用户名: 密码: 验证码:
管道漏磁内检测关键技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道内检测是确定管道变形、腐蚀、裂纹、缺陷程度的重要手段,检测结果为管道运行、维护、安全评价提供科学依据。本文以管道缺陷检测和预判方法为研究重点,通过对漏磁检测理论与应用的研究,分析了两种结构漏磁检测装置的缺陷检测能力,提出了空间弱磁场条件下内外缺陷识别(ID/OD)方法,为管道缺陷检测的完整性评价确定了技术基础;在铁磁材料磁畴结构的微观机理研究基础上,提出了弱磁条件下检测应力集中区域的方法,通过实验证明了方法的可行性,为解决管道的安全评价提供了一种有效的手段。
     本文研究了管道缺陷内检测机理和检测模型,应用磁偶极子方法对不同励磁方向下,缺陷处磁场分布进行了数学解析计算;应用有限元方法对同一规格缺陷在高饱和状态下、近饱和状态下表面漏磁场分布,空间弱磁场条件下的内外缺陷表面磁场分布情况进行了数值仿真计算。通过对漏磁检测装置两种结构的研究,提出了一种解决传统管道漏磁内检测设备结构复杂,管道通过能力低的方法;通过对空间弱磁场检测的研究,提出了识别管道缺陷内外壁分布的一种有效方法。
     实验分析了两种结构装置的缺陷漏磁检测(磁极中间区域检测和磁极后部区域检测)信号特征和识别能力:磁极中间区域检测精度为内缺陷最小识别面积表面直径φ3mm,深度10%壁厚的凹坑缺陷,外缺陷最小面积识别表面直径φ3mm,深度20%壁厚的凹坑缺陷,可以检测到直径φ2mm的透孔;磁极后部区域检测精度为内缺陷最小面积识别表面直径φ4mm,深度20%壁厚的凹坑缺陷;外缺陷最小面积识别表面直径φ4mm,深度40%壁厚的凹坑缺陷;可以检测到直径φ3.5mm的透孔,通过比较实验结果可知磁极后部区域检测可以在适当降低检测要求的条件下,作为简化管道内检测装置的一种手段。
     实验研究了空间弱磁场条件下内外缺陷识别的信号特征和识别能力:可以有效检测出内表面直径φ2mm,深度10%壁厚的凹坑缺陷;而对外表面宽度10mm,深度50%壁厚的凹槽缺陷无有效检测信号,该方法可以作为内外缺陷识别的有效途径。
     根据铁磁学的相关理论,研究了磁畴模型下铁磁体的内部磁特性;分析了铁磁材料磁畴结构产生的微观机理,并通过对磁畴结构运动变化规律,即磁畴壁移动和磁矩转动规律的研究,分析了外加磁场和外加应力对磁畴的影响,以及由此引起的材料磁特性的变化;通过理论分析和仿真实验,针对管道完整性评价中缺陷区域的预判问题,提出了一种弱磁场条件下应力集中区域的检测方法。
     实验设计了Q235(钢材号)应力模型试件,建立了在无外部励磁、弱磁场激励、强磁场激励条件下的实验方案。地磁条件下对没有形成应力集中区的标准试件和两条具有不同应力值的试件进行直接磁检测,得到了在无外部励磁的条件下应力集中区域的信号特征,应力集中区域表面磁感应强度水平分量和垂直分量信号峰峰值均达到1.4Gs;在外部励磁条件下,通过改变试件与励磁装置的相对位置,得到了在不同励磁条件下应力集中区域的信号特征,应力集中区域表面磁感应强度垂直分量信号峰峰值均可以达到14Gs-24Gs。实验结果表明:强磁场激励条件下应力集中区不敏感;弱磁场条件下应力集中区域可以检测,而且检测结果具有很好的重复性;无励磁条件下,应力集中区可以测量,但信号受外界条件影响很大,而且外加强磁场后,自身有效信号消失,不可恢复。实验证明了弱磁场条件下应力集中区域检测方法的可行性,该方法可以作为应力集中区域检测的有效途径。
     通过理论分析和实验研究,验证了所采用基本理论的正确性和方法的可行性。
The internal pipeline detection is an important means to determine pipeline deformation, corrosion, cracks, and defective degrees, the result of which provides a scientific basis for the pipeline operation, maintenance, and its safety evaluation. In this thesis, with a focus study on pipeline defect inspection and pre-judgment method and with a main research into magnetic flux leakage (MFL) detection theory and application, the defect detection capability of inspection device used in two kinds of structure is analysed and inner-outer defect identification (ID/OD) method is proposed under the condition of weak magnetic field, which has laid a technical basis for the evaluation of the pipeline defect integrity. Based on the research into the micro-mechanism structure of Ferro-magnet material magnetic domain, the method for testing stress concentration region under the weak magnetic conditions is presented; the feasibility of the method is proved by experiments and an effective way in resolving the safety assessment of pipeline is provided.
