用户名: 密码: 验证码:
云南哈播斑岩型铜(—钼—金)矿床地质特征与成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哈播斑岩铜(-钼-金)矿床位于哀牢山-红河新生代成矿带南端西侧。矿床内有四期斑岩侵入到哈播南山花岗岩中,依次为黑云母石英二长斑岩、石英二长斑岩、二长斑岩和晚期闪长玢岩。哈播斑岩矿床由蚀变中心发育强钾长石化和黑云母化,伴生石英网脉,晚期绢英岩化广泛发育并叠加早期钾化,Cu-Au矿化主要以石英+黄铜矿脉产出,分布在钾化带外侧,伴生Mo矿化多以石英+辉钼矿脉发育于Cu-Au矿体外缘。辉钼矿Re-Os年龄显示,哈播矿床的成矿年龄为35.47±0.16Ma。
     哈播南山花岗岩和四期斑岩都有富钾,轻稀土元素明显富集,重稀土元素显著亏损,富集等大离子亲石元素,相对亏损高场强元素等特征,岩浆岩初始(87Sr/86Sr)t值为0.70665~0.70831,εNd(t)均为负值(-5.3 ~ -2.5),表明EH花岗岩和各期斑岩可能具有相似的来源。采用LA-ICP-MS锆石U-Pb年龄测定哈播南山花岗岩、黑云母石英二长斑岩和二长斑岩的加权平均年龄分别为35.37±0.48 Ma、36.20±0.20 Ma和36.19±0.22 Ma,三个样品的锆石结晶年龄一致指示哈播矿床成岩年龄集中于36 Ma,哈播矿床成岩-成矿是一个持续的过程。
     哈播矿床脉演化序列为早期石英脉→石英+黄铜矿脉→石英+辉钼矿脉。石英脉阴极发光照相结果表明各期脉均有后期热液叠加。脉中流体包裹体的岩相学、体测温和激光拉曼光谱分析等方面研究结果显示,哈播矿床各期脉中流体包裹体均有富气相包裹体、富液相包裹体、气相包裹体和含子矿物三相包裹体,局部偶见CO2三相包裹体;其中各种包裹体中气相均有含CO2、SO2、H2O等气体。各期脉中多种包裹体并存并具有相似的均一温度范围,表明三期脉中流体均发生了“二次沸腾”。推测哈播矿床初始成矿流体是稳定共存、不混溶的低盐度流体和高盐度流体,高盐度流体是哈播矿床成矿元素迁移的主要载体。成矿流体在400℃左右发生“二次沸腾”、分相,温度下降和挥发份持续逃逸可能是Cu-Au成矿的诱因。Mo元素在成矿流体多次沸腾、分相过程中持续优先分配进高盐度流体中而逐步富集;温度下降,含钼硫化物在流体中溶解度降低而沉淀,从而形成石英+辉钼矿±黄铜矿脉。
     起源于下地壳的富碱岩浆沿断裂-欧梅断裂脉动侵位,形成黑云母石英二长斑岩、石英二长斑岩、二长斑岩等,岩浆上侵、结晶过程发生“一次沸腾”出溶的流体和浆房分异出的流体可能是形成哈播矿床初始成矿流体。初始流体在运移到较浅部位,由于压力降低,发生多次的“二次沸腾”,流体发生分相,并与围岩发生反应,依次形成钾长石化、黑云母化、绿泥石化、绢英岩化,伴生Cu-Au和Mo矿化,是哈播矿床形成的一种可能的机制。
Habo porphyry Cu (-Mo-Au) deposit is located in the southwest of the Ailaoshan-Red River Cenozoic metallogenic belt. The Habo intrusive complex is divided into the Pingshan Granite, the Sandaoban Granite, the Ashu Granite and the Habo South Granite. Following emplacement of these granites bodies, four stages of porphyries, ie. biotie-quartz monznite porphyry, quartz-monzonite porphyry,monzonite porphyry and later diorite porphyry occurring as pipes, were intruded into Habo South Granite. Intense feldspathic alteration and biotitic alteration associated by quartz storckwork occur in the Habo deposit alteration center, which is surrounded and overprinted by later feldspar destructive alteration. Cu-Au mineralization mainly occurs as quartz-chalcopyrite veinlets in the outer part of potassic alteration zone, and Mo mineralization occurring mainly as quartz-molybdenite veinlets, is mixed with Cu-Au mineralization but a little far away to the alteration center. The molybdenum mineralization age at Habo is 35.47±0.16Ma, determined by the Re-Os method by LA-ICPMS.
     Geochemically, the Habo South Granite and four stages of porphyries are all enriched in potassium, enriched in large-ion lithophile elements (eg. K, Rb, Sr, Ba,Th, La) and light rare earth elements, depleted in high field-strength elements and heavy rare earth elements, with relative hagh (87Sr/86Sr)t (0.70665~0.70831) and negativeεNd(t)( -5.3 ~ -2.5),similar to ore-bearing porphyries in Jianshajiang– Ailaoshan alkaline-rich porphyries belt in Eastern Tibet. Zircons selected from Habo South granite, biotite-quartz-monzonite porphyry and quartz-monzonite porphyry were analysed using the LA-ICPMS U-Pb method and gave ages at 35.37±0.48 Ma, 36.20±0.20 Ma and 36.19±0.22 Ma respectively. The similar mineralization age and rock-forming ages suggest that the magmatism and mineralization was a continuous process, and similar to the process at the Yulong porphyry copper deposit.
