用户名: 密码: 验证码:
Nd:YAG纳米粉体微结构调控及胶体化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光材料是激光技术发展的核心和基础,作为新一代固体激光材料—透明激光陶瓷,对国家安全和国民经济可持续发展具有重大意义。Nd:YAG激光陶瓷的出现和发展是基于纳米科学和技术发展的基础上的。尽管激光陶瓷材料的制备技术取得了很大进展,但由于纳米粉体合成过程中的一些物理、化学机制还不清楚,人们尚无法稳定获得高纯、相结构完美、分散良好、粒径和形状可控的激光陶瓷粉体,这是影响激光陶瓷性能的主要原因。另外,陶瓷的成型是制备高性能透明陶瓷的另一个关键因素,注浆成型作为一种最利于激光陶瓷真空烧结的成型方法并没有被系统地研究,这也是难以得到高性能透明激光陶瓷的关键因素之一。因此,本论文对最具批量制备意义的化学共沉淀法和尿素均相合成法Nd:YAG纳米陶瓷粉体的前驱体制备过程中成核与生长机制及分散剂的作用机理进行了系统研究,实现了对Nd:YAG纳米陶瓷粉体相组成与形貌的调控,获得了具有良好烧结性能的纳米粉体;此外,对Nd:YAG粉体的胶体化学性质及注浆成型特性进行了研究,为注浆成型工艺方法奠定了理论基础。
     1. Nd:YAG纳米陶瓷粉体的微结构调控
     (1)对碳酸氢铵共沉淀和尿素均相沉淀法合成Nd:YAG前驱体的成核和生长机制及热处理过程中纳米粉体中结晶相的形成与演化机制进行了研究,着重进行了在不同添加方式的情况下,无机分散剂硫酸铵的作用机制及其对Nd:YAG粉体的尺寸、形貌及相组成等的微结构调控。研究表明,对于碳酸氢铵共沉淀法,当硫酸铵添加到离子溶液中时,不能实现对Nd:YAG前驱体的形貌及煅烧后粉体的微结构与烧结特性的调节与控制作用;当硫酸铵的添加方式改为添加到碳酸氢铵沉淀剂溶液中时,S042-离子在Nd:YAG前驱体颗粒表面产生了有效吸附,并影响了前驱体的成核与团聚,从而调节了前驱体颗粒的形貌和分散程度,并通过对硫酸根高温下的分解过程研究,实现了对煅烧后粉体相组成和颗粒尺寸的控制,调节和改善了粉体的烧结性能。在对不同形貌的Nd:YAG粉体的烧结性能研究过程中发现,纳米粉体的烧结性能的优劣并不单调依赖于颗粒尺寸的减小,而且具有架状结构的粉体同样具有良好的烧结性能。
     (2)提出了对已经合成的Nd:YAG前驱体的硫酸铵表面改性,并通过对前驱体的动电特性和光谱测试研究了Nd:YAG前驱体表面改性机理,发现硫酸铵对前驱体的微结构的调控作用源于SO42取代了胶体颗粒表面的部分羟基,并由此导致了胶体颗粒聚集成类球形的前驱体颗粒。此外,研究表明,Nd:YAG前驱体的硫酸铵表面改性,还可以影响和控制粉体的煅烧过程和煅烧后粉体的微结构,并显著影响Nd:YAG陶瓷的透明性。
     (3)研究了尿素均相沉淀法合成Nd:YAG过程中的前驱体成核、生长及形貌控制及其煅烧合成中的物理化学过程,并研究了合成条件对粉体的烧结性能的影响。以混合溶液Al(NO3)3、Y(NO3)3、Nd(NO3)3为母盐,尿素为沉淀剂,通过对前驱体Zeta电位和FT-IR分析研究了SO42-对前驱体颗粒的表面作用机理。TEM的结果显示:SO42在前驱体颗粒的合成过程中起结构导向作用,将纳米颗粒组装成网络结构。XRD的结果表明,随着硫酸铵的量的增加,形成纯相Nd:YAG粉体所需要的煅烧温度越高,这是由于硫酸根在煅烧过程中阻碍了颗粒之间的元素扩散,从而需要更高的煅烧温度。从煅烧后粉体的形貌及晶粒尺寸和烧结性能的研究发现,当(NH4)2SO4加入量为4.56 wt%时,既可使Nd:YAG在相对低温下(1000℃)获得,又使其具有均匀的粒度和良好的烧结性能。因此,(NH4)2SO4是Nd:YAG纳米粉体合成过程中对前驱体粉体的形貌及煅烧后粉体的微结构控制的重要因素。
     在此基础上,研究尿素均相沉淀过程中尿素的浓度对Nd:YAG前驱体及煅烧后粉体微结构的影响。当(NH4)2SO4加入量为4.56 wt%时,离子浓度为0.08mol/L时,尿素的用量影响合成粉体的微结构及烧结性能。对粉体的形貌及烧结性能分析,高的尿素含量能获得较理想的Nd:YAG粉体。当[U]/[M]=40时,真空烧结后的陶瓷具有最好的透明性。因此,合成体系中尿素的浓度是实现Nd:YAG纳米粉体的微结构的调控作用的另一个重要因素。
     (4)研究了Nd:YAG粉体合成过程中,当铝和钇分别偏离化学计量比时,产物中的反位缺陷及其形成机制。离子比偏离化学计量比条件下,研究采用碳酸氢铵共沉淀的方法合成YAG粉体中的反位缺陷,为合成化学计量比的粉体提供了重要的理论基础。研究发现:
     在YAG粉体合成过程中,在体系中加入过量的A1离子,当铝离子过量少于20at%时,产生高温下稳定的非化学计量比单一的石榴石相。这种相是由体系中的铝离子取代钇离子形成了反位缺陷,从而使体系保持了钇铝石榴石相结构。XRD、等离子发射光谱(ICP)及HRTEM芝持了上述结论;扩展X射线吸收精细结构(EXAFS)结果给出了铝过量的YAG粉体中部分Al占据了Y的十二面体的位置的直接证据,从而确认了铝反位缺陷在纳米粉体中的存在。在YAG纳米粉体中,体系对Al取代Y形成的反位缺陷有较高的容忍度,有可能两个铝离子占据一个Y-O十二面体的位置,保证空间和电负性的平衡。这一结论与以往的钇铝石榴石单晶中得到的反位缺陷不一致。
     体系中加入过量的钇离子,容易出现富钇的杂质相,并且随着温度升高杂质相含量增大。这说明,较低温度下Y取代Al-O的八面体位置,形成非化学计量比的钇铝石榴石相。但由于体系不稳定,高温下容易分解产生YAP和YAM等富钇杂质相。扩展X射线吸收精细结构(EXAFS)结果证实了Y可能占据了Al-O八面体的位置,但容忍度低,并且在高温下容易退出。
     以上结论说明:YAG纳米粉体中铝过量时Al对Y的取代比钇过量时Y对Al的取代更容易也更稳定,这与单晶材料中Y对Al的取代比Al对Y的取代更容易发生的结论相反。
     2.粉体的胶体化学性质研究
     对Nd:YAG纳米粉体的胶体化学性能进行了研究。研究了不同pH情况下,Nd:YAG粉体因双电层厚度变化导致的动电电位的变化规律,发现pH=10.5的条件下,纳米颗粒之间斥力最大,是形成稳定料浆的最佳条件。选择聚丙烯酸铵作为分散剂,研究了分散剂用量对Zeta电位的影响,确定了最佳分散剂用量为2.6wt%。在此基础上,配置固含量为65wt%的Nd:YAG料浆,并研究了其流变特性。通过特殊的真空注浆技术得到了相对密度达57.7%的高密度、高均匀性的坯体。为Nd:YAG纳米粉体的注浆成型提供了重要的基础数据。
     基于对固相反应烧结Nd:YAG激光陶瓷成型方法的支持,对Nd2O3、Al2O3、Y2O3复合粉体的动电特性、浆料流变性能及坯体的显微结构进行了研究。研究表明,复合粉体与Nd:YAG纳米粉体有类似的胶体化学行为,但分散剂的用量远大于Nd:YAG粉体,这是由复合粉体中的部分颗粒尺寸较大造成的。类似条件下得到的复合粉体浆料的流动性能与Nd:YAG粉体浆料的流变特性有明显区别。当分散剂浓度为5.2wt%,固含量为53wt%时,复合粉体料浆具有最佳流动性能,通过注浆技术获得了均匀一致的密度达56.8%的复合氧化物坯体。
