用户名: 密码: 验证码:
Super-Ni/NiCr叠层复合材料TIG接头区微观结构及应力分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠层复合材料是适应当代航空发动机对材料提出的特殊性能要求而发展起来的一种新型材料。Super-Ni/NiCr叠层复合材料由于其独特的高温性能使其在航空、航天等高科技领域具有很好的应用前景。但由于其特殊的合金组分及叠层复合结构,焊接时焊缝成形难度大,并且接头处易产生很大的热应力,导致焊接裂纹等。因此,焊接问题成为阻碍Super-Ni/NiCr叠层复合材料推广应用的关键。
     采用填丝钨极氩弧焊(TIG)工艺对Super-Ni/NiCr叠层复合材料与1Cr18Ni9Ti钢的焊接进行研究。并对接头的微观组织、元素分布、精细相结构以及应力分布等进行研究,建立焊接工艺参数-焊缝组织结构-接头区微观裂纹-应力分布的关系,揭示其内在规律性。
     本文提出Super-Ni叠层复合材料接头特征区划分方案,包括:Ni复层与焊缝过渡区、Ni80Cr20基层与焊缝过渡区、焊缝中心区。Ni复层与焊缝过渡区包括Ni复层侧熔合区及Ni复层热影响区;Ni80Cr20基层与焊缝过渡区包括Ni80Cr20基层熔合区及Ni80Cr20热影响区;焊缝中心区包括柱状晶区及等轴晶区。随焊接热输入不同(3.3-4.6、5.0-11.0、12.6.13.8kJ/cm),焊缝中心等轴晶由细小变得粗大。小焊接热输入时能形成良好的焊接接头,热输入高于11kJ/cm时焊缝成形变差。
     采用X射线衍射仪(XRD)、电子探针(EPMA)和透射电镜(TEM)对Super-Ni叠层复合材料接头区的微观相结构及元素分布进行分析。结果表明,Super-Ni叠层复合材料接头区由γ-Fe、δ-Fe、γ-Ni(Cr,Fe)、γ-Ni和FeNi构成。NiCr基层熔合区呈锯齿状,NiCr基层熔合区形成了宽约83μm的元素过渡区,Fe元素从焊缝向母材扩散,而Ni元素相反,从母材向焊缝中扩散,Cr元素无明显的扩散现象,Super-Ni复层熔合区的宽度约为30μm。叠层复合材料侧形成了Ni含量40%的焊缝组织,Creq/Nieq<1.52,凝固模式为AF凝固模式,柱状晶方向性明显,有热裂纹倾向。
     衍射分析发现焊缝组织的内应力较大,Super-Ni叠层复合材料焊缝中以γ奥氏体相为主,少量δ铁素体相分布于γ相晶界,并存在((?)11)γ//(1(?)0)δ、[211]γ//[111]δ的位相关系。焊缝中形成了面心立方结构的有序相Ni3Fe。Super-Ni叠层复合材料熔合区的γ奥氏体与α铁素体相之间存在(1(?)0)α//((?)11)γ、[111]α//[211]γ的位相关系,熔合区存在γ-Fe相与γ-Ni(Fe,Cr)相共存的形态。
     在组织结构分析的基础上,对Super-Ni叠层复合材料接头的应力分布进行研究。发现Super-Ni叠层复合材料侧熔合区应力集中严重,主要承受纵向拉应力σx和横向拉应力σy。NiCr基层与Ni复层界面为Super-Ni叠层复合材料焊接时的薄弱区域,Ni复层与NiCr基层界面的最大拉应力为纵向应力29.1MPa,横向应力40.1MPa,出现在母材热影响区。沿焊接方向,Super-Ni叠层复合材料侧熔合区先焊位置为σx压应力区,后焊位置为σx拉应力区,σx拉应力最大值为40MPa左右,出现在叠层复合材料底层。
     本文首次研究了Super-Ni叠层复合材料焊接区的微观组织结构及接头应力分布。该研究工作为Super-Ni叠层复合材料的应用提供了实验依据和理论基础。所得出的研究成果对进一步开展包括Super-Ni叠层复合材料在内的高温复合材料的焊接研究奠定了重要基础。
Laminated composite material is a kind of new materials that could meet the particular performance of modern aircraft engines. Due to its special high temperature performance, Super-Ni/NiCr laminated composite has a luciferous prospect in aviation, aerospace and other high-tech fields. However, Super-Ni/NiCr is difficult to be welded and easy to induce thermal stress due to its unique composition and the laminated composite structure. Therefore the welding problem of Super-Ni/NiCr is the key to block its wide application.