     In this thesis, the internal pipeline defect detection mechanism and detection model are researched. By applying magnetic dipole method in the different excitation direction, the defect magnetic field distribution is calculated. By applying the finite element method for the same specification defects under the conditions of high-saturation or near saturation to surface magnetic leakage distribution, the inner-outer defects surface magnetic field distribution in the weak magnetic field is emulationally calculated. Through the research of two kinds of device structures used in MFL detection, a solution to the traditional complex structures in the pipeline MFL detection equipment is proposed and so is it to the low capacity within the pipelines. And also by the research into the space weak magnetic fields detection, an efficient identification method to pipeline inner-outer defect distribution is offered.
     The signal characteristics and the identification ability for the two kinds of structural defect MFL detection device (used in the magnetic poles of mid-region and magnetic poles of post-region detection) are experimentally analyzed; With the magnetic poles mid-region detection accuracy up to inner defect minimum identification surface diameter ofφ3mm, depth of 10% wall thickness of the pit defect, and outer defect minimum identification surface diameter ofφ3mm, depth of 20% wall thickness of pit defect, a through-hole up to diameter ofφ2mm can be detected, while with the magnetic poles post-region detection accuracy up to inner defect minimum identification surface diameter ofφ4mm, depth of 20% wall thickness of the pit defect, and outer defect minimum identification surface diameter ofφ4mm, depth of 40% wall thickness of pit defect, a through-hole up to diameter ofφ3.5mm can be detected. By comparing the experimental results, under the conditions of reducing appropriate testing requirements, magnetic post-region detection can be used as a simplified means for pipe inspection device.
     The signal characteristics and the identification ability for the inner-outer defect identification under the conditions of weak magnetic field: detection is experimentally verified, which can efficiently detect inner surface diameter ofφ2mm, depth of 10% wall thickness of pit defect, while for the outer width of 10mm, 50% wall thickness of groove defect, there is no valid detection signal, therefore, such a method can be used as an effective way to identify inner-outer defect.
     According to relative theories of ferromagnetics, the internal magnetic properties of ferromagnetic in the magnetic domain model are studied in this thesis; and the micro-mechanism of ferro-magnet material magnetic domain structure is analyzed. Through the research on the movement variation of magnetic domain structure, that is, the movement of domain wall and rotation of magnetic moment, the effects on the magnetic domain caused by outer magnetic field and outer stress is analyzed and so is variation caused by such material magnetic properties. Through theoretical analysis and simulation experiments, the stress concentration area detection method under a weak magnetic field conditions is presented in this paper, so as just to solve the problem of pre-judgment in defect regions of pipeline integrity evaluation.
