用户名: 密码: 验证码:
Ti-60合金表面电弧离子镀Ti-Al-Cr高温防护涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-60属于Ti-Al-Zr-Mo-Si-Sn系近α型高温钛合金,使用温度已经达到600℃。但是,在高温使用时Ti-60合金的氧化和氧脆成为影响其热稳定性的主要因素,一方面表层氧化形成多孔的TiO_2膜,保护性能差;另一方面由于Ti与O的亲和性,氧渗透到基体中形成富氧层使合金塑性明显下降,这两个因素限制了Ti-60合金在高温下的应用。在高温下使用钛合金的困难在于必须提高抗氧化性能并满足对力学性能的要求。能提高某种性能的措施通常会降低另外一种性能。由于氧化破坏主要限于零件的外层或表层区域,而力学性能是由零件的整个截面决定的,因此同时获得最佳力学性能和抗氧化性能的一种有希望的方法是采用表面改性技术,特别是涂层技术。
     本文主要研究了两方面的内容:一方面是Ti-60合金的氧化;另一方面对电弧离子镀技术制备Ti-Al-Cr型高温防护涂层的组织结构、高温抗氧化性能、高温抗腐蚀性能、热冲击性能、涂层与基体之间的相互作用等方面进行了深入的研究。
     研究结果表明,Ti-60合金在650℃和750℃遵循晶粒尺寸正效应原则,即晶粒尺寸越小,氧化速率越小。Ti-60合金在600℃时的氧化增质较少,700℃时略高,800℃时发生失稳氧化。
     电弧离子镀方法沉积的沉积态涂层呈明显的层状生长,涂层的XRD衍射峰出现明显的宽化。真空退火后的涂层内部明显的层状结构消失,涂层内部结合的更加致密,XRD衍射峰明显变窄。退火后Ti-48Al(原子分数,%)涂层由γ-TiAl相和少量的Ti_3Al相、TiAl_3相组成;而Ti-48Al-12Cr(原子分数,%)涂层退火后则由γ-TiAl相、Laves相、Ti_3Al相和TiAl_3相组成,TiAl_3相的含量高于Ti-48Al涂层。
     在800℃等温氧化及循环氧化过程中,Ti-48Al和Ti-48Al-12Cr涂层样品表面氧化层保持完整,未发生剥落。两种涂层在800℃均能有效地保护Ti-60合金且与基体之间的结合力良好。在900℃氧化过程中,Ti-48Al涂层样品发生严重的剥落,不能有效地保护Ti-60合金,而Ti-48Al-12Cr涂层的表面生成大量的Al_2O_3,可以有效地保护Ti-60合金,说明12%Cr的加入可以有效的提高涂层的抗氧化性能。
     采用电弧离子镀制备的Ti-Al-Cr-(Si,Y)涂层在800℃和850℃的硫酸盐腐蚀介质中,可以有效地保护Ti-60合金免受腐蚀破坏。Ti-Al-Cr-Si和Ti-Al-Cr-Si-Y涂层在硫酸盐中抗热腐蚀性能优于Ti-Al-Cr涂层,原因在于Y元素促进涂层表面Al_2O_3的生成,使涂层表面生成的Al_2O_3的量大于其在硫酸盐中的溶解量,延长了带涂层材料的热腐蚀孕育期;Si和Y元素还能细化氧化物颗粒,使氧化层致密,SO_4~(2-)和O元素通过致密的氧化层扩散比较困难,从而很好地保护了合金基材,改善了Ti-Al-Cr涂层体系的抗热腐蚀性能。此外,Ti-60合金及Ti-Al-Cr-(Si,Y)涂层在75%Na_2SO_4+25%K_2SO_4中的腐蚀比在纯硫酸钠中剧烈。
     热冲击实验中,900℃和950℃实验温度下,电弧离子镀沉积的Ti-48Al-12Cr涂层表现出良好的抗热冲击性能,分别经过80个和30个周期的热冲击的实验后,涂层并没有发生明显的剥落;而Ti-48Al-5Cr涂层在900℃和950℃两种温度的热冲击下,氧化层和涂层发生了大量的剥落,产生了失重的现象。这是由于5%Cr元素的加入增加了Ti-48Al涂层中TiO_2中氧离子空位浓度,使原子扩散系数增大,提高了生成TiO_2的速率,使生成的氧化层较厚,易发生剥落。而12%Cr的加入从热力学和动力学上促进了保护性Al_2O_3氧化膜的形成,并且生成的Al_2O_3薄膜较薄,提高了带涂层材料的抗热冲击性能。此外,热冲击实验加速了氧化膜的剥落和破坏,因此也加速了内氧化的发生和裂纹的扩展。
     Ti-60与Ti-Al-Cr涂层之间的扩散实验表明扩散层的厚度与时间和温度两个因素相关,其中与温度的关系最为密切。在800℃、850℃和900℃,Ti-60与Ti-48Al-12Cr涂层之间的扩散层的生长是由扩散控制的,大致遵循抛物线规律。Ti-60与Ti-48Al-12Cr涂层之间扩散层的生长激活能为113.71kJ/mol。
Ti-60 alloy is a near-αhigh temperature titanium alloy belonging to Ti-Al-Zr-Mo-Si-Sn system.It can be used stably up to 600℃.However,when Ti-60 was used at high temperatures,oxidation and oxygen brittleness were the main reasons that affected heat stability of Ti-60 alloys.On the one hand,surface oxidation formed porous TiO_2 which had no protection;on the other hand,for titanium alloy had a good affinity towards oxygen at elevated temperatures in air,thereby oxygen penetrated into titanium alloys and formed oxygen-enriched layer which decreased the alloy's plasticity obviously. Thoese two factors severely limited the application of Ti-60 at high temperatures.Measures to improve one property often leaded to degradation of the other.Since oxidation attack was mainly limited to the outer region of a component,and mechanical properties were determined by the entire cross-section,hence,a promising approach to obtain both the best mechanical property and oxidation resistance was the use of surface modification technologies,particularly coating techniques.
