用户名: 密码: 验证码:
Super304H奥氏体钢焊接接头组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保要求新建现代化发电厂必须提高生产效率,而作为最成熟的洁净煤发电技术之一的超超临界(USC)机组则成为目前火力发电的共同发展趋势,使其20年来在国内外得到了快速的发展,而这又首先得益于高温性能优良的新型耐热钢成功的开发和应用。中国USC机组中高温过热器和再热器的高温段大都采用的是Super304H钢,但目前对Super304H钢焊接接头的深入研究报道较少,因此研究焊接接头的组织与性能、尤其在高温时效条件下接头的组织结构变化及其与性能之间关系研究,不但对确保机组的安全运行具有重要的现实意义,而且对于钢材的应用和监督、实现钢材的国产化都有实际意义。
     本文综合应用金相显微镜、扫描电子显微镜、能谱分析仪、透射电子显微镜、电子探针、X-射线衍射仪,以及常温力学性能试验、高温持久试验和电化学动电位再活化法等手段,研究了Super304H钢焊接接头的微观组织结构及其对性能影响,高温时效条件下Super304H钢焊接接头的微观组织变化规律、析出相在焊接和时效过程中的变化、以及这些变化对接头常温力学性能、高温持久强度和晶间腐蚀性的影响,探讨了接头的弱化机理,解明了焊接工艺对接头性能影响的关键因素。
     在供货状态下Super304H钢的微观组织为晶粒细小的γ-基体+析出相,γ晶粒尺寸均匀细小。析出相主要由Nb(C,N)和富Cu相组成,Nb(C,N)有呈方向性分布的尺寸较大的条块状和呈弥散分布的细小颗粒状两种形态,富Cu相尺寸均匀细小呈弥散分布。在焊接条件下Super304H钢焊接接头的微观组织为γ+析出相,焊缝为典型的胞状枝晶形态,而靠近熔合区的热影响区晶粒有明显长大现象。接头中的析出相主要是Nb(C,N)和富Cu相,在焊缝枝晶界处分布有颗粒状或蠕虫状的Nb(C,N)。
     经最高1350℃高温处理后,Super304H钢基体组织仍为单一的γ相,温度低于1100℃时γ晶粒缓慢长大,高于1150℃时晶粒尺寸急剧长大。在高温处理过程中析出相的种类有Nb(C,N)、富Cu相、M23C6和NbCrN,随温度不同,析出相发生析出或溶解的变化,同时它们的形态、分布和数量也呈现出不同的变化规律,由此引起Super304H钢的冲击韧性和显微硬度产生相应的变化。因此,Super304H钢长期工作温度不宜超过700℃,为提高接头的抗高温蒸汽氧化性,需尽可能控制其在1150℃以上温度区域停留的时间,并应该通过改善冶金条件来细化焊缝组织。
     经过600℃-700℃高温时效后,Super304H钢焊接接头的微观组织仍为γ+析出相,基体组织特征基本没发生变化,析出相主要是Nb(C,N)、富Cu相和M23C6。时效条件不同,析出相的析出行为也不同,焊缝和母材中的Nb(C,N)相对析出量曲线形状与它们在原始组织中的含量有关,M23C6主要沿晶析出,其形态由细条状或颗粒状向链球状(长条状或块状)、孤立的颗粒状转变,并且温度对M23C6的影响远大于时间。
     试验条件下Super304H钢焊接接头的蠕变断裂强度高于母材,蠕变断口位于远离熔合线的母材上,蠕变空洞的主要形核位置在尺寸较大的条块状Nb(C,N)处,随着蠕变时间的延长,晶界上M23C6也是空洞形核的主要位置。
     在600℃-700℃时效条件下Super304H钢焊接接头发生显著的时效脆化现象,造成Super304H钢焊接接头时效脆化的根本原因是大量M23C6沿晶析出,而且析出量是决定因素。在使用温度范围内时效时,焊缝金属稳定的冲击功仅为13J,远低于母材和热影响区的冲击功,因此,尽管目前的Super304H钢选用的焊接材料与母材基本匹配,但这方面依然需要运行检验或进一步研究改进。
     Super304H钢焊接接头在供货状态和焊接条件下具有优良的抗晶间腐蚀性能。经600℃-700℃时效后则具有较大的晶间腐蚀敏感性,时效过程中Super304H钢焊接接头晶间腐蚀敏感性变化与M23C6的数量、形态和分布变化相一致,M23C6沿晶界析出是Super304H钢焊接接头在时效条件下发生晶间腐蚀的根本原因,而且析出量是决定因素。M23C6不仅沿晶析出引起贫Cr发生晶间腐蚀,而且在晶内析出也会引起其周围贫Cr发生腐蚀。因此对于炉内具有一定浓度高温腐蚀介质的锅炉中运行的Super304H钢应加强焊接接头晶间腐蚀性能的监督。
Demands on energy saving and environmental protection have been driven the improvement of production efficiency of modern electric power plant, and the last 20 years has seen the rapid development of ultra supercritical (USC) power station unit which is recognized as one of the most matured clean-coal electric power generating technologies. The rapid development of USC power station unit benefits firstly from the research and application of new heat resistance steels with superior properties. It is well documented that Super304H steel has gained wide applications as superheater/reheater in USC unit in China. However, there is still a lack of comprehensive investigation on Super304H steel and its welded joint in our country. As a result, it is of importance to study the welded joint, especially the influence of high temperature aging on its microstructure and properties. It is also of practical significance to conduct these investigations to support the safety running, commercial application, supervising and customizing of this steel in our country.