     Q235 stress model specimen is designed in the experiment. Stress region detection experiments are carried out under the conditions of non-external excitation, the weak magnetic fields and the strong magnetic fields. A standard specimens of non-stress concentration area under the geomagnetic condition and two standard specimens with different stress values are directly detected in such a magnetic method that stress concentration region signal characteristics under the condition of non-external excitation is obtained, with the result that the stress concentration region’s surface magnetic induction intensity in horizontal component and vertical component reaches 1.4Gs of the signal peak-peak value; stress concentration region signal characteristics under the condition of external excitation is obtained, by changing the relative position between specimen and excitation device, with the result that the stress concentration region’s surface magnetic induction intensity in horizontal component and vertical component reaches 14Gs-24Gs of the signal peak-peak value. Experiment results show that the stress concentration area is not sensitive under the conditions of strong magnetic fields and the stress concentration area under the condition of weak magnetic field can be detected and detection results have very good repeatability while under the conditions of non-excitation conditions, the stress concentration area can be measured, but the signal is greatly influenced by the external conditions, and after loading strong magnetic field, the effective signal itself disappears with unrecoverable nature. Experimental results show that the stress concentration region detection method under the conditions of weak magnetic field is feasible, the method of which can be used as an effective way to detection stress concentration region.
     In this paper, theoretical analysis and experimental research verify the basic theoretical correctness and feasibility of the method.
引文
[1]郭新庆,关于石油天然气管道安全问题,国家安全生产监督管理总局调查研2006,17(133):5-6.
    [2]杨理践,王玉梅,冯海英,智慧化管道漏磁检测装置的研究,无损检测,2002,24(3): 100-102.
    [3]杨理践,管道漏磁在线检测技术,沈阳工业大学学报,2005,27(5): 522-525.
    [4]杨理践,邢燕好,高松巍,高精度管道漏磁在线检测系统的研究,无损探伤,2005,29(1): 20-23.
    [5] One J K, Kerr D, Bouazza-Marouf K, Defign of a semi-autonomous modular robotic vehicle for gas pipeline inspection, Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering,2003,217(12):109-122.
    [6] Caleyo F, Hallen J M, Gonzalez J L, Pipeline inspection-1- reliability-based method assesses corroding pipelines, Oil&Gas Journal, 2003,101(1):54-58.
    [7] Anon,Pipeline inspection failure blamed for oil spill, Pipeline&Gas Journal,2002,229(9):2-5.
    [8]李路明,表面裂纹宽度对漏磁场Y分量的影响,清华大学学报(自然科学版),1999,39(2): 43-45.
    [9]李路明,张家骏,用有限元方法优化漏磁检测,无损检测,1997,19 (6): 154-158.
    [10]李路明,黄松岭,铸铁件的漏磁检测方法,清华大学学报(自然科学版),2002,42(4): 474-476.
    [11]蒋奇,王太勇,基于径向基函数神经网络的管道缺陷漏磁场分析.无损检测, 2002,24(12): 515-518.
    [12]王太勇,蒋奇,管道缺陷定量识别技术的研究.天津大学学报, 2003,36(1): 55-58.
    [13]蒋奇,管道缺陷漏磁检测量化技术及其应用研究.博士学位论文,天津:天津大学,2003.
    [14]杨涛,基于多传感器融合的油管无损检测与缺陷量化技术研究.博士学位论文,天津:天津大学,2004.
    [15]杨涛,王太勇,蒋奇,人机合作式管道漏磁信号分析与缺陷定量识别.中国机械工程,2004,15(6): 488-490.
    [16]刘立岩,杨靖瀚.国内首台大口径高清晰度管道漏磁检测器牵拉试验成功.中国石油石化, 2005,14:61.
    [17]范向红,王少华,那晶,我国管道漏磁检测技术及其成就.石油科技论坛,2007,(4):55-57.
    [18]冯耀荣,陈浩等,中国石油油气管道技术发展展望.油气储运,2008,27(3):1-8.
    [19]康宜华,杨新军,杨叔子.磁性无损检测技术中的磁化技术.无损检测,1999,21(5): 206-209.
    [20]康宜华,杨新军,杨叔子.磁性无损检测技术中磁信号测量技术.无损检测,1999,21(8): 340-343.
    [21]金建华,康宜华,杨叔子.漏磁场法测量油管壁厚的研究.仪器仪表学报,2001,22(5): 469-472.