     The weldability of Super-Ni/NiCr laminated composite was studied via TIG with filler alloy. The microstructure, elements distribution, fine phase structure and stress distribution of the TIG joint were researched to reveal the relationship of welding parameter, microstructure, microcracks and stress distribution.
     The division of the characteristic zone of Super-Ni/NiCr TIG joint was put forward to include transition zone of Ni cover layer with weld, transition zone of Ni80Cr20 base layer with weld and weld center. The transition zone of Ni cover layer with weld included fusion zone(FZ) and heat affect zone(HAZ) of Ni cover layer. The transition zone of Ni80Cr20 base layer with weld included FZ and HAZ of Ni80Cr20 base layer. The weld center included columnar grain zone and equiaxed grain zone. With the welding heat input increasing, the equiaxed grains in weld center became gross. A sound joint could be formed with small heat input. However, its difficult to get a good joint with heat input above 11kJ/cm.
     The fine phase structure and element distribution of Super-Ni/NiCr TIG joint was analyzed by means of X-ray diffraction (XRD), electron probe microanalysis (EPM A) and transmission electron microscopy (TEM). The results indicated that the joint zone was constituted ofγ-Fe,δ-Fe,γ-Ni (Cr, Fe), }-Ni and FeNi intermetallic compound. Fusion zone of NiCr base layer was jagged and elements transition zone about 83μm was formed with Fe element transited from weld to the base metal, while Ni transited in the contrary and Cr not transited obviously. The element transition zone of Ni cover layer fusion zone was about 30μm. The Ni content in the weld near Super-Ni/NiCr side was about 40%, Creq/Nieq<1.52, with AF solidification mode. Directional columnar grains was formed, and the weld meat has tendency to hot cracking.
     Diffraction analysis indicated that the internal stress of weld metal was high. The main phase in the Super-Ni/NiCr TIG joint wasγaustenite with a small amount ofδferrite phase distributed in the y-phase grain boundaries, and the lattice orientation betweenγaustenite and 8 ferrite phases was (111)γ//(110)δ、[211]γ//[111]δ.The ordered phase Ni3Fe with FCC structure was formed in the weld. In the fusion of Super-Ni/NiCr, the lattice orientation between y austenite and a ferrite phases was (110)α//(111)γ、[111]α//[211]γ. Theγ-Fe andγ-Ni (Fe, Cr) coexisted in the fusion zone of the laminated composite.
     The stress fields of Super-Ni/NiCr and 1Cr18Ni9Ti steel TIG joint were studied based on the analysis of microstructure. The results indicated that the stress concentrated seriously in the fusion zone of Super-Ni/NiCr, mainly affected byσx andσy stress. The interface of NiCr base layer and Ni cover layer was the weakness region while the laminated composite being welded. The peak value ofσx tensile stress was 29.1 MPa andσx tensile stress was 40.1MPa, in the HAZ of the laminated composite. Along the welding direction, in first welding position of the fusion zone of the laminated composite was mainly affected byσx compression stress, in the behind position was mainly affected byσx tensile stress.
     The microstructure and stress distribution of Super-Ni/NiCr TIG joint was firstly studied in this paper, which provided experimental and theoretical basis for improving the application of Super-Ni laminated composite. The conclusions obtained from this paper have established an important foundation to study deeply the weldability of high temperature composites.
引文
1. 师昌绪,仲增墉.中国高温合金40年[J].金属学报,1997,33(1):1-8.
    2. T. Hale. PM stainless steels uses in automotive exhausts[J]. Metal Powder Report,1998,53(5):22-26.
    3. 周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社,2006.
    4. T. B. Gibbons. Superalloys in modern power generation applications[J]. Materials Science and Technology,2009,25(2):129-135.
    5. B. L. Eyre. Materials technology challenges for power generation in the 21st century[J]. Progress in Materials Science,1997,42(1-4):23-37.
    6. 陈亚莉.未来航空发动机涡轮叶片用材的最新形式—微叠层复合材料[J].航空工程与维修,2001,(5):10-12.
    7. H. B. Wang, J. C. Han, S. Y. Du, D. Northwood. Reaction synthesis of Nickel/Aluminide multilayer composites using Ni and A1 foils:microstructures, tensile properties, and deformation behavior[J]. Metallurgical and Materials Transactions A,2007,38(2):409-419.
