用户名: 密码: 验证码:
改性Cu-ZSM-5分子筛催化剂的制备及催化脱除NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu-ZSM-5分子筛催化剂能将NO直接分解为无污染的N2和O2,是一种比较理想的催化脱除燃煤烟气中NO的催化剂。但是该催化剂的反应温度区间较窄,反应温度较高且反应过程中氧阻抑现象明显。本文主要研究如何改进催化剂的抗氧性能及以Cu-ZSM-5为主体的Cu-ZSM-5/CeYSZ复合式催化剂的制备及催化活性。
     对Cu-ZSM-5催化剂的制备方法和条件及前处理对催化活性的影响进行研究。在交换液浓度为0.010mol/L,交换温度为40℃条件下采用离子交换法制备的Cu-ZSM-5催化剂具有良好的活性。Cu负载量会随交换次数的增加而提高,但却不能显著提高催化剂的活性。高温煅烧能提高催化剂的活性。O2浓度对催化剂活性有明显影响,O2浓度达到5%时,催化剂活性开始明显下降,达到10%后,催化剂活性变的非常小。
     采用引入一种或多种共存离子和添加助剂的方法改善Cu-ZSM-5分子筛催化剂的抗氧性。通过离子交换法引入Ag+或Ce3+都能明显提高Cu-ZSM-5催化剂的活性,降低反应温度。先交换Ag+后交换Cu2+为制备Ag-Cu-ZSM-5的最佳交换次序,在O2含量5%时320℃左右脱硝率可达60%。而Ce3+和Cu2+同时交换为制备Ce-Cu-ZSM-5的最佳交换次序,330℃时脱硝率为61%。采用一次离子交换法同时引入Ce和La能明显提高Cu-ZSM-5催化剂的稳定性和耐氧性,在O2含量5%时350。C左右脱硝率达到71%。在Cu-Ce-La-ZSM-5催化剂中采用共混法加入质量分数10%的CaH2,O2含量5%,温度为340-C脱硝率达到83%。
     以Al2O3陶瓷管为载体,采用溶胶-凝胶法在陶瓷管上负载CeYSZ过渡膜后再合成ZSM-5分子筛膜,将复合载体进行Cu离子交换后制备得到具有良好抗氧性能的Cu-ZSM-5/CeYSZ复合催化剂。当O2浓度低于7%时,Cu-ZSM-5/CeYSZ复合催化剂的活性基本不变,维持在65%左右。继续增加O2浓度,催化剂的活性急剧下降。
     采用量子力学和分子力学结合的ONIOM2方法对离子交换得到的Cu-ZSM-5催化剂对NO的吸附进行理论计算。离子交换后,催化剂与NO之间的能隙变小,更易于NO吸附反应的发生,说明离子交换制备的催化剂活性较好。热力学计算结果及NO、吸附结构分析表明NO最容易以N2O2的形式发生吸附,同时N-O键被活化的程度也最大。结果同时也表明O2存在和NO产生竞争吸附从而对反应产生阻抑现象。
Cu-ZSM-5 is a kind of ideal catalyst for removal of NO in coal-fired gas since it can direct decomposition NO to N2 and O2. But it also has narrow temperature range, higher reaction temperature and obvious oxygen inhibition. This paper mainly studies how to improve the oxygen resistance of Cu-ZSM-5 and preparation of Cu-ZSM-5/CeYSZ composite membrane catalyst.
     In the preparation process of Cu-ZSM-5, the optimum concentration of Cu ion-exchange solution is 0.010mol/L and the temperature is 40℃. The amount of Cu loading in zeolites increases with the exchange times but the NO removal efficiency does not have apparent change. High temperature sintering can significantly improve the activity of the catalyst. Oxygen concentration has obviously impact on catalysts activity. The catalysts activity decreases when oxygen concentration reaches to 5% and becomes very low when oxygen concentration reaches to 10%.