    [22]张晶,阙沛文.海底管线检测系统的集成及实验研究.数据采集与处理, 2002, 17 (6): 196– 199.
    [23]汪友生,潘孟贤,何辅云,缺陷参数与漏磁信号相互关系的实验研究,合肥工业大学学报(自然科学版),1998,21(5): 28-31.
    [24]郭罗军,刘丽川,漏磁检测缺陷信号特征分析.无损检测,2005,27(12): 646-648.
    [25]王德荣,王鹏飞,小波变换用于输油管道漏磁检测信号处理,管道技术与设备,2007,4:8-9.
    [26] Rafi G Z,Moini-Mazandaran R,Faraji-Dana R,A new time domain approach for analysis of vertical magnetic dipole radiation in front of lossy half-space,Jounral of Electromagnetic Waves and Applications,2000,14(6):831-832.
    [27] Zhong W C,Theoretical fundamentals of magnetic dipole for longitudinal magnetization of a square steel component,Materials Evaluation,1999,57(9):937-939.
    [28] Yarotskii V A,Estimation of magnetic dipole detection parameters,Measurement Techniques,1997,40(7):684-688.
    [29] Hwang J H,Lord,W,Finite element analysis of the magnetic field distribution inside a rotating ferromagnetic bar,IEEE Transactions on Magnetics,1974,10(4):1113-1118.
    [30] Hwang J H,Lord,W,Finite element modeling of magnetic field/defect interaction,Journal of Testing & Evaluation,1975,3(l):21-25.
    [31] Silk M G,Williams N R,Bainton K F,Potential role of NDT techniques in the monitoring of fixed offshore structures,British Journal of Non-Destructive Testing,1975,17(3):83-87.
    [32] Lord W,Bridges J M,Yen W,Residual and active leakage fields around defects in ferromagnetic materials,Materials Evaluation,1978,36(8):47-54.
    [33] Foerster F,Nondestructive inspection by the method of magnetic leakage fields,Theoretical and experimental foundations of the detection of surface cracks of finite and infinite depth,Soviet Journal of Nondestructive Testing,1982,18(11):841-859.
    [34] McMillan N,Insitu pipeline inspection using the magnetic flux leakage technique,International Pipeline Technology Exhibition & Conference,1984,79-88.
    [35] Uetake I,Ito H,Magnetic leakage flux studied as a function of relative orientation between longitudinal direction of defect and magnetic field direction,Transactions of National Research Institute for Metals,1984,26(l):63-72.
    [36] R. Palanisamy and W. Lord,“Finite element modeling of elec- NDT phenomena,”IEEE Tmnsnctzon on Mag- tromagnetic netzcs, vol. 15, pp. 1479-1481, Nov. 1979.
    [37] D. L. Autherton,Finite element calculations on the effects of permeability variation on magnetic flux leakage signals,NDT International,1987,20 (4):239.
    [38] D. L. Autherton,Finite element calculations and computer measurements of magnetic flux leakage patterns for pits,British Journal of NDT,May 1988,P159.
    [39] Eduardo Altschuler, Nonlinear model of flaw detection in steel popes by magnetic flux leakage,NDT & E International,1995,28 (l):35-39.
    [40] D.L.AthertonandM.G.Daly,“Finite element calculation of magnetic leakage detector signals,”NDT Int., vol. 20, no. 4, pp. 235–238, Aug.1987.
    [41] Kyungtae Hwang, 3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural networks, Iowa State University ,USA .PHD dissertation 2000.
    [42] K. Krzywosz,Comparison of Electromagnetic Techniques for Nondestructive Inspection of Ferromagnetic Tubing,Materials Evaluation,1990,(l):42-48.
    [43] C. N. Owston,The Manetic Flux Leakage Technique of Non-Destructive Testing,British Journal of NDT,1974,(l1):164.
    [44] E. Lalwa and L. Pielarski,Design of Hall-effect sensors for magnetic testing of steel ropes,NDT International,1987,20 (5):295.