    8. 郭鑫,马勤,季根顺,刘龙江.金属间化合物基叠层复合材料研究进展[J].材料导报,2007,21(6):66-69.
    9. M. F. Ashby, D. R. Jones. Engineering materials 1. An introduction to their properties and applications[M]. Oxford:Butterworth-Heinemann,1996.
    10. M. Ott, H. Mughrabi. Dependence of the high-temperature low-cycle fatigue behaviour of the monocrystalline nickel-base superalloys CMSX-4 and CMSX-6 on the γ/γ'-morphology [J]. Materials Science and Engineering A,1999, 272(1):24-30.
    11.李爱兰,曾燮榕.航空发动机高温材料的研究现状[J].材料导报,2003,17(2):26-28.
    12. L. S. Shmelev. Powder metallurgy products for high technologies[J]. Metallurgist,2001,45(1-2):63-64.
    13. T. M. Pavlygo, A. V. Sakhnenko, S. A. Sakhnenko, G. G. Serdyuk. Development of powder material hot forging in the ukraine[J]. Powder Metallurgy and Metal
    Ceramics,2000,39(3):183-197.
    14. D. R. Johnson. Intermetallic-based composites[J]. Current Opinion in Solid State and Materials Science,1999,4(3):249-253.
    15.李晓红,毛唯.新型高温合金的液相连接[J].材料工程,1999,(6):36-39.
    16. J. C. Zhao, J. H. Westbrook. Ultrahigh-temperature materials for jet engines[J]. MRS bulletin,2003,28(9):622-630.
    17.黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006,(4):94-100.
    18.宁兴龙.21世纪航空航天技术用材料的基本发展方向-(Ⅱ)先进燃气涡轮发动机用的热强材料[J].稀有金属快报,2001,(5):1-5.
    19. T. W. Eagar, W. A. Baeslack, R. Kapoor. Joining of advanced materials:an overview[M]. D. Bloor, M. Flemings, R. Brook, S. Mahajan. Encyclopedia of Advanced Materials. Oxford:Pergamon Press,1994.
    20. S. C. R. Aluru. Microstructure-mechanical property relationships in transient liquid phase bonded nickel-based superalloys and iron-based ODS alloys[D]. Auburn, Alabama:Auburn University,2006.
    21. M. B. Henderson, D. Arrell, M. Heobel, R. Larsson, G. Marchant. Nickel based superalloy welding practices for industrial gas turbine applications[J]. Science and Technology of Welding and Joining,2004,9(1):13-21.
    22.许鸿吉,田世英,谢明,郭德伦,李从卿.高温合金GH4169氩弧焊接头的高温组织和力学性能[J].大连铁道学院学报,2006,27(3):77-79.
    23. O. A. Ojo, N. L. Richards, M. C. Chaturvedi. Microstructural study of weld fusion zone of TIG welded IN 738LC nickel-based superalloy[J]. Scripta Materialia,2004,51(7):683-688.
    24.王亚军.高温合金GH4169/GH907异种材料的电子束焊接[J].航空工艺技术,1995,(2):11-14.
    25. M. Lachowicz, W. Dudzinski, M. Podrez-Radziszewska. TEM observation of the heat-affected zone in electron beam welded superalloy Inconel 713C[J]. Materials Characterization,2008,59(5):560-566.
    26.张海泉,赵海燕,张彦华,李刘合,张行安.镍基高温合金电子束焊接热影响区微裂纹特征分析[J].材料工程,2005,(3):22-25.
    27. X. B. Liu, G Yu, M. Pang, J. W. Fan, H. H. Wang, C. Y. Zheng. Dissimilar autogenous full penetration welding of superalloy K418 and 42CrMo steel by a high power CW Nd:YAG laser[J]. Applied Surface Science,2007,253(17): 7281-7289.
    28.熊建钢,段爱琴.镍基高温合金激光焊接接头组织及裂纹形成原因[J].应用激光,2001,21(5):309-312.
    29.杜随更,吴诗惇,鄢君辉,刘小文,郭鹰.GH2132摩擦焊接过程中焊接区金属的再结晶过程[J].焊接学报,1996,17(4):229-235.
    30. S. Sathian. Metallurgical and mechanical properties of Ni-based superalloy friction welds[D]. Toronto, Canada:University of Toronto,1999.