     Introduction of co-ions and assistants can improve the resistance of catalysts to oxygen. Introduction of Ag+ and Ce3+ by ion-exchange can increase the activity of catalyst and reduce reaction temperature. The optimum ion-exchange sequence of Ag-Cu-ZSM-5 is loading Ag+ first, and then Cu2+, which the NO removal efficiency could reach 60% at 320℃within 5% of O2. Introduction of Ce to Cu-ZSM-5 catalyst, Ce3+and Cu2+should be loaded at the same time which the NO removal efficiency could reach 61% at 330℃within 5% of O2. The co-existence of Ce and La can strengthen the oxygen resistance and widen the activity temperature interval. The addition of CaH2(10%wt.) into Cu-Ce-La-ZSM-5 by blending can greatly promote the NO removal efficiency, which could reach 83% at 340℃within 5% of O2.
     The Cu-ZSM-5/CeYSZ composite membrane catalyst is prepared by sol-gel process through coating CeYSZ membrane and ZSM-5 membrane on Al2O3. Cu-ZSM-5/CeYSZ maintains constant activity about 65% when the concentration of O2 below 7% and the activity of catalysts sharply decrease when the concentration of O2 above 7%.
     The adsorption of nitrous oxide on Cu-ZSM-5 has been investigated using the ONIOM2 method. The analysis of frontier molecular orbital showed energy gap between Cu-ZSM-5 and nitrous oxide becomes smaller after introduction of Cu by ion-exchange. We can conclude from the thermodynamic data and adsorption structure of nitrogen oxides that N2O2 is the easiest adsorption form. The N-O bond length in N2O2 adsorption structure by Cu-ZSM-5 is longer than other structure. The calculated results also show that oxygen can easily adsorb by Cu-ZSM-5, so the existence of oxygen can restraint the adsorption of nitrogen oxides.
引文
[1]钟秦.燃煤烟气脱硫脱硝技术及工程实例.北京:化学工业出版社,2002
    [2]刘天齐.三废处理工程技术手册(废气卷).北京:化学工业出版社,1999
    [3]中华人民共和国环境保护部.2006年环境统计年报.2007,http://www.zhb.gov.cn
    [4]关强,姚佳岩.汽车尾气中的NOx选择催还原技术的研究.交通标准,2007,(11):182~185
    [5]沈晓悦,国冬梅.我国汽车尾气排放与控制.环境科学动态,1998,(4):4-8
    [6]孟祥茹,孙学琴.降低汽车废汽污染的技术措施.山东环境,1998,(4):55~56
    [7]朱世勇.环境与工业气体净化技术.北京:化学工业出版社,2001
    [8]祝天熙.硝酸尾气治理方法讨论.陕西化工,1997,26(3):8-10
    [9]李晓东,杨卓如.国外氮氧化物气体治理的研究进展.环境工程,1996,14(6):34~39
    [10]袁从慧,刘华彦.催化氧化-还原吸收法脱除工业含湿废气中的NOx.2008,2(9):1207~1212
    [11]曹军.含氮氧化物(NOx)废气的处理方法.2007,30(3):44~46
    [12]张文祥,贾明君,吴通好,等.金属离子交换分子筛的NO的吸附性能.高等化学学报,1997,18(12):1999~2003
    [13]王艳磊,李坚,冀宏,等.粉煤灰改性及制作NOx复合吸附剂的探讨.煤炭学报,2007,32(4):437~440
    [14]郭斌,马一太,任爱玲,等.生物法净化含NOx尾气的研究.环境工程,2003,21(2):37~39
    [15]何志桥,王家德.生物法处理NOx废气的研究进展.环境污染治理技术与设备,2002,3(9):59~62
    [16]魏恩宗,林赫,高翔,等.燃煤锅炉烟气NOx污染等离子体治理技术.环境污染治理技术与设备,2003,4(1):58~62
    [17]Young S M, Insik N. Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal,2002,85(1):87~97
    [18]Krzyszt K, Michal M. Combined plasma-catalytic processing of nitrous oxide. Applied Catalysis B:Environmental,2001,30(3-4):233~245
    [19]曲虹霞,钟秦.NH3选择性催化还原NOx的实验研究.南京理工大学学报,2002,26(1):68~71
    [20]钟秦.选择性非催化还原法脱除NOx的实验研究.南京理工大学学报,2000,24(1):68~71
    [21]Iwamoto M. Recent progress in novel catalytic removal of nitrogen monoxide. Catalysis Today,1994, 22(1):583~596
