2008, 17, 1037-1044.
    [2] M. Brenner, V. J. Hearing, The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, 84, 539-549.
    [3] C. Cao, S. Healey, A. Amaral, et al., ATP-sensitive potassium channel: A novel target for protection against UV-induced human skin cell damage. J. Cell. Physiol., 2007, 212, 252-263.
    [4] Y. Yamaguchi, K. Takahashi, B. Z. Zmudzka, et al., Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis. Faseb. J., 2006, 20, 1486-.
    [5] O. Handa, S. Kokura, S. Adachi, et al., Methylparaben potentiates UV-induced damage of skin keratinocytes. Toxicology, 2006, 227, 62-72.
    [6] M. Schlumpf, P. Schmid, S. Durrer, et al., Endocrine activity and developmental toxicity of cosmetic UV filters-an update. Toxicology, 2004, 205, 113-122.
    [7] M. Ichihashi, M. Ueda, A. Budiyanto, et al., UV-induced skin damage, Toxicology, 2003, 189, 21-39.
    [8] T. Schwarz, Photoimmunosuppression, Photodermatol Photo, 2002, 18, 141-145.
    [9]杨敏,王宝玺,常建民,紫外线照射对皮肤免疫系统的抑制作用,中国皮肤性病学杂志, 2004, 18, 302-304.
    [10] Y. Matsumura, H. N. Ananthaswamy, Molecular mechanisms of photocarcinogenesis, Front. Biosci., 2002, 7, 765-783.
    [11]王平,毕志刚, UVB诱发皮肤癌的分子机制研究进展,国外医学皮肤性病学分册, 2005, 31, 44-46.
    [12] J. F. Gary, K. Sewon, V. James, et al., Mechanism of photoaging and chronological skin aging. Arch. Dermatol., 2002, 138, 1462-1470.
    [13]夏济平,毕志刚,皮肤光老化机制进展,国外医学(皮肤性病学分册), 2002,28, 288-291.
    [14] G. J. Fisher, The pathophysiology of photoaging of the skin. Cutis, 2005, 75, 5-8.
    [15]姚孝元,我国防晒化妆品中紫外线吸收剂分类和紫外吸收光谱,中国卫生检验杂志, 2005, 2, 236-241.
    [16]涂国荣,王武尚,张利兴,复合天然紫外吸收剂在防晒化妆品中的应用研究,日用化学工业, 2000, 5, 18-20.
    [17] H. Klammer, C. Schlecht, W. Wuttke, et al., Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary–thyroid function in rats. Toxicology, 2007, 238, 192-199.
    [18]肖庚鹏,方永培,王水生,何淋,化妆品中甲氧基肉桂酸辛酯和水杨酸乙基己酯含量的测定,日用化学工业, 2009, 39, 68-70.
    [19]尹彦秋,刘云,防晒剂及其应用,日用化学工业, 2003, 33, 174-178.
    [20]王建新,徐磊,王建国,防晒剂对甲氧基肉桂酸辛酯的光降解及其抑制,日用化学工业, 2003, 33, 159-162.
    [21] H. Lorraine, The contributions of UVA and UVB to connective tissue damage in hairless mice, J. Invest. Dermatol., 1985, 84, 272-276.
    [22] K. Kaidbey, R. W. Gange, Comparison of methods for assessing photoprotection ageinst UVA in vivo, J. Am. Acad. Dermatol., 1987, 16, 346-353.
    [23]沈德言,红外光谱法在高分子研究中的应用,科学出版社, 1982.
    [24]王世兴,王命泰,雷勇等,纳米TiO2的高分子“锚定位”包覆,无机材料学报, 2000, 15, 45-49
    [1] C. Chi, C. Chiang, S. Liu, et al., Achieving high-efficiency non-doped blue organic light-emitting diodes: charge-balance control of bipolar blue fluorescent materials with reduced hole-mobility, J. Mater. Chem., 2009, 19, 5561-5571.
    [2] A. Johnston, B. Battersby, G. Lawrie, et al., A mechanism for forming large fluorescent organo-silica particles: Potential supports for combinatorial synthesis, Chem. Mater., 2006, 18, 6163-6169.