     In the present paper, comprehensive characterization of the welded joint was performed by using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission microscopy, electron probe microscopy, X-ray diffractometer, room-temperature test, high temperature creep test and electrochemical potentiokinetic reactivation test. Objections of this investigation include microstructure characterization and its effect on properties of Super304H steel and its welded joint, microstructure evolution of Super304H steel and its welded joint during high temperature aging, as well as precipitates evolution during welding and aging treatment. Besides, it is also studied systematically in the present paper that the influence of the above-mentioned factors on room temperature mechanical properties, high temperature creep strength, intergranular corrosion behaviors and the degrading mechanism of the welded joint. It is expected that this investigation can be used as a technical support for supervising the safety running of the welded joint, as well as to provide technical data for the customization of this steel in our country.
     The as-received Super304H steel shows microstructure of y matrix made up of fine and evenly distributed y grains with precipitates. Precipitates consist of Nb(C, N) and Cu-rich phase. Nb(C, N) shows morphology of finely dispersed small particles and relatively large block and stripe which distribute along certain direction. Microstructure of the as-welded joint of Super304H steel consists of y phase and precipitates. Weld metal shows typical cellular dendrite morphology and the HAZ adjacent to the fusing zone demonstrates obvious grain growth. Precipitates in the welded joint mainly comprises Cu-rich phase and Nb(C, N) which distributes in the dendritic grain boundaries with particulate and worm-like morphology.
     After being high temperature treatment with high temperature of 1350℃, matrix of Super304H steel still consists of y phase. When the treatment temperature is below 1100℃,γgrain grows slowly in contrast to its rapid growth at temperature higher than1150℃. During high temperature treatment, precipitates presented include Nb(C, N), Cu-rich phase, M23C6 and NbCrN, which show different precipitating and dissolution behaviors, morphology, distribution and amount with the changing of treatment temperature. And these also subsequently cause the corresponding changes of impact toughness and hardness of Super304H steel. As a result, it is suggested that long-term serving temperature should be below 700℃for Super304H steel and in addition to refining the weld metal microstructure through improving metallurgical conditions the time experienced above 1150℃should be controlled in order to improve its oxidation resistance to high temperature steam.
     After being aged from 600℃to 700℃, microstructure of Super304H steel and the welded joint consists of y phase and precipitates. The matrix is basically absent of any noticeable microstructure changing. Precipitates are mainly made up of Nb(C, N), copper-rich phase and M23C6. Precipitating behavior varies with the changing of aging condition. It is found that the shape of curve showing relative amount of Nb(C, N) and M23C6 is related to their content in the initial microstructure. M23C6 mainly distributed along grain boundaries and its morphology changes from thin stripe/particle to chain-like (block or stripe) and isolated particles. Compared with time, temperature has a more profound influence on the precipitating behavior of M23C6.