    [22]Heck R M. Catalytic abatement of nitrogen oxides-stationary applications. Catalysis Today,1999, 53(4):519~523
    [23]宣小平,姚强,岳长涛,等.选择性催化还原法脱硝研究进展.煤炭转化,2002,25(3):26~32
    [24]Latimer W M. The oxidation states of the elements and their potential in aqueous solution. Emglewood Clifes:Prentice Hall,1952
    [25]孙锦宜.环保催化材料与应用.北京:化学工业出版社,2002
    [26]Voss C, Kruse N. Reaction-induced morphological changes of field emitter tips:NO on Rh and Pt. Applied Surface Seience,1995,88:134~139
    [27]Ogata A, Obuchi A, Mizuno K, et al. Active sites and redox properties of supported palladium catalysts for nitric oxide direct decomposition. Journal of Catalysis,1993,144(2):452~459
    [28]Wu R J, Chou T Y. Enhancement effect of gold and silver on nitric oxide decomposition over Pd/Al2O3 caralysts. Applied Catalysis B:Enviromental,1995,(6):105~116
    [29]周丽萍.Ag对Pd/Al2O3崔化分解NO反应的促进作用.工业催化,2004,12(8):42~45
    [30]李金兵,黄伟新.NO在Ag-Pt双金属表面上的吸附和分解.工业催化,2000,8(2):23~27
    [31]符若文,杜秀英.负载金属活性碳纤维对NO催化分解性能的研究.环境技术,2001,(5):41-45
    [32]Tang S H, Gao L Z. NO decomposition over carbon nanotubes(CNTs),Rh/CNTs and Rh/Al2O3. Journal of Natural Gas Chemistry,2001,10(3):196~202
    [33]Winter E R S. The catalytic decomposition of nitric oxide by metallic oxide. Journal of Catalysis,1971, 22(2):158~170
    [34]Hamada H, Kintaichi Y, Sasaki M, et al. Silver-promoted cobalt oxide catalysts for direct decomposition of nitrogen monoxide. Chemistry Letters,1990,19(7):1069~1071
    [35]Yamashita T, Vannice A. NO Decomposition over Mn2O3 and Mn3O4. Journal of Catalysis,1996, 163(1):158~168
    [36]张伟德,李基涛.NO在Er2O3/Bi2O3催化剂上的程序升温分解.高等学校化学学报,1998,19(6):961~963
    [37]Yang R T, Li W B, Chen N. Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate. Applied Catalysis A:General,1998,169(2):215~225
    [38]徐建昌,许行勇,李雪辉,等.NO直接分解催化剂研究.华南理工大学学报(自然科学版),2002,30(9): 27~29
    [39]宋崇林,沈美庆.稀土钙钛矿型催化剂LaBO3对NOx催化性能及反应机理的研究(Ⅱ)—催化剂表面结构及N2O催化分解反应机理.燃烧科学与技术,1999,5(2):186~191
    [40]Shimada H, Miyama S. Decomposition of nitric oxide over Y-Ba-CuO mixed oxide catalyst. Chemical Letters,1988,17(10):1797~1800
    [41]刘钰,杨向光,吴越,等.(类)钙钛石型催化剂上NO分解反应机理.科学通报,2004,49(23):2501~2503
    [42]赵震,杨向光,吴越La2-xSrxCuO4±λ系列催化剂的合成、表征及NO分解催化性能的研究.环境化学,1995,14(5):402~408
    [43]赵震,杨向光,吴越LnSrNiO4-λ系列复合氧化物的物化性质与对NO分解的催化性能.中国稀土学报,16(4):325~330
    [44]Tofan C, Klvana D. Direct decomposition of nitric oxide over perovskite-type catalysts Part Ⅰ. Activity when no oxygen is added to the feed. Applied Catalysis A:General,2002,223(2):275~286
    [45]肖轶,马骏.钴铝水滑石焙烧产物催化剂上NO的直接分解.催化学报,1999,20(5):495~498
    [46]朱君江,肖德海,吴越,等La1-xCexSrNiO4 (0≤x≤0.7)的合成、表征及NOx分解催化性能的研究.高等化学学报,2005,26(3):503~506
    [47]Iwamoto M, Furukawa H, Mine Y, et al. Copper(Ⅱ) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Chemical Communications, 1986, (16):1272~1273
    [48]Valyon J, Hall W K. Studies of the desorption of oxygen from Cu-Zeolites during NO decomposition. Jourmal of Catalysis.1993,143(2):520~532
    [49]王立,张菊.NO分解催化剂Cu/分子筛的ESR研究Ⅰ-水合铜分子筛的ESR研究.石油化工1998,27(10):713~715