     This thesis mainly concerns on two aspects,one is the oxidation behavior of Ti-60,and the other aspect,high temperature properties,hot corrosion behaviors,thermal shock cycling behaviors of the Ti-Al-Cr coatings deposited by arc ion plating(AIP) and interaction between coatings and Ti-60 base alloy were also investigated.
     The results showed that Ti-60 alloys followed positive effect rules of grain size at 650℃and 750℃,i.e.the smaller a grain size was,the lower oxidation rate was.The weight increased smallest for the Ti-60 alloy exposed at 600℃,slightly heavy at 700℃,and at 800℃destabilizing oxidation occurred.
     The as-deposited coatings prepared in AIP grew in layer and the peak of XRD diffraction pattern was obviously widened.After vacuum annealing,the layered microstructure disappeared and the inner of coatings became much denser.The peak of XRD diffraction patterns became narrow.Annealed Ti-48Al(atomic fraction,%) coatings were composed ofγphase,Ti_3Al phase and TiAl_3 phase;the amount of Ti_3Al phase and TiAl_3 phase were small.Annealed Ti-48Al-12Cr(atomic fraction,%) coatings were composed ofγphase,Laves phase,Ti_3Al phase and TiAl_3 phase;the amount of TiAl_3 phase was larger than that in Ti-48Al coatings.
     The oxide layer of Ti-48Al coatings and Ti-48Al-12Cr coatings remained intact and no spalling occurred in the process of isothermal oxidation and cycling oxidation at 800℃. Both of the two coatings could protect Ti-60 alloys effectively and keep a good binding force with matrixes at 800℃.In the process of oxidation at 900℃,Ti-48Al coatings spalled seriously,which could not protect Ti-60 matrix.While Ti-48Al-12Cr coatings formed lots of Al_2O_3 which could protect Ti-60 matrix effectively.This demonstrated that the addition of 12%Cr element could improve oxidation resistance of coatings effectively.
     Ti-Al-Cr-(Si,Y) coatings prepared in AIP could keep Ti-60 matrix from corrosion effectively in sulfate at 800℃and 850℃.Ti-Al-Cr-Si and Ti-Al-Cr-Si-Y coatings had better hot corrosion resistance than Ti-Al-Cr coatings in sulfate due to Y element could promote Al_2O_3 to form on the surface of the coatings;this could form more Al_2O_3 on the surface of coatings than that dissolved in sulfate,extend the hot corrosion incubation period of coatings.Si and Y elements could also make oxidation particles thinner which made the oxide layer denser and thus SO_4~(2-) and O diffused through the dense oxide layer difficultly. Therefore,the Ti-Al-Cr-Si and Ti-Al-Cr-Si-Y coatings could protect Ti-60 matrix effectively and improve the hot corrosion resistance of Ti-Al-Cr coatings.In addition to that, Ti-60 alloys and Ti-Al-Cr(Si,Y) coatings experienced more serious corrosion in 75% Na_2SO_4+25%K_2SO_4(weight fraction,%) than in pure Na_2SO_4.
     The AIP Ti-48Al-12Cr coatings provided excellent thermal shock protection on Ti-60 alloys at 900℃and 950℃.No obvious coatings spallings were found after 900℃/80 cycles and 950℃/30 cycles.While a large amount of coatings and oxidation layers were found to spall when Ti-48Al-5Cr coatings were thermal shocked at 900℃and 950℃,hence induced weight change curve descended.As 5%Cr was added into Ti-48Al coatings,it increased vacancies of oxygen in TiO_2;enhanced the atomic diffusion coefficient;promoted the growing rate of forming of TiO_2;oxide layers thicker and spalling occurred easily.12%Cr elements promoted the formation of Al_2O_3 oxidation layers in thermodynamics and kinetics points.Al_2O_3 was very thin and dense improved the thermal shock resistance of Ti-60 with coatings.Besides,thermal shock cycling experiments accelerated the oxides spalling and breakdown thereby they accelerated internal oxidation,crack forming and crack propagation.