     Under the experimental condition creep strength of the welded joint is higher than that of the base metal. Creep fracture occurs in the area of the base metal far from the fusing line. Furthermore, it is found that creep cavity nucleates near the relatively large Nb(C, N) block and stripe, and with the increasing of aging time, cavity also forms near M23C6 particles on grain boundaries.
     After being aged at high temperature from 600℃to 700℃, obvious aging brittleness occurs for the welded joint, which is attributed to the precipitation of M23C6 along grain boundaries. Besides, it is found that the amount of precipitates is a determinate factor. When aged at the serving temperature, impact energy of the weld metal is only 13J, which is much less than these of the base metal and HAZ. Therefore, welding consumable used for the Super304H steel needs further evaluation and improvement.
     Both the Super304H steel in as-received condition and the as-welded welded joint possess superior intergranular corrosion resistance but sensitization occurs after being aged at high temperature from 600℃to 700℃. Susceptibility of intergranular corrosion of Super304H steel and its welded joint during aging treatment is in accordance with the amount, morphology and distribution of M23C6. Intergranular corrosion of Super304H steel and its welded joint is attributed to the precipitation of M23C6 along grain boundaries and is determined by the amount of precipitates. Intergranular corrosion induced by Cr depletion was caused by precipitating of M23C6 along grain boundaries, and it is also found that the precipitating of M23C6 inside grains also leads to corrosion near the Cr-depleted area. Therefore, supervising of Super304H steel and the welded joint should be enhanced which was normally serviced in the boiler in highly corrosive medium.
引文
[1]李午申.我国新型钢铁材料及焊接性与焊接材料的发展[J].机械工人,2005,8:20-25.
    [2]宋丹娜,白艳英,于秀玲.浅谈中国不锈钢产业的现状及可持续发展[J].四川有色金属,2009,1:1-5.
    [3]耿炳玺.我国不锈钢产业发展综述[J].冶金管理,2008,6:27-30.
    [4]植恒毅,张蓓.国内不锈钢行业现状分析[J].冶金信息导刊,2008,2:21-25.
    [5]张存信,项炳和.我国不锈钢产业的发展与问题[J].新材料产业,2007,11:39-41.
    [6]李成.中国不锈钢市场发展形势分析[J].中国钢铁业,2006,1:10-11.
    [7]戴佩琨,程钧培.火力发电新技术发展[J].发电设备,2004,1:1-6.
    [8]姜成洋.超大容量超超临界燃煤发电机组的现状及发展趋势[J].锅炉制造,2006,3:46-49.
    [9]赵毓.超超临界机组在我国发展的必要性和可行性[J].锅炉制造,2005,4:75-76.
    [10]张忠文,李新梅,吴军,等.超(超)临界机组用的新型耐热钢及焊接监督[J].山东电力技术,2007,1:3-8.
    [11]周荣灿,范长信.超超临界火电机组材料研究及选材分析[J].中国电力,2005,38(8):41-47.
    [12]杨富,李为民,任永宁.超临界、超超临界锅炉用钢[J].电力设备,2004,5(10):41-46.
    [13]陆燕荪.从超临界机组的发展透视研发新材料的紧迫性[J].发电设备,2006,3:149-151.
    [14]刘正东,程世长,包汉生,等.超超临界火电机组用锅炉钢技术国产化问题[J].钢铁,2009,44(6):1-7.
    [15]杨富,章应霖,任永宁,等.新型耐热钢焊接[M].北京:中国电力出版社,2006.
    [16]胡洪华,李爱华,王智微,等.超超临界机组优化运行分析[J].电力设备,2007,8(2):4-6.
    [17]刘堂礼.超临界和超超临界技术及其发展[J].广东电力,2007,20(1):19-22,50.
    [18]陈听宽.超临界与超超临界锅炉技术的发展与研究[J].世界科技研究与发展,2005,27(6):42-48.
    [19]顾纪清.不锈钢应用手册[M].北京:化学工业出版社,2008.