     Several stages of veinlets can be observed, and the evolution sequence of vein types is magnetite-quartz veinlets→early quartz veinlets→quartz-chalcopyrite veinlets→quartz-molybdenite veinlets→quartz-sericite-pyrite veinlets→pyrite-chalcopyrite veinlets. Early quartz, quartz-chalcopyrite and quartz-molybdenite veinlets were selected to perform fluid inclusions research. The Cathodoluminescence images of early quartz, quartz-chalcopyrite and quartz-molybdenite veinlets indicate that all were overprinted by later hydrothermal fluids. Vapor inclusions, vapor-rich inclusions, liquid-rich inclusions, and brine inclusions were found in all three types of veinlets, and CO2-bearing inclusions were found locally. Using Laser Raman analysis, we found that CO2 and SO2 are very abundant in all these inclusions. The coexistence of these several types of fluid inclusions with similar homogenization temperature ranges, and some brine inclusions homogenizing by the simultaneous disappearance of vapor and halite, indicate that all these fluids recorded by these three types of veins experienced“secondary boiling”.
     Vapor-rich and brine inclusions are abundant in early quartz veins, and their homogenization temperatures are similar, which shows that in the Habo deposit the silicate melt directly exsolved two coexisting fluid phases, a vapor and a hypersaline liquid, and the hypersaline fluid is the main carrier of metals. When the fluids migrated upward, at the temperature of ~400°C, the hypersaline liquid entered the two-phase separation field, causing intense boiling and phase separation. With the vapor fluids escaping, the solubility of Cu-Au in the hypersaline fluid decreased, accompanied by intense Cu-Au mineralization. Mo was partitioned into hypersaline fluid during the whole fluid evolution and enriched gradually. On progressive cooling and boiling, the solubility of both Mo and silicates decrease, which is accounted for Mo saturation and deposition.
     The ore-forming mechanism in Habo should be as the following. Alkaline-rich magma which generated from lower crust intruded along Oumei faults, and formed biotite-quartz-monzontie porphyry, quartz- monzonite porphyry, monzonite porphyry and the later diorite porphyrite. During the intruding and crystallizing process, hydrothermal fluid that exsolved from alkaline-rich magma by“first boiling”, mixed with fluid generated from magma chamber, and comprised the initial metal-bearing fluid in Habo porphyry deposit. On cooling and uplifting, the initial fluid kept on experiencing“secondary boiling”, and reacted with these host rocks, producing K-feldspathic alterantion, biotitic alteration, chloritic alteration and phyllic alteration, associated by Cu-Au mineralization and Mo mineralization.
引文
Allen C R, Gillep sie A R, Han Y, Sieh K E, ZhangB and Zhu C. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rate, and seismic hazard. Geol. Soc. Am er. B ull. , 95: 686~700.
    Audétat A, Gunther D, Heinrich CA. 1998. Formation of a magmatic–hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions. Science, 279: 2091~2094.
    Audétat A, Pettke T, Dolejs D. 2004. Magmatic anhydrite and calcite in the ore2forming quartz2monzodiorite magma at Santa Rita., New Mexico ( USA ) : Genetic constraints on porphyry2Cu mineralization. Lithos , 72 (324): 147~161.
    Audétat A, Pettke T, Thomas R, Bodnar RJ. 2001. Characterization of the magmatic-hydrothermal transition in barren vs. mineralized granites. 11th Goldschmidt Conference, Hot Springs VA, May 2001. Abstract #3152 (CD-ROM).
    Audétat, A., and Gunther D. 1999. Mobility and H2O-loss from fluid inclusions in natural quartz crystals: Contributions to Mineralogy and Petrology, 137: 1~14.
    Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce( IV) / Ce ( III) in zircon : Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144 (3): 347~364.
    Blevin P L, Chappell B W, Allen C M. 1996. Intrusive metallogenetic provinces in eastern Australia based on granite source and composition. Tansactions of the Royal Society of Edinburgh: Earth Sciences, 87: 281~290.
    Bodnar R J and Student J J. 2006. Melt inclusions in plutonic rocks: Petrography and microthermometry, in Webster, J.D., ed., Melt inclusions in plutonic rocks: Montreal, Quebec, Mineralogical Association of Canada, Short Course, 36: 1~26.
    Bodnar R J and Vityk M O. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid inclusions in Minerals, Methods and Applications, B. De Vivo and M. L. Frezzotti, eds., Pub. By Virginia Tech,Blacksburg, VA, 117~130.
    Bodnar R J, Burnham C W, Sterner S M. 1985. Synthetic fluid inclusions innatural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000℃and 1500 bars. Geochimica et Cosmochimica Acta, 49: 1861~1873.
    Bodnar R J. 1985. Pressure-volume-temperature-composition (PVTX) properties of the system H2O-NaCl at elevated temperatures and pressures: Unpublished PhD dissertation thesis, The Pennsylvania State University, 183.