    [50]Giuliano M, Carlo D, Achille F, et al. A comparison between Cu-ZSM-5, Cu-S-1 and Cu-mesoporous-silica-alumna as catalysts for NO decomposition. Applied Catalysis B:Environmental, 1999,20(1):67~73
    [51]方书农.模式识别预报双阳离子共交换Cu-M-ZSM-5分子筛对NO分解的催化活性.化学通报,1996,(2):6-11
    [52]Parvulescu V I, Grange P. NO decomposition over physical mixtures of Cu-ZSM-5 with zeolites or oxides. Applied Catalysis B:Environmental,2001,33(3):223~237
    [53]Yanping Z, Maria F S. Hydrothermal stability of cerium modified Cu-ZSM-5 catalyst for nitric oxide decomposition. Journal of Catalysis,1996,164(1):131~145
    [54]石川,宋志民,付迎,等.Ni2+改性的Cu-ZSM-5催化分解NO的性能.环境科学,2000,21(6):24~27
    [55]万家义,余林.Cu-M/ZSM-S (M=Ce,La,Ag)催化剂的表征及其对NO直接分解催化活性的研究.化学研究与应用,1999,11(1):8-12
    [56]Zhu Y X. Decomposition of NO on Supported CuCl. Joural of molecular catalysis,1999,13(4):265~269
    [57]Kustova M Y, Rasmussen S B, Kustov A L, et al. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts:Improved performance with hierarchical zeolites. Appl Catal B:Environmental,2006,67(1-2):60~67
    [58]Marina Y, Kustova M Y, Arkady K, et al. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 catalysts for direct NO decomposition. Catalysis Communications,2006,7(9):705~708
    [59]Yang R T, Chen N. A new approach to decomposition of Nitric oxide using sorbent/catalyst without reducing gas:use of heteropoly compounds. Industrial&Engineering Chemistry Resesrch,1994,33(4): 825~831
    [60]Moffat J B. Belanger R, et al. Removal of NO2 from gaseous streams by sorption and conversion on 12-Tungstophosphoric acid. Environmental Science&Technology,1995,29(6):1681~1685
    [61]Gomez M A, Pitchon V, Kiennemann A. Storage and reduction of lean-NOx by using H3PW12O40·6H2O supported on TixZ(1-xO4. Catalysis Today,2005,107(108):60~67
    [62]Gomez M A, Pitchon V, Kiennemann A. Removal of NOX from lean Exhaust gas by storage/reduction on H3PW12O40·6H2O supported on CexZr4-xO8. Environmental Science& Technology,2005,39(2): 638~644
    [63]Zhang Z L, Zhu L L, Ma J, et al. Temperature programmed desorption-mass spectrometry study of no desorption and decomposition by Titania supported 12-tungstophosphoric acid Reac. Kinetic and Catalysis Letter,2002,76(1):93~101
    [64]王睿,吴丹,赵大传,等.实现NOx吸附分解的杂多化合物催化新体系研究.现代化工,2006,26(Z2):120~123
    [65]Kannan S, Swamy C S. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites. Applied Catalysis B:Environmental,1994,3(2-3):109~116
    [66]Armor J N, Braymer T A, Farris T S, et al. Calcined hydrosulfites for the catalytic decomposition of N2O in simulated process streams. Applied Catalysis B:Environmental,1996,7(3-4):397~406
    [67]Kannan S, Swamy C S. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites. Catalysis Today,1999,53(4):725~737
    [68]刘钰,杨向光,王学中,等.以水滑石类化合物为前体的Co-M-A1(M=过渡金属)复合氧化物对催化消除NOx活性的研究.化学学报,1999,57(7):782~789
    [69]郭志强,倪哲明,俞卫华,等.二元金属类水滑石的合成及其作为前驱体对NOx的吸附性能研究.材料科学与工程学报,2004,22(6):100~102
    [70]Aryafar M, Zaera F, Isothermal kinetic study of the decomposition of nitric oxide over Rh (Ⅲ) surfaces. Journal of Catalysis,1998,175(2):316~327
    [71]Amirnazmi A, Benson J E, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum.Journal of Catalysis,1973,30(1):55~65