     本文对Nd:YAG纳米粉体的微结构调控和粉体的胶体化学性质进行系统的研究,获得一些有创新意义的研究结果,这为进一步研究制备高透明陶瓷材料奠定了基础。
Laser material is the central part and infrastructure of laser technology. As a new generation of solid-state laser materials, transparent laser ceramics are of great significance with respect to national security and sustainable economic development. Nd:YAG laser ceramic is the best solid state laser gain media that is significantly improved by the development of nano-science and technology. Great progress had been made recently on the preparation of laser ceramics while many physical and chemical mechanisms happened during the preparation process remains unknown. People can not make good control on the nanosize powder with high purity, perfect phase structure, mono-dispersed distribution on both size and morphology. That has become the main obstacle for the preparation of laser ceramics with high performance. What more, slip casting method has been demonstrated to be highly suitable for preparation of laser ceramics with high transmittance while it has not been investigated in a comprehensive way. That becomes another inhibitor for the preparation of laser ceramics. In this paper, methods with prospective batch productive ability such as chemical co-precipitation method and urea precipitation method are resorted to detailed investigation to prepare Nd:YAG precursors. Nucleation and growth of the Nd:YAG precursors and the affection of different dispersants were comprehensively studied. Controllable Nd:YAG powders with good sintering ability are prepared. Preparation of the Nd:YAG green body in slip casting method was also studied.
     1. Control of the microstructure of the Nd.YAG nano-powder
     (1) Ammonium hydrogen carbonate and urea co-precipitation method were employed to prepare the Nd:YAG precursor. Nucleation, growth of the Nd:YAG precursors and its evolution in the following calcination process were studied. Special attention was paid on the effect of (NH4)2SO4 to the size, morphology and phase of the Nd:YAG powder during different precipitation procedures. According to our study: added in the solution of metal ions have little affection on the morphology of the precursor and the calcined powder and its sintering ability when the Nd:YAG precursor was prepared via ammonium hydrogen carbonate co-precipitation method. While the (NH4)2SO4 added in the precipitant solution has profound affection on the nucleation and aggregation of the precursor which would further affect the morphology and dispersion of the precursor. And the decomposition of (NH4)2SO4 at high temperature (1000-1200℃) would contribute to the powder with good dispersion ability and high purity. That would improve the sintering ability of the calcined powder. It is found that the sintering ability of the nano powder was not only determined by its diminished size. Powder with skeleton structure also has good sintering ability.