    Bodnar R J. 1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits: Mineralogical Association of Canada, Short Course 23: 139~152.
    Bodnar R J. 2003a. Introduction to fluid inclusions, in Samson, I., Anderson, A., and Marshall, D., eds., Fluid Inclusions: Analysis and interpretation: Mineralogical Association of Canada, Short Course 32: 1~8.
    Bodnar R J. 2003b. Reequilibration of fluid inclusions, in Samson, I., Anderson, A., and Marshall, D., eds., Fluid inclusions: Analysis and interpretation: Mineralogical Association of Canada, Short Course 32: 213~230.
    Bodnar R J. 2003c. Introduction to aqueous fluid systems, in Samson, I., Anderson, A., and Marshall, D., eds., Fluid inclusions: Analysis and interpretation: Mineralogical Association of Canada: Short Course 32: 81~99.
    Bornhorst T J and Rose W I. 1986. Partitioning of gold in young calc-alkaline volcanic rocks form Guatemala. Journal of Geology, 94: 412~418.
    Brenan J M, Shaw H F, Phinney D L, et al. 1994. Rutileaqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island arc basalts. Earth and Planetary Science Letters, 128: 327~339.
    Brimhall G H. 1980. Deep hypogene oxidation of porphyry copper potassium-silicate protore at Butte, Montana: A theoretical evaluation of the copper remo-bilization hypothesis : Economic Geology, 75: 384~409.
    Burnham C W. 1979. Magmas and hydrothermal fluids. In: Barnes H L ed. Geochemistry of hydrothermal ore deposits, 2nd edition. Wiley-Interscience,New York, 71~137.
    Burnham C W. 1997. Magmas and hydrothermal fluids, in Barnes, H.L. (Ed.), Geochemistry of hydrothermal ore deposits, 3th edition. New York, John Wiley and Sons, 63~123.
    Camus F and Dilles J H. 2001. A special issue devoted to porphyry copper deposits of Northern Chile preface. Economic Geology, 96: 233~237
    Candela P A and Holland H D. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48: 373~380.
    Candela P A. 1997. A review of shallow, ore-related granites: Textures, volatiles and ore metals. Journal of Petrolgoy, 38: 1619~1633.
    Candela P A., 1991. Physics of aqueous phase evolution in plutionic environments. American Mineralogist, 76: 1081~1091.
    Carmichael I S E and Ghiorso M S. 1986. Oxidation-reduced relations in basic magma: A case for homogenous equilibria: Earth and Planetary Science Letters, 78: 200~210.
    Chung S L, Lee T Y, Lo C H, et al. 1997. Intraplate extension prior to continental extrusion along the Ailao shan-Red River shear zone. Geology, 25: 311~314.
    Chung S L, Lo C H, Lee T Y. 1998. Diachronous uplift of the Tibetan Plateau starting 40Myr ago. Nature, 394: 769~773.
    Chung S L,Chu M F, Zhang Y, Xie Y, et al. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism, Earth-Science Review, 68: 173~196.
    Cline J S and Bodnar R J. 1991. Can economic porphyry copper mineralization be generated by a typical calc2alkaline melt. Journal of Geophysical Research2Solid Earth and Planets, 96 (B5): 8113~8126.
    Cline J S. 1995. Genesis of porphyry copper deposits: the behavior of water, chloride, and copper in crystallizing melts, in Pierce, F W and Bolm, J G, eds., Porphyry copper deposits of the American Cordillera. Arizona Geological Society Digest, 20: 69~82.
    Cloos M. 2001. Bubbling magma chambers, cupolas, and porphyry copper deposits. International Geology Review, 43: 285~311.
    Cooke D R, Hollings P, Walshe J L. 2005. Giant Porphyry Deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100: 801~818.
    Davidson J P. 1996. Deciphering mantle and crustal signatures in subduction zone magmatism: Geophysical Monograph 96: 251~262.
    Davidson P, Kamenetsky V, Cooke D R, et al. 2005. Magmatic precursors of hydrothermal fluids at the Rio Blanco Cu-Mo deposit , Chile : Links to silicate magmas and metal transport [. Economic Geology, 100(5): 963~978.
    Davies J H and von Blankenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens: Earth and Planetary Science Letters, 129: 85~102.
    de Hoog J C M, Mason P R D, van Bergen M J. 2001. Sulfur and chalcophile elements in subduction zones: Constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochimica et Cosmochimica Acta, 65: 3147~3164.
    Dewey J F, Burke K C A. Tibetan, Variscan and Precambrian basement reactivation: products of collision, Geology, 1973, 1(12): 683~692.
    Dewey J F, Shackleton RM , Chang C, et al. 1988. The tectonic evolution of the Tibetan Plateau. London : Philosophical Translations of the Royal Society. A327 : 379~413.
    Dilles J H and Einaudi M T. 1992. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit , Nevada; A 6 km vertical reconstruction. Economic Geology, 87: 1963~2001.
    Dilles J H. 1987. Petrology of the Yerington Batholith, Nevada: Evidence for evolution of porphyry copper ore fluids . Economic Geology, 82: 1750~1789.