    [20]唐纳德皮克纳,I.M.伯恩斯坦.不锈钢手册[M].顾守仁,周有德,译.北京:机械工业出版社,1987.
    [21]John C.Lippold, Damian J.Kotecki.不锈钢焊接冶金学及焊接性[M].陈剑虹,译.北京:机械工业出版社,2008.
    [22]马强,梁平,杨首恩,等.TP347H钢高温水蒸气氧化研究[J].材料热处理学报,2009,30(5):172-176.
    [23]郭立峰,魏彦筱,张晓昱,等.18-8奥氏体不锈钢水蒸汽氧化的失效分析[J].华北电力技术,2005,8:21-23.
    [24]王胜.奥氏体不锈钢管内壁氧化皮脱落堵塞爆管分析及对策[J].热力发电,2006,7:56-58.
    [25]李辛庚,齐慧滨,王学刚,等.火电厂锅炉再热器管高温腐蚀研究[J].材料保护,2003,36(6):9-11.
    [26]冯斌,’何铁祥,张玉福.过热器和再热器管内壁的高温水蒸汽腐蚀研究[J].湖南电力,2006,26(6):8-11.
    [27]梁成浩,张国庆.用电化学技术评价310不锈钢的高温损伤[J].金属热处理学报,2000,21(1):20-25.
    [28]方安千,芦敬安,冀晋川.在超(超)临界机组中应用的新钢种[J].山西电力,2009,4:56-60.
    [29]韩建伟.日本锅炉用新型不锈钢管的开发[J].焊接,2002,6:16-17,47.
    [30]Igarashi M. Creep properties of heat resistant steels and superalloys[M]. Springer: Springer Berlin Heidelberg,2004.260-264.
    [31]Sawaragi Y, Hirano S. Development of a new 18-8 austenitic steel (0.1C-18Cr-9Ni-3Cu-Nb, N) with high elevated temperature strength for fossil fired boilers[A]. New Alloys for pressure vessels and piping[C]. New York:American Society of Mechanical Engineers(ASME) Press,1990,141-146.
    [32]Sawaragi Y, Ogawa K, Kato S, et al. Development of the economical 18-8 stainless steel(Super304H) having high elevated temperature strength for fossil fired boillers [J]. The Sumitomo Search,1992,48(1):50-58.
    [33]Kan T, Sawaragi Y, Yamadera Y, et al. Properties and experiences of a new austenitic stainless steel Super304H(0.1C-18Cr-9Ni-3Cu-Nb-N) tubes for boiler tube application[A]. Materials for advanced power engineering[C]. Julich: Forschungszentrum Julich Press,1998,1.441-1.450.
    [34]Sawaragi Y, Otsuka N, Senba H, et al. Properties of a new 18-8 austenitic steel tube (SUPER304H) for fossil fired boilers after service exposure with high elevated temperature strength[J]. Sumitomo Search,1994,56:34-43.
    [35]孙叶柱.用于超超临界锅炉的Super304H材料的性能[J].电力建设,2003,24(9):11-14.
    [36]杨华春.日本Super304H奥氏体不锈钢锅炉用管评述[A].超超临界锅炉用钢及焊接技术协作网第一届论坛大会论文集[C].苏州:超超临界锅炉用钢及焊接技术协作网,2005,3:231-241.
    [37]杨富.加强金属焊接监督研究确保超超临界机组安全运行[J].中国设备工程,2009,1:37-39.
    [38]杨华春,谢逍原,张林,等.超超临界锅炉用TP310HCbN奥氏体耐热钢管化学成分优化探讨[J].发电设备,2009,2:122-125,131.
    [39]杨华春,李刚.高热强性和抗腐蚀性的新型锅炉钢管(HR3C)特性[J].东方锅炉,2003(3):26-40.
    [40]于斌英.高温高强度高耐蚀性能的新型锅炉钢管(HR3C)特性[J].锅炉技术,1992,5:20-28.
    [41]张忠文,李新梅,魏玉忠,等.HR3C钢焊接接头的组织和性能研究[J].热加工工艺,2008,37(23):5-8.