     (2) Modification of the SO42- absorbed surface of the Nd:YAG precursor was proposed. Mechanism of the modification was studied by monitoring the electrokinetic and spectroscopic properties of the precursor. It is found that the OH-was replaced by SO42- and that lead to the formation of the spheric aggregation of the precursors. The modification process would also affect the microstructure of the precursor in the calcination process and the transparency of the Nd:YAG ceramics.
     (3) Nucleation and growth of the Nd:YAG precursors prepared by urea precipitation method were studied along with the investigation on the morphology,calcination of the precursor and the sintering ability of the prepared powder. Al(NO3)3,Y(NO3)3,Nd(NO3)3 were prepared into the stock solution and precipitated in the presense of urea. Zeta potentiometer and FT-IR were employed to measure the affection of SO42- to the surface of the precursors. SO42- ions were found to be the guidance of the formation of the skeleton structure according to the TEM result. XRD result showed that the addition of (NH4)2SO4 would lead to higher formation temperature of YAG crystalline structure. That should be attributed to the inhibition of (NH4)2SO4 to the diffusion of elements at high temperature. And it is found that sample with 4.56 wt% (NH4)2SO4 added have uniform particle size and best sintering ability. In conclusion, (NH4)2SO4 is a crucial factor for the control of the microstructure of the precursor and calcined powder.
     Affection of the urea concentration on the microstructure of the precursor was also studied. It was found from the sample with [M]=0.08 that the best morphology and sintering ability could be achieved by setting the [U]/[M] at 40 with 4.56 wt% (NH4)2SO4 added in the stock solution.
     (4) Antisite defects were analyzed when the Nd:YAG powders were prepared from unstoichiometric ingredient. That provides theoretical support for the preparation of stoichiometric powder. It was found that YAG crystalline structure was remained when the excess of Al is less than 20%. Al take the position of Y and the antisite defects were formed. XRD, HRTEM, ICP result were also in accord with the conclusions above. Directed evidence was given by the result of EXAFS showing that the Y was substituted by Al, sometimes by two Al atoms. That indicates the existence of antisite defects in the Nd:YAG powder. These results are different from the antisite defects found in YAG single crystal.
     Impurity phase showed up when the Y is excessively added into the system. The impurity phase with rich Y would decompose into YAP, YAM etc. EXAFS results showed that the Octahedral of Al-O could be substituted by Y insignificantly.
     In conclusion, excess of Al in the system would contribute to the stability of YAG crystalline structure than the excess of Y. That is distinctive to those antisite defects existed in YAG single crystal. 2. Colloidal chemical properties of the Nd:YAG powder
     The electrokinetic properties of Nd:YAG nanopowder were investigated. The effect of pH of the slurry on the electrokinetic properties was discussed. The optimal pH value needed to obtain a stable Nd:YAG nanoparticle slurry was 10.5. NH4PAA can improve the stability of the slurry, and the optimal amount is about 2.6 wt%. Slip with solid loadings of 65 wt% was send to rheological test. Green body with uniform and high density was achieved via vacuum grouting method.
     Electrokinetic, rheological properties of Nd2O3, Al2O3, Y2O3 slurry and microstructure of these green bodies were also investigated to support the preparation of Nd:YAG ceramic via solid state reaction method. Result showed that the colloidal chemical properties of these slurries were analogous to that of the Nd:YAG slurry but dispersant needed for the mixed powder was much more. That can be attributed to the larger particles existed in the mixed powder. Amount of dispersant at about 5.2 wt% and solid loadings of 53 wt% were the best consideration for slurry with good rheological and green body with uniform density.
     Microstructure and colloidal chemical properties of the Nd:YAG powder were comprehensively studied in this paper. Innovative result of this paper would provide more infrastructure work for the preparation of transparent ceramics.
引文
[1]A.Ikesue, K. Yoshida, J. Mater. Sci.,1999,34,1189.
    [2]J. Lu, M. Prabhu, J. Song, Appl. Phys.,2000, B71,469.
    [3]J. Lu, K. Ichi, J. Alloy. Comp.,2002,431,220.
    [4]R. P. Abbott, C. D. Boliy, S. N. Fochs,et al.25(th) Annual Army Science Conference, Orilando, FL, United States, November 27,2006 through November 30,2006.
    [5]J. Li, Y. S. Wu, Y. B. Pan, et al., Opt. Mater.,2008,31,6.
    [6]L. Wen, X. D. Sun, et al., J. Am. Ceram. Soc.,2004,87,2288.
    [7]X. Li, H. Liu, J. Y. Wang, et al J. Am. Ceram. Soc.,2004,2288-2290.
    [8]张克从,张乐惠,晶体生长科学与技术(下册)[M].北京:科学出版社,1997.
    [9]L.I. Kazakova, GM. Kuzmicheva, E. M. Suchkova. Inorg.Mater,2003,9,959.
    [10]M. M. Kuklja. J.Phys.Condens Matter,2000,12,2953.
    [11]M. M Kuklja, R. Pandey. J. Am. Ceram. Soc.,1999,82(10),2881.
    [12]陆学善,激光基质钇铝石榴石的发展[M].北京:科学出版社,1972
    [13]K.M.Kinsman, M.Karin, J.McKittrick, E. Sluzky, and K. Hesse, J. Am.Ceram. Soc.,1994,77(11),2866.