    31.杨军,楼松年,严隽民,时渭清.GH4169高温合金惯性摩擦焊接头晶粒分布特征[J].焊接学报,2001,22(3):33-35.
    32. W. B. Han, K. F. Zhang, B. Wang, D. Z. Wu. Superplasticity and diffusion bonding of IN718 superalloy[J]. Acta Metallurgica Sinica,2007,20(4): 307-312.
    33.路文江,中尾嘉邦,筱崎贤二.镍基合金焊接热影响区的液化裂纹敏感性[J].焊接学报,1993,14(3):186-194.
    34. R. G. Thompson, S. Genculu. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test[J]. Welding Journal,1983,62(12): 337-345.
    35.陈国庆,张秉刚,何景山,冯吉才.TiAl基合金电子束焊接头组织及转变规律[J].焊接学报,2007,28(5):81-84.
    36.李萌蘖,侯玉年,张维琴,张琪.GH536镍基高温合金板材焊接性研究[J].航空材料学报,1989,9(2):48-55.
    37.张茂龙.压水堆核容器中的镍基合金焊接[J].锅炉技术,1995,26(8):15-20.
    38. O. A. Ojo, N. L. Richards, M. C. Chaturvedi. Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded Inconel 738LC superalloy[J]. Metallurgical and Materials Transactions A,2006,37(2): 421-433.
    39.舒强,曾庆梅.镍复合板的焊接工艺研究[J].现代机械,2007,(5):28-30.
    40.张俊旺.双面超薄不锈钢复合板焊接性的研究[D].太原:太原理工大学, 2006.
    41.何康生,曹雄夫.异种金属焊接[M].北京:机械工业出版社,1986.
    42.杜善义.先进复合材料与航空航天[J].复合材料学报,2007,24(1):1-12.
    43.李航航,高宏建.先进战斗机结构选材与制造工艺需求分析[J].航空制造技术,2004,(增刊):35-38.
    44.曹春晓,郝应其.材料世界的“天之骄子”——航空航天材料[M].北京:清华大学出版社,2002.
    45.陈茂爱,陈俊华,高进强.复合材料的焊接[M].北京:化学工业出版社,2005.
    46.马志新,胡捷,李德富,李彦利.层状金属复合板的研究和生产现状[J].稀有金属,2003,27(6):799-803.
    47.井玉安,王晨宇.不锈钢复合板生产技术综述[J].鞍山科技大学学报,2007,30(6):590-594.
    48.刘咏,黄伯云,周科朝.TiAl基合金包套锻造工艺[J].中国有色金属学报,2000,10(增刊1):6-9.
    49.张俊红,黄伯云,周科朝,李志友,何双珍,刘咏.包套轧制制备TiAl基合金板材的研究[J].粉末冶金材料科学与工程,2001,6(1):48-53.
    50.缪家士,林均品,王艳丽,林志,陈国良.高铌钛铝基合金板材的高温包套轧制[J].稀有金属材料与工程,2004,33(4):436-438.
    51. K. F. Karlsson, B. T. Astrom. Manufacturing and applications of structural sandwich components[J]. Composites Part A:Applied Science and Manufacturing,1997,28(2):97-111.
    52.马培燕,傅正义.微叠层结构材料的研究现状[J].材料科学与工程,2002,20(4):589-593.
    53. H. Y. Kim, D. S. Chung, S. H. Hong. Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites[J]. Materials Science and Engineering A, 2005,396(1-2):376-384.
    54.邹志强,曲选辉,黄伯云.国外粉末冶金的最新进展(从全球性国际会议看发展趋势)[J].粉末冶金技术,1997,15(1):66-70.
    55.胡本芙,刘国权,贾成厂,田高峰.新型高性能粉末高温合金的研究与发展[J].材料工程,2007,(2):49-53.
    56.张义文,上官永恒.粉末高温合金的研究与发展[J].粉末冶金工业,2004,14(6):30-43.
    57.汪武祥,何峰,邹金文.粉末高温合金的应用和发展[J].航空工程与维修,2002,(6):26-28.
    58.胡本芙,章守华.镍基粉末高温合金FGH95涡轮盘材料研究[J].金属热处理学报,1997,18(3):28-36.
    59.邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报,2006,26(3):244-250.