    Field C W, Zhang L, Dilles J H, et al. 2005. Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-Main stage porphyry Cu-Mo and late Main stage base-metal mineral deposits, Butte district, Montana: Chemical Geology, 215: 61~93.
    Foley S F and Wheller G E. 1990. Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: The role of residual titanites: Chemical Geology, 85: 1~18.
    Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas: Geochimica et Cosmochimica Acta, 64: 933~938.
    Fournier R O. 1999. Hydrothermal Process Related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment, 94: 1193-1211.
    Furman T and Graham D. 1999. Erosion of lithospheric Mantle beneath the East Aferican Rift system: geochemical evidence from the Kivu volcanic province. Lithos, 48: 237~262.
    Giggenbach W F. 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta, 44(12): 2021~2032.
    Giggenbach W F. 1992. SEG distinguished lecture-magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Economic Geology, 87(7): 1927~1944.
    Gilley L D, Harrison TM, Leloup P H et al. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108 (B2): 2127.
    Gow P and Walshe J L. 2005, The role of preexisting geologic architecture in the formation of giant porphyry-related Cu±Au deposits: Examples from New Guinea and Chile: Economic Geology, 100: 819~833.
    Gustafson L B, Hunt J P. 1975. The porphyry copper deposits at El Salvador, Chile. Economic Geology, 70: 857~912.
    Haas J L. 1976. Physical properties of the coexisiting phases and thermodynamic properties of the H2O component in boiling NaCl solutions. U.S. Geological Survey Bulletin, 1421A: 1~73
    Hall D L, Sterner S M, Bodnar R J. 1988. Freezing point depression of NaCl + KCl + H2O solution. Economic Geology. 83(1): 197~202.
    Halter W E and Heinrich C A. 2005. Magma evolution and the formation of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions. Mineralium Deposita, 39: 845~863.
    Hamlyn P R, Keays R R, Cameron W E, et al. 1985. Precious metals in magnesian low-Ti lavas: implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49: 1797~1811.
    Harrison TM, Leloup P H, Ryerson F J, et al. 1996. Diachronous initiation of transtension along the Ailao Shan2Red River shear zone, Yunnan and Vietnam. in: Yin A and Harrison TM. eds. The Tectonic Evolution of Asia. New York: Cambridge University Press. 208~226.
    Hattori K. 1993. High-sulfur magma, a product of fluid discharge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines. Geology, 21: 1083~1086.
    Hedenquist J W and Lowenstern J B. 1994, The role of magmas in the formation of hydrothermal of deposits. Nature, 370: 519~527.
    Hedenquist J W and Richards J P. 1998. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 10: 235~256.
    Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93: 373~404.
    Heinrich A C. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation. Reviews in Mineralogy and Geochemistry, 65: 363~387
    Heinrich C A, Gunther D, Audetat A, et al. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27: 755~758.
    Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: a thermodynamic study. Mineralium Deposita, 39: 864~889.
    Henley R W and McNabb A. 1978. Magmatic vapor plumes and ground-waterinteratction in porphyry copper emplacement. Economic Geology, 73: 1~20.
    Herzarkhani A, Williams J A, Gammons C. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita, 34 (8): 770~783.
    Hou Z Q , Zhong D L , Deng W M, et al. 2005. A tectonic model for porphyry copper-molybdenum-gold deposits in the eastern Indo-Asian collision zone. In : Porter T M , ed. Super porphyry copper and gold deposits : A global perspective. Adelaide : PGC Publishing. 423~440.
    Hou Z Q, Ma H W, Khin Z, Zhang Y Q, et al. 2003. The Himalayan Yulong porphyry copper belt: produced by large-scale strike-slip faulting at Eastern Tibet. Economic Geology,98: 125~145.
    Hou Z Q, Xie Y L, Li Y Q, et al. 2007. Yulong deposit, Eastern Tibet: a high-sulfidation Cu-Au porphyry copper deposit in the Eastern Indo-Asian collision zone. International Geology Review, 49: 23~258.
    Hou Z Q, Zeng P S, Gao Y F. 2006. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite. Minerlium Deposita , 41: 33~45.
    Houseman G and England P. 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geoph. Res. 98(B7): 12233~12249.
    Hu R Z, Burnard P G, Bi X W, et al. 2004. Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chemical Geology, 203: 305~317.
    James D, and Sacks I S. 1999. Cenozoic formation of the central Andes: A geophysical perspective: Society of Economic Geologists Special Publication 7: 1~25.
    Ji J Q, Zhong D L, Zhang L S. 2000. Kinematics and dating of Cenozoic strike-slip faults in the Tengchong area, west Yunnan: implications for the block movement in the southeastern Tibet Plateau. Chinese Journal of Geology 35(3): 336~349.
    Jiang Y H, Jiang S Y, Ling H F, et al. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry,east Tibet: Geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth and Planetary Science Letters, 241: 617~633.
    Jugo P J, Luth R W Richards J P. 2001. Experimental determination of sulfur solubility in basaltic melts at sulfide vs. sulfate saturation: Possible implications for ore formation. Eos, Transactions, AGU, 82, 47 (2001 Fall Meeting Supplement, Abstract V32G-05).