    [72]Chen N, Yang R T. Activation of nitric oxide by heteropoly compounds:structure of nitric-oxide linkages in tungstophosphoric acid with keggin units. Journal of Catalysis,1995,157(1):76~86
    [73]Zhang Z L, Zhu L L, Ma J, et al. Temperature programmed desorption-mass spectrometry studies of no desorption and decomposition by Titania supported 12-Tungstophosphoric acid. Reaction Kinetics and Catalysis Letters,2002,76(1):93~101
    [74]Herring A M, McCormick R L. In Situ Infrared study of the absorption of nitric oxide by 12-Tungstophosphoric acid. Jourmal of Physical Chemistry:B,1998,102(17):3175~3184
    [75]Herring A M, McCormick R L, Boonrueng S R. A Comparison of the Interaction of nitric oxide with the heteropolytungstic acids H3PW12O40, H0.5Cs2.5PW12O40, HMgPW12O40, H8SiW11O38, H4SiW12O40, and H10CoW12O42. Jourmal of Physical Chemistry:B,2000,104 (19):4653~4660
    [76]Hodjati S, Vaezzadeh K, Kiennemann A, et al. The mechanism of the selective NOX sorption on H3PW12O40·6H2O (HPW). Topics in Catalysis,2001,16-17(1-4):151~155
    [77]Bonardet L, Fraissard J, Moffat J B, et al. A comparative-study of the microporosity of the ammonium and Cesium salts of 12-Tungstophosphoric,12-Molybdophosphoric, and 12-Tungstosilicic acids by Xe129NMR. Journal of Catalysis,1995,151(1):147~154
    [78]Belanger R, Moffat J B. The interaction of nitrogen oxides with metal-oxygen cluster compounds (heteropoly oxometalates). Journal of Molecular Catalysis A:Chemical,1996,114(1-3):319~329
    [79]Dandl H, Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. Applied Catalysis A:General,1998,168(2):261~268
    [80]Ttout B L, Chakraborty A K, Bell A T. Local Spin Density Functional Theory Study of Copper Ion-Exchanged ZSM-5. Jouranal of Physical Chemistry,1996,100(10):4173~4179
    [81]Iwamoto M M, Hamada H H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes.Catalysis Today,1991,10 (1):57~71
    [82]Hall W K, Li Y. Catalytic decomposition of nitric oxide over Cu-zeolites. Journal of Catalysis,1991, 129(1):202~215
    [83]Iwamoto M, Yahiro H. Removal of nitrogen monoxide through a novel catalytic process decomposition on excessively copper ion exchanged ZSM-5 zeolites. Journal of Physical Chemistry, 1991,95:3727~3730
    [84]Giamello E, Murphy D, Magnacca G, et al. The interaction of NO with copper ions in ZSM5:An EPR and IR investigation. Jourmal of Catalysis,1992,136 (2):510~520
    [85]Aylor A W, Larsen S C, Reimer J A, et al. An Infrared Study of NO Decomposition over Cu-ZSM-5. Journal of Catalysis,1995,157 (2):592~602
    [86]关乃佳,单学蕾Cu-ZSM-5/(?)青石整体式催化剂上NO的吸附态及分解反应机理.催化学报,2001,22(3):245~249
    [87]Kucherov A V, Shigapov S C, Ivanov A A, et al. Stability of the Square-Planar Cu2+Sites in ZSM-5: Effect of Preparation, Heat Treatment, and Modification. Journal of catalysis,1999,186 (2):334~344
    [88]Yokomichi Y, Ohtsuka H, Tabata T, et al. Theoretical study of NO decomposition on Cu-ZSM-5 catalyst models. Catalysis Today,1995,23(4):431~437
    [89]孙克勤,钟秦.火电厂烟气脱硝技术及工程实例.北京:化学工业出版社,2006