    60. M. Boz, A. Kurt. Research articles-effect of different amounts of graphite on the sintering and transverse rupture properties of Powder Metal Parts[J]. Journal of Materials Science and Technology,2006,22(3):419-422.
    61.国为民,董建新,吴剑涛,张凤戈,陈淦生,陈生大.FGH96镍基粉末高温合金的组织和性能[J].钢铁研究学报,2005,17(1):59-63.
    62.胡本芙,田高峰,贾成厂,刘国权.双性能粉末高温合金涡轮盘的研究进展[J].航空材料学报,2007,27(4):80-84.
    63.陈国庆,冯吉才,何景山,张秉刚.TiAl基合金及其连接技术的研究进展[J].焊接,2007,(1):16-20.
    64.杜随更,傅莉,王忠平.单晶DD3与细晶DAIn718高温合金摩擦焊接性分析[J].西北工业大学学报,2003,21(2):136-139.
    65. G. A. Rao, M. Srinivas, D. S. Sarma. Influence of modified processing on structure and properties of hot isostatically pressed superalloy Inconel 718[J]. Materials Science and Engineering:A,2006,418(1-2):282-291.
    66. J. Mao, K. M. Chang, W. H. Yang, D. U. Furrer, K. Ray, S. P. Vaze. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene88DT[J]. Materials Science and Engineering A,2002,332(1-2):318-329.
    67. D. U. Furrer, H. J. Fecht. γ1 formation in superalloy U720LI[J]. Scripta Materialia,1999,40(11):1215-1220.
    68.周永军,王瑞丹.镍基超合金的发展和研究现状[J].沈阳航空工业学院学报,2006,23(1):35-37.
    69.徐强,张幸红.先进高温材料的研究现状和展望[J].固体火箭技术,2002,25(3):51-55.
    70. M. E. Belitskii. A method of manufacture and some properties of sintered 20Cr-80Ni Nichrome[J]. Powder Metallurgy and Metal Ceramics,1965,4(9): 741-745.
    71.董建新,谢锡善.不同Cr含量高温合金中α-Cr相析出行为及作用[J].金属学报,2005,41(11):1159-1166.
    72.毕中南,董建新.高铬Ni-Cr基高温合金的应用与发展[J].材料导报网刊,2007,2(1):6-9.
    73. S. G. Murovannaya, E. N. Marmer. Effect of the degree of vacuum on the properties of the Kh20N80 alloy at high temperatures[J]. Metal Science and Heat Treatment,1969,10(12):966-968.
    74. V. M. Kharlanova, S. S. Gorelik, G. S. Knizhnik. Microstructure of recrystallized alloy Kh20N80[J], Metal Science and Heat Treatment,1973, 15(2):154-156.
    75. V. M. Kharlanova, S. S. Gorelik, G. S. Knizhnik. Mechanical properties of alloy Kh20N80 in relation to preliminary deformation[J]. Metal Science and Heat Treatment,1974,16(1):85-87.
    76. I. V. Doronin, I. N. Kidin, M. N. Kryanina, V. V. Medvedev, M. A. Shtremel. Anomalous plastic deformation in nichrome[J]. Russian Physics Journal,1970, 13(11):1413-1417.
    77. S. M. Solonin, V. P. Katashinskii. Preparation and properties of highly-porous rolled product based on nichrome powder[J]. Powder Metallurgy and Metal Ceramics,2003,42(5):235-239.
    78. E. I. Kuznetsov, V. A. Satanin. Effect of high-temperature oxidation in liquid fule combustion products on the strength characteristics of sintered sealing material Nichrome Kh20N80-boron nitride[J]. Strength of Materials,1983, 15(12):1756-1758.
    79. I. M. Mal'tsev. Electric rolling of powder materials with a dielectric phase[J]. Powder Metallurgy and Metal Ceramics,2003,42(5):225-229.
    80.董秀哲,赵先存.镍-铬系列耐蚀合金研究[J].钢铁研究总院学报,1984,4(1):1-5.
    81.张延生.高温合金氩弧焊时冶金及工艺因素对形成热裂纹的影响[J].焊接 学报,1982,3(2):57-57.
    82.白韶军.异种镍基高温合金电子束焊接性研究[J].北京工业大学学报,1996,22(2):48-54.
    83.马翔生,毛智勇.涡轮盘材料电子束焊接性分析[J].航空工艺技术,1999,(增刊):30-33.