     Diffusion experience between Ti-60 and Ti-48Al-12Cr coatings showed the relationship between the thicknesses of diffusion layers with time and temperatures, especially with temperatures.At 800℃,850℃and 900℃,the growth of diffusion layer between Ti-60 and Ti-48Al-12Cr coatings was controlled by diffusion,which followed parabolic rule.Growth activation energy of the diffusion layers between Ti-60 and Ti-48Al-12Cr coating was 113.71kJ/mol.
引文
1.李阁平.高温钛合金中稀土相的形貌、结构、形成及微观力学行为[D],沈阳:中国科学院金属研究所,1995.
    2.Chen S,Beaven P A,Wagner R.Carbide Precipitation in γ-TiA1 alloys[J],Scripta Metallurgica et Materialia,1992,26(8):1205-1210.
    3.Li Y G,Loretto M H,Rugg D,Voice W.Effect of heat treatment and exposure on microstructure and mechanical properties of Ti-25V-15Cr-2A1-0.2C(wt%)[J],Aeta Materialia,2001,49(15):3011-3017.
    4.Wanjara P,Drew R A L,Root J,Yue S.Evidence for stable stoichiometfic Ti_2C at the interface in TiC particulate reinforced Ti alloy composites[J],Acta Materialia,2000,48(7):1443-1450.
    5.Royer R R.An overview on the development of titanium alloys for non-aerospace application in Japan[J],Materials Sciencd and Engineering A,1996,213(1-2):124-127.
    6.Rosenberg H W.Titanium Science and Technology[M],New York:Plenum Press,1973,2127-2131.
    7.Woodfield A P,Postans P J,Loretto M H,Smallman R E.The effect of long,term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S[J],Acta Metallurgy,1988,36(3):507-515.
    8.Fridlyander J N,Eskin D G.Titanium Alloys:Russian Aircraft and Aerospace Applications[M],USA:CRC Press,Taylor & Francis Group,2006,104-105.
    9.Kumar A,Singh,N,Singh,V.Influence of stabilization treatment on low cycle fatigue behavior of Ti alloy IMI 834[J],Materials Characterization,2003,51(4):225-233.
    10.Leylens C,Peters M.Titanium and Titanium alloys[M],Germany:Wiley-VCH & Co.KGaA,2003,298-302.
    11.Yolton C F,Froes F H,Malone R F.Alloying element effects in metasatble beta-titanium alloys[J],Metallurgical.Transactions A-Physical Metallurgy and Materials Science,1979,10(1):132-134.
    12.Mendiratta M G,Chakrabarti A K,Roberson J A.Embrittlement of Ti-6Al-2Sn-4Zr-2Mo alloy by alpha2-phase precipitation[J],Metallurgical Transactions,1974,5(8):1949-1951.
    13.Ulyakova N M.Effect of molybdenum,niobium,and tungsten on the mechanical-porperties and structure of titanium-alloys[J],Metal Science and Heat Treatment,1979,21(12):931-934.
    14.鲍利索娃著,陈石卿译.钛合金金相学[M],北京:国防工业出版社,1985,3-4.
    15.Jaffee R I.An overview on titanium development and application[J],Titanium 80Science and Technology,kyoto Warrendale:1980,53-74.
    16.Yoder G R,Cooley L A,Crooker T W.Observations on micro-structurally sensitive fatigue crack growth in a widmanstatten Ti-6Al-4V alloy[J],Metallurgical Transactions Metallurgical Transactions A-Physical Metallurgy and Materials Science,1977,8(11):1737-1743.
    17.Yoder G R,Cooley L A,Crooker T W.Fatigue Crack-propagation resistance of beta-annealed Ti-6Al-4v alloys of differing interstitial oxygen contents[J],Metallurgical Transactions A-Physical Metallurgy and Materials Science,1978,9(10):1413-1420.
    18.Hall I W,Hammond C.Fracture toughness and and Crack propagation in titanium alloys[J],Material Science Engimeer A,1978,32(3):241-253.
    19.Greenfield M A,Margolin H.Mechanism of void formation,void growth,and tensile fracture in an alloy consisting of 2 ductile phases[J],Metallurgical Transactions,1972,3(10):2649-2659.
    20.Es-souni M.Creep deformation behavior of three high temperatures near alpha-Ti alloys:IMI 834,IMI 829,and IMI 685[J],Metallurgical Transactions A-Physical Metallurgy and Materials Science,2001,32(2):285-293.
    21.Bathe M R,Evans W J,Randle V,Wilson R J.Characterization of mechanical anisotropy in titanium alloys[J],Materials Science and Engineering.A-Structural Materials Properties Mierostrueture and Processing,1998,257(1):139-144.
    22.Boyer R,Welseh G,Collings E W.Materials Properties Handbook:Titanium Alloys [M],OH,United states:ASM International,Materials Park,1994,125-1046.