    [14]P. Apte, H. Burke, and H. Pickup, J. Mater. Res.,1992,7(3),706.
    [15]R.S. Roth. Phase Diagrams for Ceramists Volume Ⅺ. Compiled at the National Institute of Standards and Technology [M], Edited and Published by The American Ceramic Society. Fig.9265,1995.
    [16]李先学[D],中国科学院研究生院博士学位论文,2007.
    [17]A.Ikesue, T.Kinoshita, K.Kamata, K.Yoshida, J.Am.Ceram.Soc.,1995,78, 1033-1040
    [18]W.克希耐尔著。孙文等译。固体激光工程[M].北京:科学出版社。2002.
    [19]李霞,刘宏,王继扬,崔洪梅,张旭东.钇铝石榴石透明激光陶瓷的研究进展.硅酸盐学报.2004,32(4):485-490
    [20]W. J. Kozlovsky, T. Y. Fan, R. L. Byer, Opt. Lett.,1986,11,788.
    [21]黄朝红,王爱华,殷绍棠.Nd:YAG透明陶瓷制备技术的研究进展[J],硅酸盐学报,2003,9,873.
    [22]雷鸣,张礼杰,王英伟,曾繁明,邹志伟,刘景和.透明陶瓷的研究现状与发展.中国陶瓷工业.2005,12(4):45-49
    [23]刘颂豪.透明陶瓷激光器的研究进展[J].光学与光电技术2006,4(2):1-8
    [24]K. Yoshida, A. Ikesue, T. Yamamoto. Suture-less bonded single crystal and ceramic composite lasers. Presented at CLEO/IQEC Tech. Conf., CTh58, San Francisco.2004.
    [25]C.D. Greskovich, D. Cusano, D. Hoffman, R.J. Riedntecter, Am.Ceram. Soc. Bull. 1992,71(7),1121.
    [26]N. Matsuda.. Inorganic scintillator materials. Bull. Ceram. Soc. Jpn.1993,28(2), 130.
    [27]A. Ikesue, K. Kamata. J. Ceram. Soc. Jpn.,1995,103(5),489.
    [28]G. De. With, Mater. Res. Bull.,1984,19,1669.
    [29]M. Sekita, H. Hanecla, T. Yanagitani, S. Shirasaki., J. Appl. Phys.,1990,67(1),
    453.
    [30]M. Sekita, T. Kinoshita, K. Kamata, K. Yoshida, J. Am. Ceram. Soc.,1991,69(6), 3709.
    [31]A.Ikesue, I. Furusta, K.Kamata.et.al., J.Am.Ceram.Soc.,1995,78(1),225.
    [32]A.Ikesue,T.Kinoshita.K.Kamata.et.al.,J.Am.Ceram.Soc.,1995,78(4),1033.
    [33]A.Ikesue, K.Kamata, J.Am.Ceram.Soc.,1995,78(9),2545.
    [34]A. Ikesue, K.Kamata, J.Jpn.Ceram. Soc.,1995,103(5),489.
    [35]T.Yanagitani, H.Yaji, M.Ichikawa. Jpn. patent,1998,10-10133.
    [36]T.Yanagitani, H.Yaji,Y.Hiro. Jpn. patent 1998,10-101411.
    [37]J.Lu, J.Song, M.Prabhu,J. Appl. Phys.,2000,39,1048.
    [38]J. Lu, J.Lu, T.Murai, et al., Opt.Lett.,2002,27(13),1120.
    [39]J.Lu, J. Song, M. Prubhu. Jpn. J. Appl. Phys.,2000,39,1048.
    [40]J.Lu, T.Murai, K.takaichi, et al., Appl.Phys.Lett.,2001,78(23),3586.
    [41]J.Lu, J. H. Lu, T. Murei, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi., T. Yanagitani, A. Kiyama, A. A. Kaminskii, Advanced solid-state lasers,2002,68, 507-517.
    [42]J. Lu, K. Ueda, H.Yagi, et. al., J.Alloys. Compd.,2002,341,220.
    [43]K. Ueda, J. Lu, H. Yagi, High powder ceramic lasers,128W output and future. European physical society. CLEO Europe& EOEC focus meeting. Munich, Germany.2001,18.
    [44]C.Gmachi et al., Nature 2002,415,883.
    [45]S. Howard et al., IEEE Sel. Top. Quant. Elect.2007,13(5),1054.
    [46]A. Ikesue,, Y. L. Aung, J.Am. Ceram.Soc.,2006,89,1936-1944.
    [47]闻雷,孙旭东,马伟民,固相反应法制备Nd:YAG透明陶瓷[J],无机材料学报,2004,19(2),295.
    [48]闻雷,孙旭东,马伟民,共沉淀法制备YAG超细粉及透明陶瓷[J],功能材料,2004,35(1),89.
    [49]L.Wen, Z.D. Sun, Z.M. Xiu. J. Eur. Ceram. Soc.,2004,24,2681.
    [50]张旭东,刘宏,王继扬,何文,徐国纲.掺钕钇铝石榴石陶瓷的制备与性能[J].人工晶体学报,2004,33(3),292-295.
    [51]潘裕柏,徐军,吴玉松,李江,李劲东,姜本学,陈卫标,冯锡淇,曾燕萍,黄莉萍,郭景坤.Nd:YAG透明陶瓷的制备与激光输出[J].无机材料学报2006,21(5),1278.