    Kay S M and Mpodozis C. 2001, Central Andean ore deposits linked to evolved shallow subduction systems and thickening crust. GSA Today, 11: 4~9.
    Kerrich R, Goldfarb R, Groves D.et al. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins: Reviews in Economic Geology, 13: 501~551.
    Kirkham R V and Sinclair W D. 1995. Porphyry copper, gold, molybdenum, tungsten, tin, silver. In : Eckstrand O R , Sinclair W D , Thorpe R I , ed. Geology of Canadian mineral deposit types .Ottawa : Geological Survey of Canada. 421~446.
    Klemm L, Pettke T, Heinrich CA, Campos E. 2007. Hydrothermal evolution of the El Teniente deposit (Chile): porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Economic Geology, 102: 1021~1045
    Klemm L, Pettke T, Heinrich CA. 2008. Fluid and source magma evolution of the Questa pophyry Mo deposit, New Mexico, USA. Mineralium Deposita, 43: 533~552
    Landtwing MR, Pettke T, Halter W E, et al. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry: Earth and Planetary Science Letters, 235: 229~243.
    Lang J R and Titley S R. 1998. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Economic Geology, 93 (2), 138~170.
    Leloup P H, Arnaud N, Lacassin R, et al. 2001. New constraints on the structure, thermochronology and timing of the Ailao Shan–Red River shear zone. Journal of Geophysical Research, 106: 6683~6732.
    Leloup P H, Harrison T M, Ryerson F J, et al. 1993. Structural, petrological and thermal evolution of a Tertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of Geophysical Research, 98: 6715~6743.
    Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3~84.
    Liang H Y, Campbell I H, Allen C, et al. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41, 152~159.
    Liang H Y, Sun W D, Su W C, et al. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104: 587~596.
    Lin T H, Lo C H, Chung S L. 2009. 40Ar/39Ar dating of the Jiali and Gaoligong shear zones: Implications for crustal deformation around the Eastern Himalayan Syntaxis. Journal of Asian Earth Sciences, 34(5): 674~685.
    Lindsay D D. 1997. Structural control and anisotropy of mineralization within the Chuquicamata porphyry copper deposit, northern Chile: Unpublished Ph.D. dissertation, Nova Scotia, Canada, Dalhousie University, Halifax.
    Lopez V M. 1942. The primary mineralization at Chuquicamata, Chile, in Newhouse, W.H., ed., Ore deposits as related to structural features: Princeton, New Jersey, Princeton University Press, 126~128.
    Lowell J D and Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Economic Geology, 65: 373~408.
    Lowenstern J B, Mahood G A, Rivers M I, et al. 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252: 1405~1409.
    Maniar P D and Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101(5): 635~643.
    McInnes B I A and Cameron E M. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment : Mantle wedge samples from the Tabar Lihir2tanga2Feni arc , Papua New Guinea . Earth and Planetary Science Letters, 122(1-2):125~141.
    Middlemost E A K. 1994. Naming materials in t he magma/ igneous rock system. Earth-Science Reviews. 37 (3-4) : 215~224.
    Misra K C. 2000. Understanding mineral deposits. Kluwer Academic Publishers, Boston, 353~449.
    Muller D, Heithersay P, Groves D I. 1994. The shoshonite porphyry Cu-Au association in the Goonumbla district N. S. W. Australia. mineralogy and Petrology, 51: 299~321.
    Mungall J E. 2002. Roasting the mantle : Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30 (10): 915~918.
    Nagaseki H and Hayashi K. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36: 27~30.
    Nagashima S and Katsura T. 1973. The solubility of sulfur in Na2O-SiO2 melts under various oxygen patial pressure at 1100℃, 1250℃and 1300℃. Chemical Society of Japan Bulletin, 46: 3099~3103.
    Nash, T.J., 1976, Fluid-inclusion petrology—data from porphyry copper deposits and applications to exploration: U.S. Geological Survey Professional Paper, 907:1~16.
    Pitzer K S and Pabalan R T. 1986. Thermodynamics of NaCl in steam. Geochimica et Cosmochimica Acta, 50: 1445~1454.
    Proffeit J M. 2003. Geology of the Bajo de la Alumbrera Porphyry Copper-Gold Deposit, Argentina. Economic Geology, 98: 1535~1574.
    Prouteau G, Scaillet B, Pichavant M, Maury R C. 1999. Fluid-present melting of oceanic crust in subduction zones. Geology, 27: 1111~1114.
    Rangin C, Jovilet L, Pubellier M. 1990. A sample model for tectonic evolution of southeast Asia and Indonesia region for the last 43 m. y. Bull. Soc. Geol. France, 6: 889~905.
    RatschbacherL, FrischW, Chen C, et al. 1996. Cenozoic deformation, rotation, and stress patterns in eastern Tibet and western Sichuan, China. in: Yin A and Harrison TM. eds. The Tectonic Evolution ofAsia. New York: CambridgeUniversity Press. 227~249.
    Redmond P B, Einaudi M T, Inan E E, et al. 2004. Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology, 32: 217~220.