    84.毛萍莉,李红军,耿新,孔凡亚,都祥远,边舫.碳、铌对Inconel718合金熔敷层组织与性能的影响[J].沈阳工业大学学报,2007,29(2):144-148.
    85.关桥.发动机叶片与部件修复工程中的焊接技术(上)[J].航空工艺技术,1993,(2):2-12.
    86.马翔生.压气机盘—鼓电子束焊接[J].燃气涡轮试验与研究,1993,6(4):1-8.
    87.张海泉,张彦华,张行安.发动机热端部件电子束焊修复接头的高温疲劳裂纹扩展行为[J].材料工程,1998,(11):17-19.
    88. M. Sireesha, V. Shankar, S. K. Albert, S. Sundaresan. Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800[J]. Materials Science and Engineering A,2000,292(1):74-82.
    89. A. Kurt, H. Ates, A. Durgutlu, K. Karacif. Exploring the weldability of powder metal parts[J]. Welding Journal,2004,83(12):34-37.
    90. A. G. Kostornov, O. I. Fushchich. Sintered antifriction materials[J]. Powder Metallurgy and Metal Ceramics,2007,46(9-10):503-512.
    91. E. O. Correa, S. C. Costa, J. N. Santos. Studies on weldability of iron-based powder metal alloys using pulsed gas tungsten arc welding process[J]. Journal of Materials Processing Technology,2009,209(8):3937-3942.
    92. G. M. Alexander-Morrison, A. G Dobbins, R. K. Holbert, M. W. Doughty. Metallurgical examination of powder metallurgy uranium alloy welds[J]. Journal of Materials for Energy Systems,1986,8(1):70-79.
    93. F. Matsuda, K. Nakata. Weld defects in electron-beam welds of powder-metallurgy chromium plate[J]. Transaction of JWRI,1984,13(2): 353-359.
    94. J. A. Hamill. P/M joining processes, materials and techniques[J]. International Journal of Powder Metallurgy,1991,27(4):363-372.
    95. A. Kurt, H. Ates. Investigation of weldability of P/M bronze materials by TIG welding technique[J]. Advanced Materials Research,2007,23:315-318.
    96. J. A. Hamill. Weld techniques give powder metal a different dimension[J]. Metal Powder Report,2007,62(5):22-24.
    97. J. A. Hamill. What are the joining processes, materials and techniques for powder metal parts?[J]. Welding Journal,1993,72(2):37-37.
    98. E. O. Correa, S. C. Costa, J. N. Santos. Welding of iron based sintered alloys for structural applications using the pulsed TIG process[J]. CIT Informacion Tecnologica(Chile),2000,11(2):109-115.
    99. K. Jayabharath, M. Ashfaq, P. Venugopal, D. R. G. Achar. Investigations on the continuous drive friction welding of sintered powder metallurgical (P/M) steel and wrought copper parts[J]. Materials Science and Engineering A,2007,454: 114-123.
    100. M. G. Fillabi, A. Simchi, A. H. Kokabi. Effect of iron particle size on the diffusion bonding of Fe-5% Cu powder compact to wrought carbon steels[J]. Materials and Design,2008,29(2):411-417.
    101. M. G. McKimpson. The joining of powder metallurgy structural alloys[J]. JOM, 1994,46(7):40.
    102. K. Asaka. Joining techniques of P/M mechanical parts[J]. Japan Society for Technology of Plasticity,2007,48(558):29-33.
    103. B. V. Krishna. Solid state joining of dissimilar sintered powder metallurgical (P/M) performs[D]. Chennai, India:Indian Institute of Technology Madras, 2005.
    104. S. S. Rao, K. Jayabharath, M. Ashfaq, B. V. Krishna. Preliminary studies on friction welding of sintered P/M steel preforms to wrought mild steel [J]. Science and Technology of Welding and Joining,2006,11(2):183-190.
    105. J. A. Hamill, F. R. Manley, D. E. Nelson. Fusion welding P/M components for automotive applications. SAE International Congress[C]. Detroit, Michigan USA,1993.
    106. M. V. Suresh, B. V. Krishna, P. Venugopal, K. P. Rao. Influence of process parameters in fusion welding of sintered iron P/M preforms to wrought copper by Tungsten Inert Gas welding[J]. Transactions of the Indian Institute of Metals, 2003,56(4):375-381.
    107. M. V. Suresh, B. V. Krishna, P. Venugopal, K. P. Rao. Effect of pulse frequency in gas tungsten arc welding of powder metallurgical preforms[J]. Science and Technology of Welding and Joining,2004,9(4):362-368.