    [90]Dedecek D M, Wichterlova B. Role of hydrated Cu ion complexes and aluminum distribution in the framework on the Cu ion siting in ZSM-5. Journal of Physical Chemistry:B,1997,101(49):10233 ~10240
    [91]石川,赵阳.NO在Cu-ZSM-5上的催化分解.辽宁城乡环境科技,2000,20(1):15~17;
    [92]Hidenori Y. Copper ion-exchanged zeolite catalysts in deNOX reaction. Applied Catalysis A:General, 2001,222 (1):163~181
    [93]方书农,伏义路Cu-Me-ZSM-5分子筛中共交换双阳离子的作用.化学物理学报,1995,8(4):368~374
    [94]方书农,伏义路Cu-ZSM-5分子筛中铜的超计量交换和铜氧桥的形成.催化学报,1995,16(3):208~212
    [95]Parvulescu V 1, Grange P, Delmon B. NO decomposition over physical mixture of Cu-ZSM-5 with zeolite or oxides. Applied Catalysis B:Environmental,2001,33(3):223-237
    [96]Bernhardt L T, Arup K C, Alexis T B. Local Spin Density Functional Theory Study of Copper Ion-Exchange ZSM-5. Journal of Physical Chemistry,1996,100 (10):4173~4179
    [97]Furusawa T, Lefferts L, Seshan K, et al. Comparison of Ag/Al2O3 and Ag-ZSM-5 catalysts for the selective reduction of NO with propylene in the presence of oxygen. Applied Catalysis B: Environmental,2003,42(1):25~34
    [98]Rehren C, Muhler M, Bao X, et al. The interaction of silver with oxygen:an investigation with thermal desorption and photoelectron spectroscopy. Zeitschrift Fur Physikalische Chemie,1991,174(1): 11~52
    [99]包信和,宗保宁,腾加伟,等.银催化剂用于氮氧化物的还原和分解.中国科学(B辑),1999,29(2):118~128
    [100]高玉英,万家义,袁永明,等Cu-Ce-ZSM-5催化剂的TPR及动力学研究.化学研究与应用,2000,12(2):137~141
    [101]Beutel T, Adelman B, Sachtler W M H, et al. Potential reaction paths in NOX reduction over Cu-ZSM-5. Catalysis Letters,1996,37(3~4):125~130
    [102]Baerlocher C, Mccusker L B, Database of zeolite structures.2002, http://www.iza-structure.org/databases/
    [103]辛勤.固体催化剂研究方法.北京:科学出版社,2004
    [104]Yasunori Y. Theoretical study of NO decomposition on Cu-ZSM-5 catalyst models using the denity functional method. Journal of Physical Chemistry,1996,100(34):14424~14429
    [105]Tomasic V, Gomzi V, Zrncevic S. Catalytic reduction of NOX over Cu/ZSM-5 catalyst. Applied Catalysis B:Environmental,1998,18(3-4):233~240
    [106]Ziegler T. Approximate density functional theory as a practical tool in molecular energies and dynamics. Chemical Reviews,1991,91(5):651~667
    [107]Gushing B L, Kolesniehenko V L. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews,2004,104(9):3893~3946
    [108]Parr R, Yang W. Density-functional theory of atoms and molecules. Oxford:Oxford University Press,1989
    [109]Neurock M, Perspeectives on the first principles eluciation and design of active sites. Journal of Catalysis,2003,216(1-2):73~88
    [110]Rattanasumrit A, Ruangpornvisuti V. Theoretical study of Fenversion reactions of ketone to hydroxyalkylene in cluster models of zeolites H-ZSM-S. Journal of Molecular Catalysis A: Chemical,2005,239(1-2):68~75
    [111]Frisch M J, Rucks G W, Schlegel H B, et al. Gaussian03, Revision C.02. Wallingford CT:Gaussian, Inc,2004
    [112]Froese R D J, Morokuma K. Accurate calculations of bond-breaking energies in C60 usingthe three-layered ONIOM method. Chemical Physical Letter,1999,305(5-6):419~424