    23.Hall G S,Seagle S R,Bomberger H B.Improvement in High-Temperature tensile and creep properties of titanium alloys[J],Titanium Science and Technology,Massachusetts:1973,2141-2150.
    24.Erdeman V J,Ross E W.Long time stability of Ti-679 after creep exposure for times to 15000 hours[J],The Science,Technology and Application of Titanium,London:1968,829-838.
    25.Jepson K S,Brown A R G,Gray J A.The effect of cooling rate on the beta transformation in titanium-niobium and titanium-aluninium alloys[J],The Science,Technology andApplication of Titanium,London:1968,677-690.
    26.Seagle S R,Hall G S,Bomberger H B.High temperature properties of Ti-6Al-2Sn-4Zr-2Mo-0.09Si[J],Metals Engineering Quarterly,1975,15(1):48-54.
    27.Neal D F.Development an evaluation of high temperature titanium IMI834[J],Six world conference on titanium,Les Ulis Cedex,1989,253-268.
    28.Immarigeon J P,Holt R T,Koul A K,Zhao L,Wallace W,Beddoes J C.Lightweight materials for aircraft applications[J],Materials Characterization,1995,35(1):41-67.
    29.张尚洲.碳对Ti-60高温钛合金组织演变的影响[D],沈阳:中国科学院金属研究所,2004.
    30.李铁藩.金属高温氧化和热腐蚀[M],北京:化学工业出版社,2004,15-258.
    31.李美栓.金属的高温腐蚀[M],北京:冶金工业出版社,2001,5-435.
    32.刘光华.现代材料化学[M],上海:上海科学技术出版社,2000,164-171.
    33.Mott N F.Oxidation of metals and the formation of protective films[J],Nature,1940,145:996-1000.
    34.朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M],上海:上海科学技术出版社,1995,20-240.
    35.詹姆斯·谢佛著,余永宁,强文江译.工程材料科学与设计[M],北京:机械工业出版社,2004,531-534.
    36.孙秋霞.材料腐蚀与防护[M],北京:冶金工业出版社,2001,14-16.
    37.Luthra K L.Stability of protective oxide films on Ti-base alloys[J],Oxidation of Metals,1991,36(5-6):475-490.
    38.崔文芳.600℃高温钛合金冶金稳定性、抗氧化涂层及微量元素作用的研究[D], 沈阳:东北大学,1998.
    39.Frangini S,Mignone A,Dericcardis F.Various aspects ofther air oxidation behavior of a Ti-6Al-4V alloy at temperatures in the range 600-700 degrees[J],Journal of Materials Sicence,1994,29(3):714-720.
    40.David D,Cremery P,Garcia E A.Proceedings of the Fifth International Conference on Titanium[J],Munich:1984,10-14.
    41.Johnson T J,Lovetto M H,Kearns M W.Oxidation of high temperature titanium alloys [J],Titanium 92 Science and Technology,San Diego:1992,2035-2042.
    42.Koo C H,Evans J W,Song K Y,Yu T H.High temperature of oxidation of Ti_3Al-Nb alloys[J],Oxidation of Metals,1994,42(5-6):529-544.
    43.Roy T K,Balasubramaniam R,Ghosh A.High-temperature oxidation of Ti_3Al-based titanium aluminides in oxygen[J],Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,1996,27(12):3993-4002.
    44.Yamaguchi S.Interstitial order-disorder transformation in the Ti-O solid solution.1Ordered arrangement of oxygen[J].Journal of Physical Society of Japan,1969,27(1):155-163.
    45.Welsch G,Kahveci A I.Oxidation of high temperature intermetallics[J],The Minerals,Metals and Materials Society,1989,207-218.
    46.崔文芳,边为民,罗国珍,红权,周廉.热暴露对IMl834近α高温钛合金组织和拉伸性能的影响[J],航空材料学报,1997,17(4):15-20.
    47.Lee H S,Yoon J H,Yi Y M.Oxidation behavior of titanium alloy under diffusion bonding[J],Thermochimica Acta,2007,455(1-2):105-108.
    48.贾新云,刘培英,陶冶.Ti-60合金在650℃-750℃高温下的氧化行为[J],材料工程,2003,6:18-22.
    49.Shenoy R N,Unnam J,Clarkt R K.Oxidation and embrittlement of Ti-6Al-2Sn-4Zr-2Mo alloy[J],Oxidation of Metals,1986,26(1-2):105-124.
    50.Das D K,Alam Z,Cyclic oxidation behaviour of aluminide coatings on Ti-base alloy IMI-834 at 750℃[J],Surface & Coatings Technology,2006,201(6):3406-3414.
    51.莱恩斯,皮特尔斯著,陈振华等译.钛与钛合金[M].北京:化学工业出版社,2005,165-197.
    52.赵宇光,周伟,秦庆东,梁云虹,姜启川.预氧化处理对钛合金抗高温氧化行为的影响[J],特种铸造及有色合金,2004,3:34-36.
    53.贾新云,郭宝林.钛合金的高温氧化及防护[J],航空工程及维修,2004,4:19-21.