    [45] E. Kalwa,K. Pielarski,Design of inductive sensors for magnetic testing of steel ropes,NDT International,1987,20 (6):347.
    [46] R. Bames,D. L. Atherton,Effects of Bending Stresses on magnetic flux leakage patterns,NDT & E International,1993,26(1):3.
    [47] W. R. Tweddell,Frequency Spectral Analysis of Rayleigh waves to size Surface-Breaking Cracks, Materials Evaluation,1990,48:1348.
    [48] K Mandal,D. L. Ahterton,J. Phys. D,A study of magnetic flux-leakage signals,Appl. Phys.,1998,31(22):3211-3217.
    [49] L. Clapham,A neutron diffraction study of local stress concentrations surrounding defects in pipeline steel,Physica B,1998(24):1240-1243.
    [50] S. MukhoPadhyay,G. P. Srivastava,Characterisation of metal loss defects from magnetic flux leakage signals with discrete wavelet transform,NDT&E International,2000,(33):57-65.
    [51] K. Mandal,Investigations of magnetic flux leakage and magnetic Bakrhausen noise signals from pipeline steel,Phys. D: Appl. Phys,1997,30(6):962-973.
    [52] K. Hwang,S. Mandyaam,S,S,UdPa,etal,A Application of wavelet basis function neural networks to NDE,IEEE Trans. On magnets,1997,38(6):3633-3642.
    [53] Song Xiangyu,Qi Feihu,Fast Convegrence Algorithm for Wavelet neural network used for signal or function approximation,Proceedings of ICSP’96,1401-1404.
    [54] Shen-Tun Li,Shu-ching Chen,Function approximation using robust wavelet neural networks,ICTAI’02,1998,49-53.
    [55] Emilio Ribes-Gomez,Sean Mcloone,Geogre W. Irwin. Orthogonal wavelet network construction using local regularization,2002 First International IEEE Symposium,2002,271-276.
    [56] Hwang Kyungtae. 3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural network,phD Dissertation,Iowa State University,2000.
    [57] Jaein Lim.Data Fusion for NDE Signal Characterization,phD Dissertation,Iowa State University,2001.
    [58] Sunho Yang. Finite element modeling of current perturbation method of nondestructive evaluation application,phD Dissertation,Iowa State University,Iowa,2002.
    [59] Gwan Soo Park,Sang Ho Park. Analysis of the Velocity-Induced Eddy Current in MFL Type NDT,IEEE TRANSACTIONS ON MAGNETICS,2004,40(2):663-666.
    [60] Yong Li,Gui Yun Tian,Steve Ward. Numerical simulation on magnetic flux leakage evaluation at high speed,NDT&E International,2006,(39):367-373.
    [61] Jens Haueisen,Ralf Unger,Thomas Beuker,etc. Evaluation of Inverse Algorithms in the Analysis of Magnetic Flux Leakage Data,IEEE TRANSACTIONS ON MAGNETICS,2002,38(6):1481-1488.
    [62] Pradeep Ramuhalli,Lalita Udpa,Satish S. Udpa. Electromagnetic NDE Signal Inversion by Function-Approximation Neural Networks,IEEE TRANSACTIONS ON MAGNETICS,2002,38(6):3633-3642.
    [63] Ameet Joshi,Lalita Udpa,Satish Udpa1,etc. Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals From Pipeline Inspection,IEEE TRANSACTIONS ON MAGNETICS,2006,42(10):3168-3170.
    [64] R. Christen,A. Bergamini. Automatic flaw detection in NDE signals using a panel of neural networks,NDT&E International,2006,(39):547-553.
    [65] K. REBER,A. BELANGER. Reliability of Flaw Size Calculation based on Magnetic Flux Leakage Inspection of Pipelines,ECNDT 2006,Tu.3.1.1:1-11.
    [66] K.C. Hari,M. Nabi,S.V. Kulkarni. Improved FEM model for defect-shape construction from MFL signal by using genetic algorithm,IET Sci. Meas. Technol.,2007,1 (4):196-200.