    [52]李劲东,姜本学,潘裕柏,吴玉松,李江,徐军,冯锡淇,黄莉萍,郭景坤.国产Nd:YAG陶瓷获得激光输出[J].中国激光,2006,33(6),864.
    [53]李江,邱发贵,孙兴伟,潘裕柏,郭景坤.真空烧结Nd:YAG透明陶瓷的研究[J].功能材料,2004,35,367.
    [54]Jiang Li, Yusong Wu, Yubai Pan, Jingkun Guo. Ceram. Int.,2006,32,785.
    [55]Jiang Li, Yusong Wu, Yubai Pan, Jingkun Guo. J. Non-Cryst. Solids.,2009,355, 785.
    [56]张旭东,刘宏,王继扬,何文,徐国纲.掺钕钇铝石榴石陶瓷的制备与性能[J].人工晶体学报.2004,33(3),292.
    [57]D.R. Messier, GE. GazzaAm.Ceram.Soc.Bull.,1972,51(9),692.
    [58]A.Ya. Neiman, E.V. Tkachenko, L.A. Kvichko, L.A. Kotok, J.Inorg.Chem.,1980, 25(9),1294.
    [59]R.R.Warshaw, J.Am.Ceram.Soc.,1959,42(9),434.
    [60]J.S.Abell, I.R.Harris, B.Cockayne, B.Lent. J.Mater.Sci.,1974,9(4),527.
    [61]A. Ikesue, K.Yoshida, T.Yamatoto, et.al., J. Am. Ceram. Soc.,1997,80(6),1517.
    [62]A. Ikesue, K. Yoshida, J.Mater.Sci.,1999,34,1189.
    [63]A. Ikesue, K. Yoshida, J. Am. Ceram. Soc.,1998,81(8),2194.
    [64]A.Ikesue, K.Kamata, K.Yoshida, J.Am.Ceram.Soc.,1996,79(7),1921.
    [65]A. Ikesue, K.Yoshida, K.Kamata, J.Am. Ceram.Soc.,1996,79(2),507.
    [66]卢铁城,陈丰波,张颖等.改进的溶胶-凝胶法制备YAG纳米粉体[J].功能材料,2005,36,610.
    [67]S.Saxena.Mater.Lett.2006,60,1315.
    [68]H.M.Wang,M.C.Simmonds,Y.Z.Huang,et al.Chem.Mater.,2003,15,3474.
    [69]J.H. Barbaran, M. F. Farahani, F. Hajiemaeilbaigi, Semiconductor Physics,
    Quantum Electronics & Optoelectronics,2005, V.8, N1.P.87-89
    [70]E. Garskaite, D. Jasaitis, A. Kareiva, J. Serb. Chem. Soc.2003,68(8-9),677.
    [71]朱顺官,孟庆江,牟景艳,溶液燃烧法制备纳Al2O3.中国粉体技术,
    2005,11(2),21.
    [72]夏国栋,周圣明,张俊计等,无机化学学报,2005,21,1203.
    [73]Z.Sun, D.Yuan, H.Li. J. Alloy. Compd.,2004,379, L1.
    [74]张华山,苏春辉,韩辉等,柠檬酸-凝胶燃烧法制备钇铝石榴石(Y3Al5O12)纳米 粉体的研究,材料开发与应用,2005,20,5.
    [75]薛军民,李承恩,倪焕尧等,柠檬酸盐法低温合成BaTiO3微粉的研究.功能材料1995,26(5),424
    [76]李先学,王文菊,邱国彪,罗小铭,苏士杰,凝胶燃烧法合成Nd:YAG纳米陶瓷粉体[J].材料开发与应用,2009,24(2),263.
    [77]A. L. Costa, L. Esposito, V. Medri, A. Bellosi, Adv. Eng. Matt.,2007,9(4),307.
    [78]苏言杰,张德,徐建梅等,柠檬酸盐凝胶自燃烧法合成超细粉体[J].材料导报2006,5,142.
    [79]李霞,刘宏,王继扬等.醇-水热法制备钇铝石榴石(YAG)纳米粉体,无机材料学报,2004,5,1168.
    [80]Y. Hakuta, K. Seino, H. Ura, J. Mater. Chem.,1999,9,2671.
    [81]X. Xu, W. H. Zhang, Mater. Lett.2006,60,962.
    [82]J.Su,Q.L.Zhang,C.J.Gu, Mater.Res. Bull.2005,40,1279.
    [83]苏静,张庆礼,谷长江等,共沉淀法YAG、Nd:YAG纳米粉体的制备、结构与光谱性能研究[J].功能材料,2005,36,717.
    [84]丁志立,韩杰才,陈嵩,以碳酸氢铵为沉淀剂制备纳米钇铝石榴石[J].粉体材料工程,2005,2,48.
    [85]M. L. Saladino, F. Serra, S. Enzo., J. Mater. Sci.,2007,42(12),4418.
    [86]J. Su, Q. L. Zhang, C. J. Gu., et al, Mater. Res. Bull.,2005,40,1279.
    [87]J. G. Li, T. Ikegami, J. H. Lee, et al. J. Eur. Ceram. Soc.,2002,20,2395.
    [88]J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, Jpn.. J. Appl. Phys.2000,39(Pt.2),
    L1048.
    [89]J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. Kaminskii, J. alloys Comp.,2002,341(1-2),220.