    54.熊玉明.高温钛合金用超细搪瓷涂层的研究[D],沈阳:中国科学院研究金属研究所,2003.
    55.徐杰,张春华,张松,康煜平,朱圣龙,王福会,才庆魁.钛合金表面防护技术及发展[J],钛工业进展,2003,20(3):17-21.
    56.吴小梅,李伟光,陆峰.钛合金叶片防护涂层研究-十五科研项目总结[J],装备环境工程,2006,3(3):116-118,129.
    57.赵宇光,周伟,彭新,梁云虹,秦庆东.钛合金表面低氧压熔结Al-Cr涂层及其高温抗氧化性[J],吉林大学学报,2004,34(04):521-526.
    58.蔡建平,李波.热喷涂陶瓷涂层[J],机械工程材料,2000,24(1):5-7.
    59.唐兆麟,王福会.高温钛合金及钛铝金属间化合物腐蚀与防护[J],稀有金属,1996,20(4):291-296.
    60.Feng Huang,Barnard J A,Weaver MarkL.Mechanical characterization of DC magnetron sputtered amorphous Ti-Al-Cr coatings[J],Surface & Coatings Technology,2002,155(2-3):146-151.
    61.Hwan Gyo Jung,Dong Ju Jung,Kyoo Young Kim.Effect of Cr addition on the properties of aluminide coating layers formed on TiAl alloys[J],Surface & Coatings Technology,2002,154(1):75-81.
    62.Nishimoto T,Izumi T,Hayashi S,Narita T.Two-step Cr and Al diffusion coating on TiAl at high temperatures[J],Intermetallies,2003,11(3):225-235.
    63.Leyens C,Peters M,Hovesepian P Eh,Lewis D B,Luo Q,M(u|¨)nz W D.Novel coating systems produced by the combined cathodic arc/unbalanced magnetron sputtering for environmental protection of titanium alloys[J],Surface & Coatings Technology,2002,155(2-3):103-111.
    64.Fox-Rabinovich G S,Wilkinson D S,Veldhuis S C,Dosbaeva G K,Weatherly G C.Oxidation resistant Ti-Al-Cr alloy for protective coating application[J],Intermetallics,2006,14(2):189-197.
    65.Tang Z,Niewolak L,Shemet V,Singheiser L,Quadakkers W J,Wang F,Wu W,Gil A. Development of oxidation resistant coatings for γ-TiAl based alloys[J],Materials Science and Engineering A,2002,328(1-2):297-301.
    66.Lee J K,Oh M H,Wee D M.Long-term oxidation properties of Al-Ti-Cr two-phase alloys as coating materials for TiAl alloys[J],Intermetallics,2002,10(4):347-352.
    67.Levine S R,Caves R M.Thermodynamics and kinetics of pack aluminide coating formation on IN-100[J],Journal of the electrochemical society,1974,121(8):1051-1064.
    68.Kung S C.High-temperature coating for titanium aluminides using the pack-cementation technique[J],Oxidation of Metals,1990,34(3-4):217-228.
    69.张亚明,周龙江,王卫林,李铁藩,陈崇伟.钛合金表面渗铝的研究[J],稀有金属材料与工程,1993,22(1):27-30.
    70.赵斌,吴建生,孙坚.TiAl基合金的表面处理方法[J],稀有金属,2001,25(5):355-359.
    71.Gurrappa I.Effect of aluminizing on the oxidation behavior of the titranium alloy,IMI 834[J],Oxidation of Metals,2001,56(1-2):73-87.
    72.Jha S K,Khanna A S,Harendranath C S.Oxidation charactedstics of Ti_3Al-Nb alloys and improvement in the oxidation resistance by pack aluminizing[J],Oxidation of Metals,1997,47(5-6):465-493.
    73.Gauthier V,Dettenwanger F,Sch(u|¨)tze M,Shemet V,Quadakkers W J.Oxidation-resistant aluminide coatings on γ-TiAl[J],Oxidation of Metals,2003,59(3-4):233-255.
    74.张亚明,周龙江,王卫林,李铁藩,陈崇伟.钛合金表面渗铝的研究[J],稀有金属材料与工程,1993,22(1):27-30.
    75.朱明.Cr-Al-N/CrN和Al_2O_3防护涂层的高温腐蚀行为[D],沈阳:中国科学院金属研究所,2006.
    76.江垚,贺跃辉,汤义武,李智,黄伯云.TiAl基合金的表面渗碳行为基机理[J],材料研究学报,2005,19(2):139-146.
    77.Thongtem T,Somchai T,Mcnallan M J.High temperature nitridation of the intermetallic compound TiAl at 1000-1200K[J],Surace and Interface Analysis,1999,28(1):61-64.
    78.Goward G W.Process in coatings for gas turbine airfoils[J],Surface & Coatings Technology,1998,108-109(1-3):73-79.