    Replumaz A, Lacassin R, Tapponnier P, et al. 2001. Large river oddsets and Pliocene2Quaternary dextral slip rate on the Red River fault (Yunnan, China) . Journal of Geophysical Research, 106 (B1) : 819~836.
    Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry Cu mineralization. Economic Geology, 96: 271~306.
    Richards J P, McCulloch M T, Chappell B W, et al. 1991. Sources of metals in the Porgera gold deposit, Papua New Guinea: Evidence from alteration, isotope, and noble metal geochemistry: Geochimica et Cosmochimica Acta, 55: 565~580.
    Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515~1533
    Richards J P. 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits, in Porter, T.M., ed., Super porphyry copper and gold deposits: A global perspective: Volume 1: Linden Park, South Australia, Porter Geoscience Consulting Publishing, 7~25.
    Richards J.P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37: 247~250.
    Rieder M, Cavazzini G D, Yakonov Y S, et al. 2001.云母的命名.矿物学报, 21(2), 119~128.
    Robb L. 2005. Introduction to ore2forming process. Oxford: Blackwell. 1~166.
    Rodder E and Bodnar R J. 1980. Geological pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8: 263~301
    Roedder, E., and Bodnar, R.J., 1997, Fluid inclusion studies of hydrothermal ore deposits, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits: New York, Wiley and Sons, Inc., 657~698.
    Rusk B, Reed MH, Dilles JH, et al. 2004. Compositions of magmatic-hydrothermal fl uids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, Montana. Chemical Geology 210: 173~199.
    Ryerson F J, Watson E B. 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters, 86: 225~239.
    Sapiie B and Cloos M. 2004, Strike-slip faulting in the core of the Central Range of west New Guinea, Ertsberg mining district, Indonesia: Geological Society of America Bulletin, 116: 277~293.
    Sawyer D A. 1996. Geologic map of the Silver Bell and West Silver Bell mountains, southern Arizona: U.S. Geological Survey Open-File Report 96-0006, scale, 1:24,000.
    Sawyer E W. 1994. Melt segregation in the continental crust. Geology, 22: 1019~1022.
    Sch?rer U, Tapponnier P, Lacassin R, et al. 1990. Intraplate tectonics in Asia: a precise age for large-scale Miocene movement along the Ailao Shan–Red River shear zone, China. Earth and Planetary Science Letters, 97: 65~77.
    Sch?rer U, Zhang L S, Tapponnier P. 1994. Duration of strike-slip movements in large shear zones: the Red River belt, China. Earth and Planetary Science Letters, 126: 379~397.
    Seedorff E, Dilles J H, Proffett J M J, et al. 2005. Porphyry deposits: characteristics and origin of hypogene features: In Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P. (eds.), Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Inc., Littleton, Colorado, USA. 251~298.
    Shinohara H and Hedenquist J W. 1997. Constraints on magma degassing beneath the Far Southeast porphyry Cu–Au deposit, Philippines. 38: 1741~1752.
    Shinohara H, Kazahaya K, Lowenstern J B. 1995. Volatile transport in a convecting magma column: Implication for porphyry Mo mineralization. Geology, 23:1091~1094.
    Sillitoe R H. 1973. Geology of the Los Pelambres porphyry copper deposit, Chile. Economic Geology, 68: 1~10.
    Sillitoe R H. 1988. Epochs of intrusion-related copper mineralization in the Andes: Journal of South American Earth Sciences, 1: 89~108.
    Sillitoe R H. 1997, Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region: Australian Journal of Earth Sciences, 44: 373~388.
    Sillitoe R H. 2000. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery: Reviews in Economic Geology, 13, 315~345.
    Silltoe R H. 1973. The tops and bottoms of porphyry copper deposits. Economic Geology, 68: 799~815
    Singer D A, Berger V I, Menzie W D, et al. 2005. Porphyry Copper Deposit Density, Economic Geology, 100: 491~514
    Skarmeta J, McClay K, Bertens A. 2003. Structural controls on porphyry copper deposits in northern Chile: New models and implications for Cu-Mo mineralization in subduction orogens [abs.]: Décimo Congreso Geologico Chileno, Concepción, 2003, Conference Proceedings: Departamento Ciencias de la Tierra, Universidad de Concepción, 109~110.
    Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs: Geology, 18: 630~633.
    Sourirajan S and Kennedy G C. 1962. The system H2O-NaCl at elevated temperatures and pressures. American Journal of Science, 260: 115~141.
    Speer J A. 1984. Micas in igneous rocks. In: Bailery S W (ed.) Micas. Reviews in Mineralogy, Mineralogical Society of America, 13: 299~349
    Stein H J, Markey R J, Morgan J W, et al. 2001. The remarkable Re-Os chronometer in molybdenite: how and why it works. Terra Nova, 13: 479~486.
    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Societyof London Special Publication, 42:313~345.
    Sun W D, Arculus R J, Kamenetsky V S, et al. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization: Nature, 431: 975~978.
    Tapponnier P and Molnar P. 1976. Slip-line field theory and large scale continental tectonics. Nature, 264: 319~324.
    Tapponnier P, Lacassin R, Leloup P H, et al. 1990. TheAilaoShan /Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China. Nature, 343: 431~437.