    [90]A. Ikesue, T. Kinoshita, K. Kamata, K.Yoshida, J.Am. Ceram. Soc.1995, 78(4),1033.
    [91]A. Ikesue, I. Furusato, K. Kamata, J. Am. Ceram.Soc.1995,78(1),225.
    [92]A.Ikesue, K. Kamata, K. Yoshida, J. Am. Ceram.Soc.1996,79(7),1921.
    [93]J. Li, Y. S. Wu, Y. B. Pan, et al. Opt. Mater.,2008,31(1),6.
    [94]Y. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, A. A. Kaminskii, Opt. Mater.,2009,31(5),707.
    [95]刘维良,先进陶瓷工艺学[M],.武汉理大学出版社,2004,77-78.
    [1]高瑞平,李晓光,先进陶瓷物理与化学原理及技术[M].科学出版社,2001:268.
    [2]郑昌琼,新型无机材料[M].科学出版社,2003,336.
    [3]肖锋,叶建东,王秀鹏,干燥方法对化学沉淀法合成HA粉体团聚的影响[J].硅酸盐通报,2006,(1),3.
    [4]仇海波,高濂,纳米氧化锆粉体的共沸蒸馏法制备及研究[J].无机材料学报,1994,9(3),365.
    [5]G. G. Xu, X. D. Zhang, W. He, H. Liu, H. Li, and R. I. Boughton, Mater. Lett., 2006,60,962.
    [6]L. Chung-Hsin, H. Wei-Tse, J. Dhanaraj, and R. Jagannathan, J. Eur. Ceram. Soc., 2004,24,3723.
    [7]X. X. Li, W. J. Wang, Powder. Technol.,2009,196,26.
    [8]X. Li, H. Liu, J. Y. Wang, H. M. Cui, X. D. Zhang, F. Han, Mater. Sci. Eng. A, 2004,379(1-2),347.
    [9]Z. H. Chen, Y. Yang, Z. G. Hu, J.T. Li, S. L. He, J. Alloy. Compd.,2007,433(1-2), 328.
    [10]J. R. Lu, K. I. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kaminskii, J. Alloys. Compd.,2002,341,220.
    [11]H. Gong, D. Y. Tang, H. Huang, T. S. Zhang, J. Ma, Mater. Chem. Phys.,2008, 112(2),423.
    [12]H. Gong, D. Y. Tang, H. Huang, J. Ma, J Electroceram. Doi:10. 1007/s10832-008-9545-8.2008.
    [13]J.W.G.A. Vrolijk, J.W.M.M. Willems, R. Metselaar, Sol-gel synthesis for preparation of yttrium aluminum garnet. In Euro-ceramics. Vol. 1.ed. G.de with, R.A. Terpstra and R. Metselarra. Elsevier Applied Science. Essex.1989.104-108.
    [14]Ji Guang Li, Takayasu Ikegami, Jong-Heun Lee, Toshiyuki Mori, Yoshiyuki Yajima. J. Mater. Res.,2000,15(9),357.
    [15]Y. Liu, Z. F. Zhang, B. King, et al., J. Am.Ceram.Soc.,1996,79 (2),385.
    [16]R. M. Hay., J. Mater. Res.,1993,8(3),578.
    [17]J. G. Li, T. Ikegami, J. H. Lee, et al., J. Eur. Ceram. Soc.,2002,20,2395.
    [18]H. Schubert, G. Petzow. Preparation and Characterization of Ceramic Powders.In: S. Somiya. Advance Ceramics III. Elsevier Science Publisher Ltd.,1990:45-57.
    [19]G. Li, T. Ikegami, J. H. Lee, et al., J. Am. Ceram. Soc.,2000,83(4),961.
    [20]A. K. Pradhan, K. Zhang, G. B. Louts, Mater. Res. Bull.,2004,39,1291.
    [21]T. A.Ring Salt Lake City, Utah"Fundamentals of Ceramic Powder Processing and Synthesis" Academic Press San Diego New York Boston London Sydney Tokyo Toronto.
    [22]李继光,孙旭东,王雅蓉,α-Al2O3纳米粉的烧结初期机理研究[J].硅酸盐学报,1998,26(4),471.
    [23]孟国文,陈大明,陶瓷材料中裂纹起因及消除方法[J].材料导报,1995,2,40.
    [24]I. W. Chen, X. H. Wang, Nature,2000,40(4),168.
    [25]陈智慧[D],钇铝石榴石纳米粉体及YAG透明陶瓷的制备研究,中国科学院研究生院博士学位论文.
    [1]S. Ramanathan, S.K. Roy, Y.J. Bhat. J. Mater. Sci. Lett.,2001,20,2119.
    [2]B. Hoghooghi et al, Mater. Chem. Phys.,1994,38,175.
    [3]D.J. Sordelt, M. Akinc, M.L. Panchula, Y. Han, M.H. Han, J. Eur. Ceram. Soc., 1994,14,123.
    [4]J.Q. Wang, S.H. Zheng, R. Zeng, S.X. Dou, X. D. Sun, J. Am. Ceram. Soc.,2009, 92(6),1217.
    [5]J.Q. Wang, H.Y. Xu, Y. Wang, Y.L. Yue, J. Rare. Earth.,2006,24,284.
    [6]N. Matsushita, N. Tsuchiya, K. Nakatsuka, T. Yanagitani, J. Am. Ceram. Soc., 1999,8,1977.
