用户名: 密码: 验证码:
基于模拟月壤的轮壤关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月面环境下松软月壤是月球车车轮滑转、下陷而停滞不前的主要原因。因此,研究驱动轮与月壤间相互作用方式及其变化规律,对于提高月面探测车辆的通过性,从而保障月球车工作的可靠性具有重要意义。
     本文以火山灰和石英砂为主要原料制备了三种用于月面车辆试验用模拟月壤,利用研制的月壤—车轮土槽测试系统,对五种不同结构的月球车驱动轮在三种不同介质上的牵引特性进行对比试验,并分析不同车轮结构下模拟月壤的破坏失效形式、不同介质破坏形式、轮刺坑形状以及介质和车轮结构对车轮牵引性能的影响规律。分析了原始状态下模拟月壤圆锥指数(CI)分布情况,探究载荷及整备条件对CI值的影响规律,提出试验前模拟月壤一致性处理方法,在此基础上进行了被试刚性轮压痕试验和车轮压实土槽试验,根据车轮压痕面积、压痕深度以及车轮结构参数和行驶参数探讨车轮对模拟月壤CI值的影响,并计算了车辆圆锥指数作为评价月球车整车通过性指标和土壤—车轮系数作为评价月壤可行驶性指标。采用离散元方法细观分析了微重力环境下月壤力学参数变化对贯入阻力的影响规律和驱动轮结构参数,包括轮径、轮刺高度、轮刺宽度和轮刺数量对牵引性能的影响规律,并建立了车轮与模拟月壤相互作用有限元与离散元多尺度计算模型,在保证模拟精度的基础上,探讨提高模拟程序运算效率的途径。
     以上研究为月面探测车辆的驱动轮设计优化、模拟月壤一致性处理、原理样机通过性验证试验场地整备提供基础数据和测试方法。
There are three parts in China lunar exploration namely detection around the moon, dropping to the moon surface and returning to the earth with samples respectively, and the lunar rover is an important equipment especially for the second part in Chang e lunar exploration project. Recently some academies and universities have developed different lunar rovers in China but the traffic ability research and the research on interaction between wheel and lunar soil is still at its infancy. Past research focused on the following parts: first, the kinds of lunar soil simulant are very single in terramechanics on moon making it hard to provide sufficient data in designing the walking mechanism of lunar rover, second, most researches are on investigation of the traction of single driving wheel, thus the lunar soil factor is ignored in the interaction between wheel and lunar soil, third, the research on how to ensure the lunar soil uniformity in every experiment is not done, and the research on the influence of structure parameters and driving parameters to lunar soil cone index is also not done. Overally, the evaluation standard on trafficability characteristic of the whole lunar rover is not established. So there is need for a further study aiming at the aforementioned problem. This work will complement well research on the interaction between wheel and lunar soil.
     The authors are grateful for the financial support by the Key Project of Chinese Ministry of Education (No. 107035) and the Key Project of Chinese National Natural Science(No. 50875107), the Corporative Project with The aerospace system engineering Shanghai and China Aerospace Science and Technology Corporation, and the 985 Project of Jilin University.
     The research contents included the following aspects. First, the research simulates three kinds of lunar soil for the lunar terramechanics test, develops the soil bin equipment and designs five kinds of wheels for lunar rover, and based on the soil bin test in laboratory, research on the traction ability of the lunar rover is done. Second, the research analyses the cone index of lunar soil simulant. It includs the distribution of cone index of lunar soil simulant in original state, the influence of soil treatment to the cone index of lunar soil simulant such as shaking press soil velocity, loosing soil velocity and blading soil velocity, the influence of structure parameters and running condition of rigid wheel to cone index of lunar soil simulant. Third, the research provids mobility index and vehicle cone index as evaluation of lunar rover passing ability, and the clay-tire numeric as lunar soil traffic ability evaluation. Finally, the research uses the DEM (Discrete Element Method) software to simulate soil bin test and observes the lunar soil particles changing under micro-gravity. The test includes two parts. First, the influence of lunar soil mechanical parameters to penetration resistance is analyzed based on the result of cone penetration test. Second, the influence of driving wheel’s parameters structure to traction property. The DEM simulation test reveals the relationship between wheel and lunar soil under micro-gravity. The continuum/discontinuum multiscale analytical system of the interaction between rigid wheel and lunar soil by coupling discrete elements and matrix module is established based on it, and it has the much higher computation efficiency.