    108. M. V. Suresh, B. V. Krishna, P. Venugopal, K. P. Rao. Fusion welding of steel powder metallurgical preforms to wrought copper[J]. Powder Metallurgy,2004, 47(4):358-366.
    109. J. A. Hamill, P. Wirth. Laser welding P/M for automotive applications. SAE International Congress and Exposition[C]. Detroit, Michigan USA,1994.
    110. J. A. Hamill. Welding and joining processes[M]. ASM Handbook. Vol.7. Materials Park, Ohio:ASM International,1998.
    111. A. Kurt, I. Uygur, H. Ates. Effects of temperature on the weldability of powder metal parts joined by diffusion welding[J]. Materials Science Forum,2007, 546-549:667-670.
    112. A. Kurt, I. Uygur, H. Ates. Effect of porosity content on the weldability of powder metal parts produced by friction stir welding[J]. Materials Science Forum,2007,534-536:789-792.
    113. E. O. Correa, S. C. Costa, J. N. Santos. Weldability of iron-based powder metal materials using pulsed plasma arc welding process[J]. Journal of Materials Processing Technology,2008,198(1-3):323-329.
    114. B. V. Krishna, P. Venugopal, K. P. Rao. Simultaneous plastic deformation and joining of dissimilar sintered P/M preforms by cold extrusion[J]. Transactions of the Indian Institute of Metals,2006,59(2):155-165.
    115. B. V. Krishna, P. Venugopal, K. P. Rao. Solid state joining of steel-Cu P/M preform tubes:use of interlayer and post joining heat treatments[J]. Journal of Materials Science,2006,41(4):1175-1185.
    116. D. Durgalakshmi, B. V. Krishna, P. Venugopal, D. R. G. Achar. Studies on cold solid state joining of dissimilar powder metallurgical preforms[J]. Journal of Materials Processing Technology,2003,132(1-3):293-304.
    117. B. V. Krishna, P. Venugopal, K. P. Rao. Optimization of process parameters in cold solid state joining of sintered steel and copper P/M preforms[J]. Transactions of the Indian Institute of Metals,2003,56(4):363-373.
    118. B. V. Krishna, P. Venugopal, K. P. Rao. Inferences on plastic properties and coefficient of friction during simultaneous compression deformation of dissimilar sintered powder metallurgical preforms[J]. Materials Science and Technology,2004,20(3):323-334.
    119. B. V. Krishna, P. Venugopal, K. P. Rao. Solid state joining of dissimilar sintered P/M preform tubes by simultaneous cold extrusion[J]. Materials Science and Engineering A,2004,386(1-2):301-317.
    120.周金鑫,唐霞辉,周毅,何艳艳,朱国富.粉末冶金材料激光焊接的气孔现象研究[J].激光技术,2003,27(6):503-505.
    121. Y. Suezawa, H. Kuroda, H. Kobayashi. An investigation of electron beam welding of sintered iron[J]. Transactions of Japan Welding Society,1979,10(2): 3-9.
    122. A. I. Gulyaev, V. G. Podnozov, L. A. Pyryalov. Contact welding of sintered powder materials[J]. Powder Metallurgy and Metal Ceramics,1976,15(6): 491-494.
    123.董桂萍,王少刚,季小辉.不锈钢复合板制备技术及其焊接性探讨[J].焊接,2008,(6):10-14.
    124.GB/T 13148-2008,不锈钢复合钢板焊接技术要求[S].北京:中国标准出版社,2008.
    125. S. Missori, F. Murdolo, A. Sili. Single-pass laser beam welding of clad steel plate[J]. Welding Journal,2004,83(2):65-71.
    126.林文光,赵颖,邬志钢.双复层不锈复合钢板的焊接性能试验研究[J].内蒙古工业大学学报,2001,20(1):39-42.
    127.郑远谋,张胜军.不锈钢—钢复合薄板的焊接[J].钢铁研究,2001,29(1):47-50.
    128. H. Engstroen, J. Duran, J. M. Amo, A. J. Vazquez. Spot welding of metal laminated composites[J]. Journal of Materials Science,1996,31(20): 5443-5449.
    129.汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,
    2003.
    130. Y. Ueda, T. Yamakawa. Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J]. Transactions of Japan Welding Society,1971,2(2):90-100.