    [7]Y.S. Wu, J. Li, Y.B. Pan, Q. Liu, J.K. Guo, Ceram. Inter.,2009,35,25.
    [8]R. Yang, J. Qiu, M. Li, GQ. Liu, J. Eur. Ceram. Soc.,2008,28,2903.
    [9]M. Hirano, E. Kato, J.Am.Ceram.Soc.,1999,3,786.
    [10]T. Yanagitani, N. Matsushita, N. Tsuchiya, K. Nakatsuka, H. Haneda, J.Min.Mater.Proc.Jpn. In press.
    [11]I.W. Chen, X.H. Wang, Nature,2000,4,168.
    [1]W.H. Rhodes,E.A.Tricket. Key Powder Characteristics in Sintered Optical Ceramics.In:G L.M essing, S. H irano and H. Hausner. Ceramic Transactions.Vol.12.Ceramic Powder ScienceⅢ. Westerville,Ohio:The American Ceramic Society Inc.,1990:677-690.
    [2]贺伦燕,李南萍,用碳酸氢按沉淀制备晶状碳酸钇的机理研究[J].稀有金属与硬质合金2002,30(1),1.
    [3]李永绣,何小彬,辜子英等,RECl3与NH4HCO3的沉淀反应及伴生杂质的共沉淀行为[J].稀土学报,1999,20,19.
    [4]M. Kh. Ashurov, Yu. K. Voronko, V. V. Osiko, A. A. Sobol, and M. I.Timoshechkin, Phys. Status Solidi A,1977,42,101.
    [5]L. Volzhenskaya, Y. Zorenko, N. Patsagan, and M. Paskovsky, Opt.Spectrosc., 1987,80,135.
    [6]J. Dong, K.Q. Lu, Physical Review B,1999,43(11),8808.
    [7]C. Landron, S. Lefloch, M. Gervais, J. P. Coutures, D. Bazin, Phys. Status Solidi B, 1996,196,25.
    [8]M. M. Kuklia, R. Pandey, J. Am. Ceram. Soc.,1999,82(10),2881.
    [9]A. P. Patel, M. R. Levy, R. W. Grimes, R. M. Gaume, R. S. Feigelson, K. J. McClellan, C. R. Stanek, Appl. Phys. Lett.,2008,93,191902.
    [10]马礼敦,杨福家,同步辐射应用概论[M],复旦大学出版社,2001.
    [11]黄胜涛,固体X射线学(二)[M],科学技术出版社,1990.
    [12]寇元,邹鸣,固体催化剂的研究方法[J],石油化工,2000,29,802-811.
    [13]訾凤兰,氧化物在载体表面的单层分散及结构研究,北京化工大学博士研究生学位论文.2004.
    [14]R.D.Shanno, Acta Cryst.A.,1976,32,751.
    [15]N.J. Hess, G.D. Maupin, L.A. Chick, D.S. Sunberg, D.E. Mccreedy, T.R. Armstrong, J. Mat. Sci.,1994,29,1873.
    [16]S. Roy, L. W. Wang, W. Sigmund, Mater. Lett.,1999,39(1),138.
    [17]A.L.Alfred, J.inorg.nuclera.Chem.,1961,17,215.
    [18]F.Zandiehnadem, R.A.Murray, W.Y.Ching, Physica,1998,150B,19.
    [1]K.E. Bremmell,G.J. Jameson,S. Biggs, Colloid and Surfurce A,1998,139,199.
    [2]J.A. Lewis, J.Am.Ceram.Soc.2000,10,2341.
    [3]M. Janmes, R. J. Hunter, R. W.O. Btien, Langmuir,1992,8,420.
    [4]Th. F. Tadros. Colloids Interf. Sci.1980,12,141.
    [5]B.Vincent, Colloids and Surface,1987,24,269.
    [6]A.S. Rao, J.Disp.sci.Techn.1987,8,457.
    [7]朱步瑶,赵振国编著,界面化学基础[M],北京:化学工业出版社,1994
    [8]章莉娟,郑忠等编,胶体与界面化学[M],广州:华南理工大学出版社,2006.
    [9]B.layers Derjaguin, Prog. Surf Sci.,1993,43,1.
    [10]张新霓[D], α-Al2O3水相悬浮体系分散性及稳定性的研究,青岛大学硕士学位论文,2005.
    [11]J. Davies, J.G.P. Binner. J.Eur. Ceram. Soc.2000,20,1539.
    [12]张清岑,黄苏萍,水性体系分散剂应用新进展[J].中国粉体技术,2000,4,32.
    [13]J.L. Deiss, P. Anizan, S.E.I.Hadigui, C. Wecker, Colloids and surfaces A 1996,1, 59.
    [14]U. Palk. J.Am. Ceram. Soc.1999,4,833.
    [15]F. Shojai, A.B.A. Pettersson, T. Mantyla, J.B. Ro, J. Eur. Ceram. Soc.2000,3, 277.
    [16]宋贤良[D],利用淀粉原位凝固胶态成型高性能陶瓷的研究,博士论文,2003.
    [17]候万国,孙德军,张春光编.应用胶体化学[M].北京:科学出版社,1998.
    [18]S. Taruta, N.Takusagawa, K.Okada, N.Otsuka. J. Ceram. Soc. Japan.,1996,104, 26.
    [19]G.Tari, J.M. AFerreira, A.T. Fonseca, O.Lyckfeldt. J. Eur. Ceram. Soc.1998,18, 249.