    [113]Froese R D J, Morokuma K. IMOMO-G2MS approaches to accurate calculations of bond dissociation energies of large molecules. Jourmal of Physical Chemisty A,1999,103(31): 4580~4586
    [114]Vreven T, Morokuma K. The accurate calculation and prediction of the bond dissociation energies in a series of hydrocarbons using the IMOMO (integrated molecular orbital plus molecular orbital) methods. Journal of Chemical Physics,1999,111(19):8799~8803
    [115]Vreven T, Morokuma K. Prediction of the dissociation energy of hexaphenylethane using the ONIOM (MO:MO:MO) method. Journal of physical Chemistry A,2002,106(25):6167~6170
    [116]曾昭槐.选择性催化.北京:中国石化出版社,1994
    [117]Iwamoto M, Yahiro H, Tanada K. et al. Removal of nitrogen monoxide through novel catalytic process decomposition on excessively Copper-ion-exchanged ZSM-5 zeolites. Journal of Physical Chemistry,1991,95(9):3727~3730
    [118]Liu D, Robota H J. In situ XANES characterization of the Cu oxidation state in Cu-ZSM-5 during NO decomposition catalysis. Catalysis Letter,1993,21(3-4):291~301
    [119]Li Y, Hall W K. Catalytic decomposition of nitric oxide over Cu-zeolites. Journal of Catalysis, 1991,129(1):202~215
    [120]Iwamoto M, Yahiro H, Mizuno N, et al. Removal of nitrogen monoxide through a novel catalytic process 2:Infrared study on surface reaction of nitrogen monoxide adsorbed on Fepper ion-exchanged ZSM-5 zeolites. Jourmal of Physical Chemistry,1992,96(23):9360~9366
    [121]Sarkany J, Itri J, Sachtler W M H. Redox chemistry in excessively ion-exchanged Cu/Na-ZSM-5. Catalysisi Letters,1992,16(3):241~249
    [122]Sarkany J, Sachtler W M H. Redox chemistry of Cu/NaZSM-5:Detection of cuprous ions by FTIR. Zeolites,1994,14(1):7~11
    [123]Giamello E, Murphy D, Magnacca G, et al. The interaction of NO with Copper ions in ZSM-5:An EPR and IR investigation. Journal of Catalysis,1992,136(2):510~520
    [124]Valyon J, Hall W K. Studies of the surface species formed from nitric oxide on Copper zeolites. Journal of Physical Chemistry,1993,97(6):1204~1212
    [125]Valyon J, Hall W K. Effects of reduction and reoxidation on the infrared spectra from Cu-Y and Cu-ZSM-5 zeolites. Journal of Physical Chemistry,1993,97(27):7054~7060
    [126]Spoto G, Bordiga S, Scarano D, et al. Well defined CuⅠ(NO), CuⅠ(NO)2 and CuⅡ(NO)x (X=O-and/or NO2-) Complexes in CuI-ZSMS prepared by interaction of H-ZSM5 with gaseous CuCl. Catalysis Letters,1992,13(1-2):39~44
    [127]Spoto G, Zecchina A, Bordiga S, et al. Cu (Ⅰ)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl:Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide. Applied Catalysis B:Environmental,1994,3(2-3):151~172
    [128]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A,1988,38(6):3098~3100
    [129]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti Correlation-energy formula into a functional of the electron density. Physical Review B,1988,37(2):785~789
    [130]Van K H, Jansen J C, Van B H. The monoclinic framework structure of zeolite H-ZSM-5: Comparison with the orthorhombic framework of as-synthesized ZSM-5. Zeolites,1990,10(4): 235~242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700