    [3] C. R. Patra, R. Bhattacharya, S. Patra, et al., Lanthanide phosphate nanorods as inorganic fluorescent labels in cell biology research. Clin. Chem., 2007, 53, 2029-2031.
    [4] Y. Nakajima, H. Toyama, A. Kojima, et al., A solid-state light-emitting device based on ballistic electron excitation using an inorganic material as a fluorescent film. Phys. Status Solidi A, 2003, 197, 316-320.
    [5] E. R. Goldman, A. R. Clapp, G. P. Anderson, et al., Multiplexed toxin analysis using four colors of quantum dot fluororeagents, Anal. Chem., 2004, 76, 684-688.
    [6] D. Gerion, F. Chen, B. Kannan, et al., Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays, Anal. Chem. 2003, 75, 4766-4772.
    [7]惠娟利,柔性白色有机电致发光器件的制备及性能研究,天津,天津理工大学, 2007.
    [8]文尚胜,李爱源,文斐等,柔性有机电致发光器件的研究进展,量子电子学报, 2007, 24, 663-671.
    [9]王杏,田大垒,赵文卿等, OLED柔性衬底封装材料研究进展,现代显示, 2008, 86, 48-52.
    [10] E. T. Iamazaki, T. D. Z. Atvars, Role of surfactants in the sorption of the whitening agent tinopal CBS onto viscose fibers: A fluorescence spectroscopy study, Langmuir, 2006, 22, 9866-9873.
    [11] J. A. Stoll, M. M. Ulrich, W. Giger, Dynamic behavior of fluorescent whitening agents in Greifensee: Field measurements combined with mathematical modeling of sedimentation and photolysis, Environ. Sci. Technol., 1998, 32, 1875-1881.
    [12] S. Veleva, E. Valcheva, I. Valchev, et al., Application of an exponential kinetic equation to the interaction of optical brighteners with pulp, React. Kinet. Catal. L., 2001, 72, 355-364.
    [13] I. H. Leaver, B. Milligan, Fluorescent whitening agents-a survey, Dyes Pigm, 1984, 5, 109-144.
    [14] S. Canonica, J. B. Kramer, D. Reiss, et al., Photoisomerization kinetics of stilbene-type fluorescent whitening agents. Environ. Sci. Technol., 1997, 31, 1754-1760.
    [15] J. B. Kramer, S. Canonica, J. Hoigne, et al., Degradation of fluorescent whitening agents in sunlit natural waters, Environ. Sci. Technol., 1996, 30, 2227-2234.
    [16]张仕鹰,景志坤,荧光增白剂及其在白色塑料制品中的应用,塑料科技, 1999, 5, 8-10.
    [17]贺金仓,徐建伯,耿少华等,我国造纸用荧光增白剂的生产现状及市场前景,精细与专用化学品, 2003, 2, 10-11.
    [18]王学勒,陈华,刘新河,荧光增白剂ER的合成,化学世界, 1998, 9, 501-502.
    [19]葛广周,苯并嗯啤二苯乙烯结构的荧光增白剂及其中间体的合成研究,无锡,江南大学, 2008.
    [20]刘卉,李小瑞,郑顺姬,双三嗦氨基二苯乙烯型造纸用荧光增白剂,西南造纸, 2002, 2, 25-26.
    [21]王世兴,王命泰,雷勇等,纳米TiO2的高分子“锚定位”包覆,无机材料学报, 2000, 15, 45-49.
    [22] R. D. Schaller, L. F. Lee, J. C. Johnson, et al., The Nature of Interchain Excitations in Conjugated Polymers: Spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM), J. Phys. Chem. B, 2002, 106, 9496-9506.
    [23] S. R. Greenfield, W. A. Svec, D. Gosztola, et al., Multistep photochemical charge separation in rod-like molecules based on aromatic imides and diimides, J. Am. Chem. Soc., 1996, 118, 6767-6777.
    [24] A. Burns, H. Owb, U. Wiesner, Fluorescent core-shell silica nanoparticles: towards‘‘Lab on a Particle’’architectures for nanobiotechnology, Chem. Soc. Rev., 2006, 35, 1028-1042.