    131.唐慕尧,楼志文,芮树祥.单面焊时终端裂纹的研究[J].焊接学报,1987,7(3):123-132.
    132.陈楚.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8(4):196-203.
    133.陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    134.汪建华,钟小敏.管板接头三维焊接变形的有限元模拟[J].焊接学报,1995,16(3):140-145.
    135.魏艳红,刘仁培,董祖钰.不锈钢焊接凝固裂纹应力应变场数值模拟结果分析[J].焊接学报,2000,21(2):36-38.
    136.鹿安理,史静,赵海燕.焊接过程仿真领域的若干关键技术问题及其初步研究[J].中国机械工程,2000,11(12):201-205.
    137.奚正平,汤慧萍.烧结金属多孔材料[M].北京:冶金工业出版社,2009.
    138. S. J. Polasik, J. J. Williams, N. Chawla. Fatigue crack initiation and propagation of binder-treated powder metallurgy steels[J]. Metallurgical and Materials Transactions A,2002,33(1):73-81.
    139.马海军.Fe3Al熔焊接头区组织结构及应力分布研究[D].济南:山东大学,2009.
    140.小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004.
    141.陈燕俊,周世平,杨富陶,林德仲,孟亮.层叠复合材料加工技术新进展[J].材料科学与工程,2002,20(1):140-142.
    142.李亚江.焊接冶金学-材料焊接性[M].北京:机械工业出版社,2007.
    143. N. Suutala, T. Takalo, T. Moisio. The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welds[J]. Metallurgical and Materials Transactions A,1979,10(4):512-514.
    144. F. Martinez Diez, S. Liu. Compositional boundary between primary austenitic and ferritic Mn-Cr and Ni-Cr steel weld metals[J]. Materials Science and Engineering A,2007,452-453:1-7.
    145. K. Rajasekhar, C. S. Harendranath, R. Raman, S. D. Kulkarni. Microstructural evolution during solidification of austenitic stainless steel weld metals:A color metallographic and electron microprobe analysis study[J]. Materials Characterization,1997,38(2):53-65.
    146.潘春旭.异种钢及异种金属焊接-显微结构特征及其转变机理[M].北京:人民交通出版社,2000.
    147.师昌绪,李恒德,周廉.材料科学与工程手册[M].北京:化学工业出版社,2004.
    148.颜晓峰,马惠萍,卢亚轩,刘万生.Cr含量对GH648合金组织及力学性能的影响[J].材料工程,2002,(3):28-31.
    149. G. A. Baglyuk, L. A. Posnyak. Powder metallurgy wear-resistant materials based on iron. Part 2. materials hot-pressed from porous compacts[J]. Powder Metallurgy and Metal Ceramics,2001,40(3-4):174-178.
    150. R. Brosilow. Why do welds crack?[J]. Welding Design and Fabrication,1990, 63(2):34-40.
    151.侯增寿.实用三元合金相图[M].上海:上海科技出版社,1983.
    152. G. Carturan, G. Cocco, S. Enzo, R. Ganzerla, M. Lenarda. Hexagonal close packed nickel powder:synthesis, structural characterization and thermal behavior[J]. Materials Letters,1988,7(1-2):47-50.
    153.米远祝,刘应亮,肖勇,袁定胜,张静娴.溶剂热制备条件对镍晶体结构的影响[J].无机化学学报,2005,21(4):603-606.
    154.虞觉奇,易文质,陈邦迪,陈宏鉴.二元合金状态图集[M].上海:上海科学技术出版社,1987.
    155.[日]长崎诚三,平林真.二元合金状态图集[M].北京:冶金工业出版社,2004.
    156.李义.钢结构焊接残余应力分析[D].武汉:武汉理工大学,2007.
    157. V. K. Sorokin. Strength of porous sintered sheet materials[J]. Powder Metallurgy and Metal Ceramics,1988,27(2):171-175.
    158.《中国航空材料手册》编辑委员会.中国航空材料手册.第2卷-变形高温合金、铸造高温合金-第二版[M].北京:中国标准出版社,2001.
    159.刘光启,马连湘,刘杰.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2002.
    160.谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994.
    161.冶金部.合金钢钢种手册[M].北京:冶金工业出版社,1983.
    162.谢元峰.基于ANSYS的焊接温度场和应力的数值模拟研究[D].武汉:武汉理工大学,2006.
    163.武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    164.俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700