    [42]王培伟,靳学鹏.百万千瓦机组HR3C焊接技术的应用[J].电力建设,2009,30(8):110-112.
    [43]Quanyan W, Shingledecker P, Swindeman W, et al. Microstructure characterization of advanced boiler materials for ultra supercritical coal power plants[A]. Proceedings of the 4th International conference on advances in materials technology for fossil power plants[C]. United states:ASM International,2005, 748-761.
    [44]Iseda A, Okada H, Semba H, et al. Long-term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for advanced USC boilers[A]. Advances in materials technology for fossil power plants-proceedings from the 5th international conference[C]. United states:ASM International,2008,185-196.
    [45]Sawaragi Y., Hirano S., Natori A., et al. Properties after service exposure of a new 18-8 austenitic steel tube (0.1C-18Cr-9Ni-3Cu-Nb,N) with high elevated temperature strength for fossil fired boilers[A]. First international conference on microstructures and mechanical properties of aging materials[C], Chicago USA, Publ by Minerals, Metals & Materials Soc(TMS),1993,179-186.
    [46]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.
    [47]杨岩,程世长,杨钢.铜含量对Super304H钢持久性能的影响[J].机械工程材料,2002,26(10):23-25.
    [48]Sawaragi Y. The development of a new 18-8 austenitic stainless steel (O.IC-18Cr-9Ni-3Cu-Nb, N) with high elevated temperature strength for fossil fired boiler[J]. Mechanical Behavior of Material,1991,4(1):50.
    [49]Takao K, Sawaragi Y. Properties after service exposure of a new new austenitic stainless steel Super304H(0.IC-18Cr-9Ni-3Cu-Nb,N) for boiler tube application[J]. Sumitomo Search,1993,10:45.
    [50]杨富.1000MW超超临界火电机组锅炉用新型耐热钢的焊接[J].中国电力,2005,38(8):48-52.
    [51]范长信,张红军,周荣灿,等.超超临界机组锅炉用新型耐热钢的焊接[J].电力设备,,2006,7(4):11-14.
    [52]张忠文,李新梅,吴军,等.超超临界机组用新型耐热钢及焊接监督[J].山东电力技术,2007,1:3-8.
    [53]朱平,赵建仓,柴晓岩,等.Super304H奥氏体耐热钢焊接材料匹配与接头 性能研究[J].电力设备,2007,8(4):43-46.
    [54]张巩耀,Graham Holloway.采用617类镍基材料焊接Super304H和HR3C高温奥氏体耐热钢[A].超超临界锅炉用钢及焊接技术协作网第三届论坛大会论文集[C].天津:超超临界锅炉用钢及焊接技术协作网,2009,7:70-79.
    [55]王轶,丁德林.镍基焊材代用于Super304H、HR3C钢焊接工艺评定试验[A].超
    超临界锅炉用钢及焊接技术协作网第三届论坛大会论文集[C].天津:超超临界锅炉用钢及焊接技术协作网,2009,7:223-231.
    [56]王立玉.采用Therm anit617焊丝焊接Super304H和HR3C钢的实践[A].超超临界锅炉用钢及焊接技术协作网第三届论坛大会论文集[C].天津:超超临界锅炉用钢及焊接技术协作网,2009,7:449-454.
    [57]李燕彬.Super304H钢TIG焊接头性能研究[D].陕西:西安理工大学材料科学与工程学院,2008.
    [58]史文渊,张兆第,冯建辉,等.Super304H及HR3C选用镍基焊材的焊接工艺及实际操作研究[A].超超临界锅炉用钢及焊接技术协作网第三届论坛大会论文集[C].天津:超超临界锅炉用钢及焊接技术协作网,2009,7:455-461.
    [59]杨金炳,杨华春.常数华新特殊钢公司产S30432奥氏体不锈钢锅炉管试验研究[A].超超临界锅炉用钢及焊接技术协作网第二次论坛大会论文[C].西安:超超临界锅炉用钢及焊接技术协作网,2007,7:241-244.
    [60]中国钢研科技集团公司钢铁研究总院结构材料研究所五十年历程系列报道——超超临界火电机组用钢研究进展[J].钢铁,2008,43(8):19.