    Tapponnier P, Peltzer G, Armijo P. 1986. On themechanics of the collision between India and Asia. in: CowardM P and RiesA C. eds. Collision Tectonics. Oxford: Blackwell. 112~157.
    Tapponnier P, Peltzer G, Armijo R, et al. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611~616.
    Tatsumi Y, Hamilton D L, Nesbitt R W. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and the origin of arc magmas: Evidence from high pressure experiments and natural rocks. Journal of Volcanology and Geothermal Research, 29: 293~309.
    Titley S R and Beane R E. 1981. Porphyry copper deposits: PartⅠ. Geologic settings, petrology, and tectogenesis. Economic Geology, 75th Anniversary Volume, 214~235
    Ulrich T, Günther D, Heinrich C A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399, 676~679.
    Ulrich T, Günther D, Heinrich CA. 2001. The Evolution of a Porphyry Cu-Au Deposit, Based on LA-ICP-MS Analysis of Fluid Inclusions: Bajo de la Alumbrera, Argentina. Economic Geology, 97: 1889~1920.
    Urusova M A. 1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures. Russian Journal of inorganic Chemistry, 20: 1717~1721
    Wang E Q, Burchfiel B C. 1997. Interpretation of Cenozoic tectonics in theright-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis. International Geology Review, 39: 191~219.
    Wang J H, Yin A, Harrison T M, et al. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188: 123~133.
    Whitney J A. 1975. Vapor Generation in a quartz monzonite magma, a synthetic model with application to porphyry ore deposits. Economic Geology, 70, 346~358.
    Williams-Jones A E, Migdisov A A, Archibald S M, Xiao Z F. 2002. Vapor-transport of ore metals. In: Hellmann R, Wood S A (eds) Water-rock interaction: a tribute to David A Crerar. The Geochemical Society, Special Publication, 279~305.
    Williams-Jones AE, Heinrich CA. 2005. 100th Anniversary special paper: Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology , 100:1287~1312.
    Yang J H, Wu F Y, Chung S L, et al. 2004. Multiple sources for the origin of granites: Geochemical and Nd/Sr isotopic evidence from the Gudaoling granite and its mafic enclaves, northeast China. Geochimica et Cosmochimica Acta, 68(21): 4469~4483.
    Yin A, Harrison T M. 2000. Geologic Evolution of the Himalayan-Tibetan orogen, Journal of Annual Review of Earth and Planetary Sciences, 28: 211~280.
    Yuan H L, Gao S , Liu X M , et al. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation2inductively coupled plasma mass spectrometry . Geostandards and Geoanalytical Research, 28(3): 353 ~370.
    Zhang B, Zhang J J, Zhong D L, et al. 2009. Strain and kinematic vorticity analysis: An indicator for sinistral transpressional strain-partitioning along the Lancangjiang shear zone, western Yunnan, China. Science in China Series D: Earth Sciences, 52 (5): 602~618.
    Zhang H F, Gao S, Zhong Z Q, et al. 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constraints on tec-tonic framework and crustal structure of the Dabieshan ultrahigh pressure metamorphic belt, China.Chemical Geology, 186: 281-299
    Zhang L S and Sch?rer U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contributions to Mineralogy and Petrology, 134: 67~83.
    Zhao W L, Morgan W J. 1985. Uplift of Tibetan plateau. Tectonics, 4: 259~269.
    Zhu D C, Zhao Z D, Pan G T et al. 2009. Early cretaceous sunduction-related adakite-like rocks of the Gangdese Belt, Southern Tibet: Products of slab melting and subsequent melt-peridotite. Journal of Asian Earth Science, 34: 198~309
    Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map project: Journal of Geophysical Research, 97: 11703~11728.
    毕献武,胡瑞忠,彭建堂等. 2005.姚安和马厂警富碱侵入岩体的地球化学特征. 岩石学报,21(1): 113~124.
    陈衍景,翟明国,蒋少涌. 2009.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报, 25(11): 2695~2726
    葛良胜,邹依林,李振华等. 2002.云南马厂箐(铜、钼)金矿床地质特征及成因研究.地质与勘探, 38(5): 11~17.
    郭利果,刘玉平,徐伟等. 2006. SHRIMP锆石年代学对西藏玉龙斑岩铜矿成矿年龄的制约.岩石学报, 22(4): 1009~1016.
    侯增谦,孟祥金,曲晓明等. 2005,西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性: 源岩相变及深部过程约束.矿床地质, 24, 108~121.
    侯增谦,潘桂棠,王安建等. 2006.青藏高原碰撞造山带:Ⅱ晚碰撞转换成矿作用. 矿床地质, 25 (5): 521~543.
    侯增谦,潘小菲,杨志明等. 2007.初论大陆环境斑岩铜矿.现代地质, 21, 332~351.
    侯增谦,曲晓明,黄卫等. 2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质, 28(10), 27~30.
    侯增谦,王二七,莫宣学等. 2008.青藏高原碰撞造山与成矿作用.北京:地质出版社.
    侯增谦,钟大赉,邓万明. 2004.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质, 31(1), 1~14.