    79.徐东,朱宏,汤丽娟,杨云洁,郑志宏,柳襄怀,谷口磁次,柴田俊夫.离子束增强沉积氧化硅膜及TiAl抗高温氧化性能的改善[J],金属学报,1995,31(4):164-172.
    80.Taniguchi S,Shibata T,Yanada T,Liu X,Zou S.High temperature oxidation resistance of TiAl improved by IBED Si3N4 coating[J],ISIJ Internationl,1993,33(8):869-876.
    81.Taniguchi S,Shibata.T,Katoh N.Improvement in the high-temperature oxidation resistance of TiAl by Sol-derived SiO_2 coating[J],Journal of the Japan Institute of Metals,1993,57(6):666-673.
    82.Taniguchi S,Shibata T,Takeuchi K.Protective of a CVD-Al_2O_3 film on TiAl intermetallic compound against high temperature oxidation[J],Materials Transactions Jim,1991,2(3):299-301.
    83.Chu M S,Wu S K.The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment[J],Acta Materialia,2003,51(11):3109-3120.
    84.Xie Y J,Wang M C.Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy[J],Journal of Alloys and Compounds,2009,480(2):454-461.
    85.Pomeroy M J.Coatings for gas turbine materials and long term stability issues[J],Materials and Design,2005,26(3):223-231.
    86.Bao Z B,Wang Q M,Li W Z,Liu X,Gong J,Xiong T Y,Sun C.Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy [J],Corrosion Science,2009,51(4):860-867.
    87.Saremi M,Bahraini M.Electrodeposition of NiCrAlY coating on In-738Ni super alloy and its oxidation and hot corrosion performance[J],Transactions of the Institute of Metal Finishing,2003,81,24-27.
    88.Zhou C G,Yu J,Gong S,Xu H.Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature[J],Surface & Coatings Technology,2002,161(1):86-91.
    89.Tang Z L,Wang F H,Wu W T.Effect of MCrAlY overlay coatings on oxidation resistance of TiAl intermetallics[J],Surface & Coatings Technology,1998,99(3):248-252.
    90.Wang Q M,Zhang K,Gong J,Cui Y Y,Sun C,Wen L S.NiCoCrAlY coatings with and without Al_2O_3/Al interlayer on an orthorhombic-Ti_2AlNb based alloy:oxidation and interdiffusion behaviors[J],Acta Matedalia,2007,55(4):1427-1439.
    91.Wang Q M,Guo M H,Ke P L,Gong J,Sun C,Wen L S.Oxidation protection of NiCoCrAlY coatings on γ-TiAl[J],Transactions of nonferrous metals society of China,2005,15(2):423-426.
    92.刘海浪,王宝健,刘永丹,闫丰.热障涂层的研究现状与进展[J],新技术新工艺,2008,5:92-95.
    93.张红松,陈晓鸽,徐强,王富耻,刘玲.热障涂层用氧化物稳定的ZrO_2陶瓷材料研究现状[J],2008,中国陶瓷,44(3):7-11.
    94.纪小健,李辉,栗卓新,宋永伦.热障涂层的研究进展及其在燃气轮机的应用[J],燃气轮机技术,2008,21(2):7-17.
    95.徐庆泽,梁春华,孙广华,王志宏.国外航空涡扇发动机涡轮叶片热障涂层技术发展[J],航空发动机,2008,34(3):52-56.
    96.乔岳云,李建国,胡建平,霍日昌.纳米Y_2O_3对氧化锆陶瓷涂层显微组织和抗高温氧化性能的影响[J],热加工工艺,2008,37(17):116-118.
    97.熊玉明,王福会.搪瓷涂层对Ti-60合金抗氧化腐蚀性能的影响[J],金属学报,1999,35(suppl.1):215-219.
    98.Zheng D Y,Xiong Y M,Zhu S L,Wang F H.Effect of enamel coating on long-term oxidation and hot corrosion behavior of Ti-24Al-17Nb-0.5Mo alloys[J],Transactions of Nonferrous Metals Society of China,2004;14:359-363.
    99.Xiorig Y M,Zhu S L,Wang F H,lee C h.Effect of vitreous enamel coating on the oxidation behavior of Ti6Al4V and TiAl alloys at high temperatures[J],Journal of Coatings Technology and Research,2008,5(1):93-98.
    100.关春红,唐兆麟,王福会.搪瓷涂层对Ti-24Al-14Nb-3V抗氧化及热腐蚀性能的影响[J],材料研究学报,2000,14(zl),75-80.
    101.俞家庆,王茂才.激光辐照制备搪瓷涂层[J],材料科学进展,1993,7(6):526-530.
    102.Mizuta N,Matsuura K,Kirhara S.Titanium aluminide coating on titanium surface using three-dimensional microwelder[J],Material Science Engineering A-Structureal Materials Properties Microsturcture and Processing,2008,492(1-2):199-204.
    103.Leyens C,Peters M,Kaysser W A.Intermetallic Ti-Al coatings for protection of titanium alloys:oxidation and mechanical behavior[J],Surface & Coatings Technology,1997,94-95(1-3):34-40.