    [1]朱小雪,薛敏钊等,聚亚苯基乙烯衍生物作为电致发光材料的研究进展,化工进展, 2008, 27, 1181-1191.
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al., Light-emitting diodes based on conjugated polymers. Nature, 1990, 347, 539-541.
    [3]刘引烽,特种高分子材料,上海,上海大学出版社, 2001
    [4] J. E. Gano, K. Kirschbaum, E. D. Luzik, et al., 1,4-di(1,2-di-tert-butyl-2-phenylethenyl)benzene and related twist-twist Pi conjugated stilbene (PPV) systems, Tetrahedron Lett., 1998, 39, 6641-6644.
    [5] Y. G. Jin, J. Kim, S. H. Park, et al., Novel poly(p-phenylenevinylene)s derivatives with CF3-phenyl substituent for light-emitting diodes, B. Kor. Chem. Soc., 2005, 26, 795-801.
    [6] Z. K. Wu, S. X. Wu, Y. Q. Liang,·LB film structure of poly(2-methoxy,5-(8-methoxy-3,6-dioxa-1-undecoxy)-p-phenylene vinylene) studied by spectroscopy, Spectrochim. Acta A, 2003, 59, 1631-1641.
    [7] M. Aguiar, M. C. Fugihara, I. A. Hümmelgen, et al.,·Interchain luminescence in poly(acetoxyp-phenylenevinylene), J. Lumin., 2002, 96, 219-225.
    [8] H. H. Horhold, S. Pfeiffer, et al.,·Organic light-emitting diodes (OLED) including poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene-1,2-ethenylene-2,5-dimethoxy-1,4-phenylene-1,2-ethenylene] as electroluminescent material, US·Patent, 6403238, 2002.
    [9] C. Zhang, D. Braun, A. J. Heeger, Light-emitting diodes from partially conjugated poly(p-phenylene vinylene), J. Appl. Phys., 1993, 73, 5177-5180.
    [10] P. L. Burn, R. H. Friend, D. A. Halliday, et al., Precursor route chemistry and electronic-properties of poly(p-phenylene-vinylene), poly[(2,5-dimethyl-p-phe nylene)vinylene] and poly[(2,5-dimethoxy-p-phenylene)vinylene], J. Chem. Soc., Perkin Trans. 1, 1992, 23, 3225-3231.
    [11] R. Gowri, D. Mandal, B. Shivkumar, et al., Synthesis of novel poly[(2,5-dimethoxy-p-phenylene)vinylene] precursors having two eliminatable groups: An approach for the control of conjugation length, Macromolecules, 1998, 31, 1819-1826.
    [12] R. Gowri, G. Padmanaban, S. Ramakrishnan, An approach for the control of conjugation length in PPV derivatives, Synth. Met., 1999, 101, 166-169.
    [13] G. Padmanaban, S. Ramakrishnan, Conjugation length control in soluble Poly[2-methoxy-5-((2‘-ethylhexyl)oxy)-1,4-phenylenevinylene] (MEHPPV): Synthesis, optical properties, and energy transfer, J. Am. Chem. Soc., 2000, 122, 2244-2251.
    [14] T. Ahn, M. S. Jang, H. K. Shim, Blue electroluminescent polymers: control of conjugation length by kink linkages and substituents in the poly(p-phenylenevinylene)-related copolymers, Macromolecules, 1999, 32, 3279-3285.
    [15] Y. Li, G. Vamvounis, S. Holdcroft, Control of conjugation length and enhancement of fluorescence efficiency of poly(p-phenylenevinylene)s via post-halogenation, Chem. Mater., 2002, 14, 1424-1429.
    [16] C. J. Neef, J. P. Ferraris, MEH-PPV: Improved synthetic procedure and molecular weight control, Macromolecules, 2000, 33, 2311-2314.
    [17] B. P. Parekh, A. A. Tangonan, S. S. Newaz, et al., Use of DMF as solvent allows for the facile synthesis of soluble MEH?PPV, Macromolecules, 2004, 37, 8883-8887.