    侯增谦. 2004.斑岩Cu-Mo-Au矿床:新认识与新进展.地学前缘, 11(1): 131~144.
    黄汲清,陈炳蔚, 1987,中国及邻区特提斯海的演化.地质出版社.
    姜耀辉,蒋少涌,戴宝章等. 2006.玉龙斑岩铜矿含矿与非含矿斑岩元素和同位素地球化学对比研究.岩石学报, 22(10): 2561~2566.
    李献华,周汉文,刘颖,等. 2000.粤西阳春中生代钾玄质侵人岩及其构造意义:Ⅰ.岩石学和同位素地质年代学地球化学.地球化学, 29(6): 513~520.
    李兴振,刘文均,王义昭等. 1999.西南三江地区特提斯构造演化与成矿.北京:地质出版社.
    骆耀南,俞如龙. 2002.西南三江地区造山演化过程及成矿时空分布.地球学报, 23: 417~422.
    莫宣学和潘桂棠. 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6), 43~51.
    潘桂棠,徐强,侯增谦等. 2003.西南三江多岛弧造山过程成矿系统与资源评价.北京:地质出版社
    曲晓明,侯增谦,黄卫. 2001.冈底斯斑岩铜矿(化)带:西藏的第二条玉龙铜矿带?.矿床地质, 20,355~366.
    芮宗瑶,赵一鸣,王龙生等. 2003.挥发份在夕卡岩型和斑岩型矿床形成中的作用.矿床地质, 22(1): 141~148.
    唐菊兴,王成辉,屈文俊等. 2009.西藏玉龙斑岩铜钼矿辉钼矿铼-锇同位素定年及其成矿学意义. 28(3): 215~218.
    王强,许继峰,赵振华等. 2007.中国埃达克岩或埃达克质岩及相关金属成矿作用.矿物岩石地球化学通报, 26(4): 336~349.
    王登红,屈文俊,李志伟等.金沙江-红河成矿带斑岩铜钥矿的成矿集中期: Re-Os同位素定年,中国科学D辑, 2004, 34(4), 345~349.
    肖小牛. 2009.滇西北衙地区富碱斑岩及其金多金属成矿作用.中国地质大学(北京)博士学位论文.
    谢应雯,张玉泉,钟孙霖等. 1999.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报, 15(1): 75~82
    谢应雯,张玉泉. 1995.哀牢山-金沙江裂谷系岩石中镁铁云母成分特征及其岩石学意义.矿物学报, 15(1), 82~87.
    徐受民. 2007.滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系.中国地质大学(北京)博士学位论文.
    徐兴旺,蔡新平,宋宝昌等. 2006.滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征及其成因机制.岩石学报, 22(3): 631~642.
    杨志明,侯增谦,宋玉财等. 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质, 27: 279-318
    杨志明. 2008.西藏驱龙超大型斑岩铜矿床——岩浆作用及矿床成因.中国地质科学院博士论文.
    杨志明和侯增谦. 2009.初论碰撞造山环境斑岩铜矿成矿模型.矿床地质, 2009, 28(5): 515~538.
    姚春亮,陆建军,郭维民等. 2006.斑岩铜矿若干问题的最新研究进展.矿床地质, 26(2): 221~229.
    俞如龙. 1996.龙门山—锦坪山新生代陆内造山带.见:骆耀南,主编.扬子地台西南缘陆内造山带与矿产论文集.成都:四川科学技术出版社. 1~12.
    喻学惠,莫宣学,赵欣. 2008.滇西“三江”地区新生代火山岩,富碱斑岩及深源岩石包体.见莫宣学,赵志丹,喻学惠等著.青藏高原地质构造与大陆动力学研究丛书青藏高原中新生代构造岩浆作用.广州:广东省科技出版社.
    曾普胜,莫宣学,喻学惠. 2002.滇西富碱斑岩带的Nd-Sr-Pb同位素特征及其挤压走滑背景.岩石矿物学杂志, 21(3): 231~241.
    张继荣,刘宇淳,和晓南. 2004.北衙金矿富碱斑岩—滑覆构造控矿体系及成矿规律.云南地质, 23(1): 62~72.
    张进江,钟大赉,桑海清等. 2006.哀牢山—红河构造带古新世以来多期活动的构造和年代学证据.地质科学, 41 (2) : 291~310.
    张玉泉,谢应雯,涂光炽. 1987.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报, (1): 17~25.
    张玉泉,谢应雯.哀牢山一金沙江富碱侵入岩年代学和Nd-Sm同位素特征.中国科学D辑,1997, 27: 289~293.
    中国地质大学(北京),云南地矿资源股份有限公司. 2007.云南新生代金成矿系统(内部报告).
    钟大赉, Tapponnier P,吴海威. 1989.大型走滑断裂--碰撞后陆内变形的重要方式.科学通报, 34: 525~529.
    钟大赉主编. 1998.滨川西部古特提斯造山带.北京科学出版社,1~232.
    周长勇,朱弟成,赵志丹等. 2008.西藏冈底斯带西部达雄岩体的岩石成因;锆石U-Pb年龄和Hf同位素约束.岩石学报, 2008, 24(2): 348~358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700