    [67] Reza Khalaj Amineh , Natalia K. Nikolova , James P. Reilly , etc. Characterization of Surface-Breaking Cracks Using One Tangential Component of Magnetic Leakage Field Measurements,IEEE TRANSACTIONS ON MAGNETICS,2008,44(4):516~524.
    [68]黄清荣.磁记忆等检测技术在锅炉压力容器焊接残余应力测量中的应用简析[J].锅炉压力容器安全技术,2003 Vol.27 No.2:14-17.
    [69]王亚民、王彦龙.残余应力的超声波检测系统[J].仪表技术,2004.3 No.4:33-34.
    [70]魏智、周晓军等.应力场超声检测中的表面波声弹理论[J].中国学术期刊文摘,1998 Vol.4No.2.
    [71]陈芙蓉、霍立兴等.非破坏性测量焊接残余应力方法的应用现状[J].金属结构的焊接,2001.6 Vol.30 No.3:37-39.
    [72] zzoni R.Laser-Shearography for Nondestructive Testing of Large Area Composite Helicopter[C].Pr-oc.of 15thWCNDT,Idn:732,Oct.15-21,Rome,Itay.
    [73]解源,彭超男.磁性无损检测技术明.集美大学学报,2001,6(4):322-326.
    [74]王威,王社良,徐金兰.磁测残余应力方法及特点对比[J].建筑技术开发,2005,32(2): 18-20.
    [75]王昭林.利用铁磁性材料的逆磁致伸缩效应进行应力在线检测方法研究[D].中国矿业大学, 1998.
    [76]马咸尧,孙大千,李健萍.Barkhausen技术测量钢件应力探讨[J].材料工程,1994,5:32-34.
    [77] J.Gauthier,T.W.Krause.D.L.Atherton.Measurement of residual stress in steel using the magnetic Barkhausen noise technique[J].NDT&E International.1998,31(1):23-31.
    [78]祁欣,于石生,李波.巴克豪森效应在材料检测中的应用和展望[J].材料科学与工艺,1994, 2(2):107-112.
    [79]马咸尧,孙大千.巴克豪森应力效应的研究[J].华中理工大学学报,1994,22(9):29-33.
    [80]纪洪广,沙海飞,陈海峰,穆向荣.巴克豪森效应在金属锚杆荷载检测中的实验[J].煤炭科学技术,2005,33(6):40-42.
    [81]文西芹,刘成文.基于逆磁致伸缩效应的残余应力检测方法[J].传感器技术,2002,21(3): 42-44.
    [82]任吉林,林俊明.金属磁记忆检测技术.中国电力出版社,2000.
    [83]何辅云.无缝钢管折迭缺陷检测方法及装置.合肥工业大学学报(自然科学版),1999,22(3):77-80.
    [84]任吉林,林俊明.电磁无损检测,北京:科学出版社,2008.
    [85] S. Mukhopadhyay,G. P. Srivastava.Characterisation of metal loss defects from magnetic flux leakage signals with disctete wavelet transform. NDT&E,2000-33:57-65.
    [86]博嘉科技.有限元分析软件——ANSYS融会与贯通,北京:中国水利水电出版社,2002.
    [87]钟文定.铁磁学(中册)[M].北京:科学出版社,2000.
    [88] Jile D. Introduction to magnetism and magnetic materials[M],London: Chapman&Hall, 1991, 259-260.
    [89] R.C.奥汉德利.现代磁性材料和应用。周永洽等译.北京:化学工业出版社,2002.
    [90] Dubov A.A.Study of Metal Properties Using Metal Magnetic Memory Method.7th European Conference on Non-destructive Testing.Copenhagen.1997,(10):920-927.
    [91]张家骏.无损检测概论.机械工业出版社.1993:34-36.
    [92] Vijay Babbar, Behrouz Shiari,Mechanical Damage Detection With Magnetic Flux Leakage Tools: Mode-ling the Effect of Localized Residual Stresses,IEEE TRANSACTIONS ON MAGNETICS,2004 40 (1),43-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700