    [18] J. J. Zhang, G. Gao, W. Dong, et al., Polychromatic light-emitting conjugated polymer prepared by controlling its structure through active free radical addition, Polym. Int., 2008, 57, 921-926.
    [19] S. Madhugiri, A. Dalton, J. Gutierrez, et al., Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual dyringe method, J. Am. Chem. Soc., 2003, 125, 14531-14538.
    [1]朱惠光,计剑,高长有等,聚乳酸组织工程支架材料,功能高分子学报, 2001, 4, 488-492.
    [2] C. C. Chen, J. Y. Chueh, H. Tseng, et al., Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 2003, 24, 1167-1173.
    [3] I. Molina, S. Li, M. B. Martinez, et al, Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type, Biomaterials, 2001, 22, 363-369.
    [4]李立华,焦延鹏,李志忠等,聚乳酸壳聚糖复合支架材料的生物相容性研究,中国生物医学工程学报, 2005, 24, 503-506.
    [5]王金涛,孙宏晨,梁奇志等,聚乳酸聚乙二醇复合骨形成蛋白修复下颌骨缺损,实用空腔医学杂志, 2006, 22, 17-20.
    [6]马晓妍,聚乳酸及其共聚物的制备和降解性能,北京化工大学学报, 2004, 31, 51-56.
    [7]罗丙红, PLGA-(PEG-ASP)n共聚物的合成与性能研究,功能高分子学报, 2005, 6, 295-295.
    [8]罗彦凤,王远亮,新型改性聚乳酸及其体外生物可降解性研究,高技术通讯, 2005, 15, 55-59.
    [9]李亚滨,寇士军,聚乳酸/聚乙醇酸复合纤维的性能探讨,合成纤维工业, 2005, 28, 20-22.
    [10]吴巧凤,陈槐卿,可降解生物材料聚乳酸-磷酸钙陶瓷在骨组织工程中的应用,国外医学生物医学工程分册, 2005, 28, 33-36.
    [11] N. C. Bleach, S. N. Nazhat, K. E. Tanner, et al., Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites, Biomaterials, 2002, 23, 1579-1585.
    [12] K. L. Elias, R. L. Price, T. J. Webster, Enhanced functions of osteoblasts on nanometer diameter carbon fibers, Biomaterials, 2002, 23, 3279-3287.
    [13]唐诗钊,万玉青,严会娟等,含有碳纳米管复合材料的细胞亲和性汇月,科学通报, 2004, 49, 1614-1616.
    [14]龚华俊,杨小平, PLA/MWNTs/HA复合材料的制备和性能研究,功能高分子学报, 2005, 6, 99-104.
    [15] I. Yawakawa, Y. Tsushima, R. Machida, et al., Invitro and invivo release of poly(dl-lactic acid) microspheres containing neurotensin analog prepared by novel oil-in-water solvent evaporation method, J. Pharm. Sci., 1992, 81, 808-811.
    [16] D. K. Yoo, D. Kim, Production of optically pure poly(lactic acid) from lactic acid, Polym. Bull., 2009, 63, 637-651.
    [17] H. R. Kricheldorf, S. R. Lee, N. Schittenhelm, Macrocycles, 1-macrocyclic polymerizations of (thio)lactones-stepwise ring expansion and ring contraction. Macromol. Chemi. Phys., 1998, 44, 273-282.
    [18] J. L. Eguiburu, M. J. F. Berridi, Functionalization of poly(L-lactide) macromonomers by ring-opening polymerization of L-lactide initiated with hydroxyethyl methacrylate-aluminium alkoxides, Polymer, 1995, 36, 173-179.
    [19] J. Zhang, Z. Gan, Z. Zhong, et al., A novel rare earth coordination catalyst for polymerization of biodegradable aliphatic lactones and lactides. Polym. Int., 1998, 45, 60–66
    [20]刘凤岐,汤心颐,高分子物理,高等教育出版社, 172.
    [21]赵耀明,张军,麦杭珍,直接缩聚法合成聚乳酸的研究,合成纤维, 2005, 30, 3-8.
    [22] M. L. D. Lorenzo, Crystallization behavior of Poly(L-lactie acid), Eur. Polym. J., 2005, 41, 569-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700