    104.Leyens C,Peters M,Kaysser W A.Influence of intermetallic Ti-Al coatings on the creep properties of TIMETAL 1100[J],Scdpta Materalia,1995,35(12):1423-1428.
    105.Shida Y,Anada H.The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air[J],Oxidation of Metals,1996,45(1-2):197-218.
    106.Brady M P,Smialek J L,Smith J,Humphrey D L.The role of Cr in promting protective alunina scale formation by γ-based Ti-Al-Cr alloys-Ⅰ:Compatibility with alumina and oxidation behavior in oxygen[J],Acta Materialia,1997,45(6):2357-2369.
    107.Zhou C,Yang Y Gong S K,Xu H B.Effect of Ti-Al-Cr coatings on the high temperature oxidation behavior of TiAl alloys[J],Materials Science and Engineering A,307(1-2):182-187.
    108.Mccarron R L,Schaeffer J C,Meier G H,Berztiss D.Protective coatings for titanium aluminide intermetallics[J],Titanium 92 Science and Technology,San Diego:1992,1971-1978.
    109.Leyens C,Schmidt M,Peters M,Kaysser W A.Sputtered intermetallic Ti-Al-X coatings:phase formation and oxidation behavior[J],Materials Science and Engineering A,1997,239-240:680-687.
    110.Leyens C,Peters M,Kaysser W A.Oxidation resistant Ti-Al-(Cr) coatings for titanium alloys and titanium aluninides[J],Proceedings of the Ninth World Conference,Saint Petersburg:1999,866-875.
    111.Mabuchi H,Tsuda H,Kawkami T.Oxidation-resistant coating for gamma titanium aluminides by pack cementation[J],Scdpta Materialia,1999,41(5):511-516.
    112.熊玉明,朱圣龙,王福会.带涂层的TiAlNb合金高温氧化行为[J],稀有金属材料与工程,2006,35(2):213-216.
    113.Masalski J,Gluszek J,Zabrrezeski J,Nitsch K,Gluszek P.Improvement in corrosion resistance of the 3161 stainless steel by means of Al_2O_3 coating deposited by the Sol-Gel method[J],Thin Solid films,1999,349(1-2):186-190.
    114.多树旺,李美栓,尹孝辉,刘庭芝,周延春.溶胶-凝胶制备的Al_2O_3涂层抗原子氧 侵蚀性能研究[J],稀有金属材料与工程,2007,36(z2):735-738.
    115.张勤俭,李敏.溶胶-凝胶法制备SiO_2溶胶正交试验的灰色关联分析[J],材料科学与工程,2001,19(3):66-68.
    116.Atik M,Neto P D,Avaca L A,Aegerter M A,Zarzycki J.Protection of 3161 stainless steel against corrosion by SiO_2 coatings[J],Journal of Materials Science Letters,1994,13(15):1081-1085.
    117.Atik M,Aegerter M A.Corrosion resistant sol-gel ZrO_2 coatings on stainless steel[J],Journal of Non-Crystalline Solids,1992,147:813-819.
    118.Ward D A,Ko E I.Synthesis and structural transformation of zirconia aerogels[J],Chemistry of Materials,1993,5(7):956-969.
    119.Atik M,Neto P D,Avaca L A,Aegerter M A.Sol-gel thin films for corrosion protection[J],Ceramics International,1995,21(6):403-406.
    120.鲁凤芹,姚兰芳,关飞飞,谢伏将,岳春晓.Al_2O_3-SiO_2纳米复合薄膜的制备及性能研究[J],材料导报:纳米与新材料专辑,2008,1:166-168,175.
    121.王黔平,田秀淑,王金峰,赵春荣,王聚亮.溶胶.凝胶法制备Al_2O_3-ZrO_2-SiO_2复合薄膜[J],水处理技术,2004,30(2):75-77.
    122.Barrow D.Sol-gel method yields thicker ceramic coatings[J],Advanced Materials &Processes,1998,153(4):35-35.
    123.王福会,楼翰一.用于燃气轮机叶片的MCrAlY包覆涂层[J],腐蚀科学与防护技术,1992,4(3):156-162.
    124.刘景顺,曾岗,李明伟,杨森,郭洪飞.电子束物理气相沉积(EB-PVD)技术研究及应用进展[J],材料导报,2007,21(F11):246-248,255.
    125.Brandl W,Grabk H J,Toma E D,Kr(u|¨)ger J.The oxidation behaviour of sprayed MCrAlY coatings[J],Surface & Coatings Technology,1996,86(1-3):41-47.
    126.Fauchais P.Understanding plasma spraying[J],Journal of Physics D-Applied Physics,2004,37:86-108.
    127.Montavon G.Recent developments in thermal spraying for improved coating characteristics and new application/process controls and spray process[J],High Temperature Material Processes,2004,8(1):45-93.
    128.辛湘杰,薛俊,峰董敏.钛的腐蚀、防护及工程应用[M],安徽:安徽科学技术出 版社,1988,200-213.