    [20]A. Tsetsekou, C. Agrafiotis, A. Millias, J. Eur. Ceram. Soc.2000,21,363.
    [21]R.J. Bzzard, S. Blackburn. Powder Technol.1998,97,118.
    [22]司文捷,苗赫灌,T.J. Gr aule etal.高固相含量Si3N4浆料的研究(Ⅱ)—浆料的流变性质[J].硅酸盐学报,1996,5,531.
    [23]刘学建,古宏晨,黄莉萍,符锡仁,分散剂对氮化硅浆料流变性的影响[J].无机材料学报1999,3,491.
    [24]未波波,王新,姜延学,杨玉,纳米粉体的成型工艺及其微观机理分析[J].硅酸盐学报,2009,3,542.
    [25]J. H. Jean, H. R. Wang, J. Am. Ceram. Soc.,1998,6,1589.
    [26]E. P. Luther, J. A. Yanez, G. V. Franks, F. F. Lange, D. S. Pearson,1995,61495.
    [27]G. H. Wang, P. Sarkar, P. S. Nicholson, J. Am. Ceram. Soc.,1997,4,965.
    [28]H. Kamiya, Y. Fukuda, Y. Suzuki, M. Tsukada, T. kakui, M. Naito, J. Am. Ceram. Soc.,1999,12,3407.
    [29]W. C. J. Wei, S. C. Wang, F. Y. Ho, J. Am. Ceram. Soc.,1999,12,3385.
    [30]D. houivet, J. E. Fallah, J. M. Haussonne, J. Am. Ceram. Soc.,2002,2,321.
    [31]J. Widegren, L. Bergstrom, J. Am. Ceram. Soc.,2002,3,523.
    [32]S. W. Sofie, F. Dogan, J. Am. Ceram. Soc.,2001,7,1459.
    [33]J. Sun, L. Bergstrom, L. Gao, J. Am. Ceram. Soc.,2001,11,2710.
    [34]Y. L. Kopylov, V. B. Kravchenko, S. N. Bagayev, V. V. Shemet, A. A. Komarov, O. V. Karban, A. A. Kaminskii, Opt. Mater.,2009,5,707.
    [35]X. Li, Q. Li, Ceram. Int.,2008,34,397.
    [36]H.Z. Wang, L.Gao, Z.J. Shen, M. Nygren, J. Eur. Ceram. Soc.,2001,21,779
    [37]P.W. Schindler, Surface complexes at oxide-water interface, Ann Arbor Science Publishers, Ann Arbor, MI,1981.
    [38]D. Houivet, J. E. Fallah, J. M. Haussonne, J. Am. Ceram. Soc.,2002,85,32.
    [39]I. Cesarano, I. A. Akasy, A. Bleier, J. Am. Ceram. Soc.,1988,71,250.
    [40]X.Yu, P. Somasundaran, J Colloid. Interface Sci.,1996,177,283.
    [41]K.A. Appiagyei, G.L. Messing, J. Q. Dumm, Ceram. Int.2008,34,1309.
    [42]蔡锴,黄勇.低毒的丙烯酸羟乙脂聚合体系凝胶注模成型Al2O3陶瓷[J].无机材料学报,2003,2,343.
    [1]A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, J.Am.Ceram.Soc.,1995,78,1033.
    [2]A.Ikesue,I.Furosato,K.Kamata. J.Am.Ceram.Soc.,1995,1,225.
    [3]A. Ikesue, Opt.Mater.,2002,1,183.
    [4]闻雷,孙旭东,马伟民,固相反应法制备Nd:YAG透明陶瓷[J],无机材料学报,2004,2,295.
    [5]闻雷,孙旭东,马伟民,共沉淀法制备YAG超细粉及透明陶瓷[J],功能材料,2004,1.89.
    [6]L. Wen, X.D. Sun, Z.M. Xiu, J. Eur. Ceram. Soc.,2004,24,2681.
    [7]王介强,陶珍东,郑少华,孙旭东,制备条件对固相反应示制取YAG多晶体 透光性的影响[J].中国有色金属学报,2003,2,432.
    [8]潘裕柏,徐军,吴玉松,李江,李劲东,姜本学,陈卫标,冯锡淇,曾燕萍,黄莉萍,郭景坤Nd:YAG透明陶瓷的制备与激光输出[J].无机材料学报,2006,5,1278.
    [9]李劲东,姜本学,潘裕柏,吴玉松,李江,徐军,冯锡淇,黄莉萍,郭景坤,国产Nd:YAG陶瓷获得激光输出[J].中国激光,2006,6,864.
    [10]李江,邱发贵,孙兴伟,潘裕柏,郭景坤,真空烧结Nd:YAG透明陶瓷的研究[J].功能材料,2004,35,367.
    [11]L. Esposito, A. Piancastelli, J. Eur. Ceram. Soc.,2009,2,317.
    [12]K. A. Appiagyei, G L. Messing, J. Q. Dumm, Ceram. Int.,2008,5,1309.
    [13]H-Z.Wang, L. Gao, Z.J.Shen, M. Nygren, J. Eur. Ceram. Soc.,2001,21,779.
    [14]G. A. Parks, Chem. Rev.,1965,65,177.
    [15]R.H. Yoon, T. Salman, G. Donnay, J. Colloid. Sci.,1979,70,483.
    [16]G. A. Parks, P. L. Debruyn, J. Phys. Chem.,1962,66,973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700