    [61]王华迁,杨华春,谭舒平,等.电站锅炉用S30432无缝钢管热处理工艺试验研究[A].超超临界锅炉用钢及焊接技术协作网第三届论坛大会论文集[C].天津:超超临界锅炉用钢及焊接技术协作网,2009,7:196-202.
    [62]王剑志,罗仕清,黄晓斌.超(超)临界锅炉用Super304H钢管研究试制[J].钢铁,2006,41(1):43-46.
    [63]王起江,洪杰.超超临界电站锅炉用新型管材的研制[J].宝钢技术,2008,(5):44-48.
    [64]彭芳芳,朱国良,宋建新.超超临界机组用Super304H钢管国产化关键制造工艺的分析[J].动力工程,2008,28(5):803-806.
    [65]白晋钢.电站锅炉用S30432耐热不锈钢管的研制[J].山西冶金,2008,(4):19-20.
    [66]方旭东,王辉锦,田晓青,等.1000MW超超临界锅炉电站锅炉用S30432耐热不锈钢管的开发[J].太钢科技,2007,2:22-27.
    [67]王剑志,罗仕清,黄晓斌.超(超)临界锅炉用Super304H钢管研究试制[J].钢铁,2006,41(1):43-46.
    [68]裴海祥.Super304H钢焊接热影响区晶粒细化机理及控制研究[D].山西:中北大学材料科学与工程学院,2009.
    [69]赵庆权.国产化Super304H钢管组织性能及持久强度研究[D].甘肃:兰州理工大学材料科学与工程学院,2008.
    [70]包汉生,程世长,刘正东,等.热处理对ASTMS30432奥氏体耐热钢性能的影响[J].金属热处理,2009,34(8):77-81.
    [71]彭声通,黄志雄.Super304H冶炼工艺研究[J].特钢技术,2009,15(58):22-26,31.
    [72]杨华春.超超临界锅炉用Super304H钢管国产化技术现状[A].超超临界锅炉用钢及焊接技术协作网第二次论坛大会论文[C].西安:超超临界锅炉用钢及焊接技术协作网,2007,7:127-131.
    [73]孙玉梅,潘乾刚,刘志勇,等.Super304H焊接工艺试验研究[J].东方电气评论,2004,18(2):82-85.
    [74]刘晓静.Super304H奥氏体耐热钢焊接工艺评定试验[A].2007年中国机械工程学会年会论文集[C].北京:机械工业出版社,2007:879-885.
    [75]袁立中,宋仁明.SA213-Super304H、HR3C钢焊接工艺评定试验[J].青海电力,2009,28(2):26-29.
    [76]张彦旺.电厂超超临界锅炉Super304钢焊接工艺[J].焊接技术,2008,37(3):58-59.
    [77]陈玉成,徐德录,韩钰,等.Super304H不锈钢焊接用钨极氩弧焊丝[P].中国专利:CN101412160,2009-04-22.
    [78]李广超,杨文忠,路长青,等.可致钝体系中金属阳极腐蚀行为新判据——EPR技术用于测定硫脲对不锈钢阳极腐蚀行为的影响[J].材料保护,2001,34(8): 44-46.
    [79]Cihal V, Furijchova J, Kubelka J. Werkst. Korros,1976,27:782.
    [80]A kaski M, Kawamo T, Vmemura F. Corrosion Engineering,1980,29:163.
    [81]#12
    [82]BS ISO 12732-2006, Corrosion of metals and alloys-electrochemical potentiokinetic reactivation measurement using the double loop method (based on Cihal's method)[S].
    [83]李南.预变形对SUPER304H不锈钢时效行为及晶间腐蚀性能的影响[D].陕西:西安理工大学材料科学与工程学院,2008.
    [84]GB/T 2039-1997,金属拉伸蠕变及持久试验方法[S].
    [85]DL/T868-2004,焊接工艺评定规程[S].
    [86]GB/T6394-2002,金属平均晶粒度测定方法[S].
    [87]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,2009.
    [88]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    [89]雍岐龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989.