    129.Ralison A,Dettenwanger F,Schutze M.Oxidation of orthorhombic Ti_2AlNb alloys at 800℃ in air[J],Materials and Corrosion 2000,51(5):317-328.
    130.Murray J L.Calculation of the Titanium-Aluminum phase diagram[J],Metallurgical Transactions A-Physical Metallurgy and Materials Science,1988,19(2):243-247.
    131.Brady,Smialek J L,Humphrey D L,Smith J.The role of Cr in promoting protective alumina scales formation by γ-based Ti-Al-Cr alloys-Ⅱ:Oxidation behavior in air[J],1997,45(6):2371-2382.
    132.Zhou W,Zhao Y G,Qin Q D,Li W,Xu B.Al-Si coating fused by Al+Si powders formed on Ti-6Al-4V alloy and its oxidation resistance[J],Material Science and Engineering A-Structural Materials Properties Microstructure and Processing,2006,430(1-2):142-150.
    133.Holmquist M,Recina V,Pettersson B.Tensile and creep properties of diffusion bonded titanium alloy IMI 834 to gamma titanium aluminide IHI alloy 01A[J],Acta Materialia,1999,47(6):1791-1799.
    134.Perkins R A,Chiang K T,MEIER G H.Formation of Alumina on Ti-Al Alloys[J],Scdpta Metallurgica,1987,21(11):1505-1510.
    135.陈志勇,王清江,刘建荣,李玉兰,杨锐,李晋伟,刘方军.Ti-60高温钛合金电子束焊接接头高温下的损伤失效行为研究[J],金属学报,2008,44(3):263-271.
    136.Xiong Y M,Zhu S L,Wang F H.Synergistic corrosion behavior of coated Ti-60 alloys with NaCl deposit in moist air at elevated temperature[J],Corrosion Science,2008,50(1):15-22.
    137.Xiong Y M,Guan C H,Zhu S L,Wang F H.Effect of enamel coating on oxidation and hot corrosion behaviors of Ti-24Al-14Nb-3V alloy[J],Journal of Materials Engineering and Performance,2006,15(5):564-569.
    138.Tang Z L,Wang F H,Wu W T.Effect of a sputtered TiAlCr coating on hot corrosion resistance of gamma-TiAl[J],Intermetallics,1999,7(11):1271-1274.
    139.史良权,张允书.二元硫酸盐Na_2SO_4-K_2SO_4沉积引起的Fe-Al合金的低温热腐蚀[J],中国腐蚀与防护学报,1992,12(3):192-204.
    140.王启民,武颖娜,柯培玲,纪爱玲,孙超,黄荣芳,闻立时.电弧离子镀 Ni-Co-Cr-Al-Y-Si-B涂层的热腐蚀性能[J],金属学报,2004,40(4):399-403.
    141.Schilke P W.Advanced Gas Turbine Materials and Coatings[M],Schenectady:GeGeneral Electric Company,GER-3569G,2004,9-10.
    142.Wang Q M,Tang Y J,Guo M H,Ke P L,Gong J,Sun C,Wen L S.Thermal shock cycling behavior of NiCoCrAlYSiB coatings on Ni-base superalloys-Ⅰ.Accelerated oxidation attack[J],Material Science and Engineering A-Structural Materials Properties Microstructure and Processing,2005,406(1-2):337-349.
    143.Gell M,Xie L D,Jordan E H,Padture N P.Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings[J],Surface & Coatings technology,2004,188:101-106.
    144.Liang B,Ding C H.Thermal shock resistances of nanostruetured and conventional zirconia coatings deposited by atmospheric plasma spraying[J],Surface & Coating technology,2005,197(2-3):185-192.
    145.孙育峰.Ti_3Al基合金抗氧化性及力学行为的研究[D],北京:北京航空材料研究所,1995.
    146.Deadmore D L,Lowell C E.Effect of deltat(oxidizing temperature minus cooling temperature) on oxide spallation[J],Oxidation of Metals,1977,11(2):91-106.
    147.Lowell C E,Deadmore D L.The role of thermal-shock in cyclic oxidation[J],Oxidation of Metals,1980,14(4):325-336.
    148.Li M H,Sun X F,Jin T,Guan H R,Hu Z Q.Oxidation behavior of a single-crystal Ni-base superalloy in air-Ⅱ:At 1000,1100,and 1150 degrees C[J],Oxidation of Metals,2003,60(1-2):195-210.
    149.王启民.电弧离子镀MCrAlY高温防护涂层及符合涂层的研究[D],沈阳:中国科学院金属研究所,2006.
    150.雷明凯.高温氧化防护涂层寿命预测的基础理论问题[J],腐蚀科学与防护技术,2005,17(1):12-14,42.
    151.Goda D J,Richards N L,Caley W F,Chaturvedi M C.The effect of processing variables on the structure and chemistry of Ti-Aluminide based LMCS[J],Material Science and Engineering A-Structural Materials Properties Microstructure and Processing,2002,334(1-2):280-290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700