    [90]贺信莱,尚成嘉,杨善武,等.高性能低碳贝氏体钢[M].北京:冶金工业出版社,2008.
    [91]张俊善.材料的高温变形与断裂[M]..北京:北京出版社,2007.
    [92]张文钺.焊接冶金学[M].北京:机械工业出版社,2002.
    [93]Hull, F. C. Delta ferrite and martensite formation in stainless steels[J]. Weld. J. Ressuppl.,1973:193-203.
    [94]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社,2004.
    [95]Erich Folkhard.不锈钢焊接冶金[M].栗桌新,朱学军,译.北京:化学工业出版社,2004.
    [96]Viswanathan K, Nayar K, Krishnan R. Kinetics of precipitation in 17-4PH stainless steel[J]. Materials Science and Technology,1989,5(4):346-349.
    [97]DL/T 940-2005,火力发电厂蒸汽管道寿命评估技术导则[S].
    [98]郑修麟.材料的力学性能[M].西安:西北工业大学出版社,2004.
    [99]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983.
    [100]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2009.
    [101]王凤平,康万利,敬和民,等.腐蚀电化学原理、方法及应用[M].北京:化学工业出版社,2008.
    [102]罗宏,龚敏.奥氏体不锈钢的晶间腐蚀[J].腐蚀科学与防护技术,2006,18(5):357-360.
    [103]张述林,李敏娇,王晓波,等.18-8奥氏体不锈钢的晶间腐蚀[J].中国腐蚀与防护学报,2007,27(2):124.
    [104]ASTM A 262 2002. Standard practices for detecting susceptibility to intergranular attack in austenitic stainless steels.
    [105]ASTM G 108-1994 (Reapp oved 2004), Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels.
    [106]Duffaut F, Pouzet J P, Lacombe P. Potentiostatic study of structural modifications caused in a Ni-Cr-Fe alloy by heat treatment at 650℃ [J]. Corrosion Science,1966,6(2):83-85.
    [107]Clarke W L, Carlson P C. Nondestructive measurement of sensitization of stainless steel relation to high temperature stress corrosion behavior [J].1980,19(3): 16-23.
    [108]Akashi M, Kawamoto T. The effect of molybdenum addition on SCC susceptibility of stainless steels in oxygenated high temperature water[J]. Corrosion Engineering,1978,27(4):165-171.
    [109]Cihal V. Advances in the potentiodynamic reactivation method[J]. Werkstoffe und Korrosion,1986,37(11):587-591.
    [110]Frangini S, Mignone A. Modified electrochemical potentiokinetic reactivation mothod for detecting sensitization in 12wt% Cr ferritic stainless steels [J]. Corrosion, 1992,48(9):715-726.
    [111]金维松,郎宇平,荣凡,等.EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研 究[J].中国腐蚀与防护学报,2007,27(1):54-58.
    [112]周勇,郎宇平,荣凡,等:Fe-17Mn-13Cr-0.3N奥氏体不锈钢的晶间腐蚀研究[J].钢铁研究,2008,36(1):38-43.
    [113]韩冬,蒋益明,邓博,等.时效时间对2101双相不锈钢电化学腐蚀行为的影响[J].金属学报,2009,45(8):919-923.
    [114]Garcia C, Tiedra M, Blanco Y, et al. Intergranular corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell[J]. Corrosion Science,2008,50(8):2390-2397.
    [115]Teradaa M, Escribab D, Costaa I, et al. Investigation on the intergranular corrosion resistance of the AISI 316L(N) stainless steel after long time creep testing at 600 ℃[J]. Materials Characterization,2008,59(6):663-668.
    [116]Yaekina A, Souza V, Tavares S, et al. Microstructure and intergranular corrosion resistance evaluation of AISI 304 steel for high temperature service[J]. Materials Characterization,2008,59(5):651-655.
    [117]Bo D, Yiming J, Juliang X, et al. Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101[J]. Corrosion Science,2010,52(3):969-977.
    [118]郭富强,程世长,刘正东,等.碳、铌对ASME S30432奥氏体耐热钢晶间腐蚀性能的影响[J].机械工程材料,2007,31(8):11-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700