     Three lunar soil simulants are used during the test. They are named as follows: Soil sample1: The basic material of this lunar soil simulant is the eruption that was mined from Jingyu district, Jilin province. This lunar soil simulant is red, powdery after drying and milling. Soil sample2: this lunar soil simulant is prepared by Jilin University and is black. Soil sample3: quartz sand that was mined from Shouling district, Hebei province. It can be used in wear experiment, and is white. The parameters of soil sample 2 are within the expected range of lunar soil after analyzing, and are close to those of JSC-1.
     The research has analyzed how to ensure that the lunar soil is uniform in every experiment. The test result shows that the cone index of lunar soil simulant is dispersed, and the fluctuation range of cone index ranges by 20%. The cone index of lunar soil simulant is divided into three sections: surface stable section, media fluctuation section and deep stable section. The loosing soil velocity and blading soil velocity have influence on cone index of lunar soil simulant. The length of surface stable section increases with the growth of blading soil velocity and loosing soil velocity, and this phenomenon is explained from two aspects: gravity and particle fluidity.
     Through experiment, the influence of quasi-static load to the length and the average cone index value of surface stable section. The regression equation was established, which is y = 0. 00327x+9.12and y = 0. 037x+773.28, the significance levels of two equations are 0.01, and confience level is 99%.
     The passing ability of six-wheeled suspension system lunar rover is analyzed by calculating mobility index and vehicle cone index, and the test result shows that the six-wheeled suspension system lunar rover has higher passing ability with teeth-wheel. The test results show that with the growth of contact area between wheel and lunar soil, the compact is decreased to luar soil. it can reduce the rolling resistance, and the grouse pass through the weak surface of lunar soil, and interact with deep particle, which can improce thrust force.
     Through caculating the tire-clay factor of stimulant lunar soil and sandy, the regression equation is established, which is y = 0 .183lnx?0.376and y = 0. 101lnx?0.202, the significance levels of two equations are 0.05, and confience level is 95%.the test result shows that the traction performance of wheel when it passes soil sample 2 is higher than soil sample 3. The drawbar coefficient of wheel is to increase with the growth of the clay-tire numeric, and increasing range is from 27.3% to 68.4% when the clay-tire is under 80.
     The research introduces the DEM to terra-mechanics because the DEM is more feasible and superior to the FEM in simulating the interaction between the wheel and the lunar soil. The penetration test is simulated by the PFC2D, too. The simulant result is different from soil bin test result, which could be caused by the difference between 2D and 3D to simulant test and the lunar soil simulant particles in the soil bin are affected by particle fluidity and earth gravity. This simulant test also studies the influence of the friction coefficient, density and penetration velocity to penetration resistance. The result of the simulation test shows that penetration resistance increases with the increase of the friction coefficient, density and penetration velocity. The fiction coefficient changes particles friction force and density changes the particle number contact with hardness instrument. The penetration velocity affects the moving time of hardness instrument, which causes the increase of the penetration force, and that causes obvious difference with soil bin test result, but it is limited by PFC2D.
     Soil–wheel interaction especially soil deformation caused by the wheel motion is investigated by PFC2D simulation. Characteristics of lunar soil deformation are summarized focusing on the behavior of displacement and distribution of velocity. The results show that the force on the wheel concentrates in the grouser of wheel, and it is described by thrust force in horizontal direction and lifting force in vertical direction. The sinkage of wheel is mainly caused by grouser effect, and it contains two aspects: wheel-spin sinkage and penetration sinkage. Shapes of the velocity distribution in simulation have onward flow area and back flow area, which is divided by critical point. The relative velocity of wheel has the same direction with the horizontal velocity of particles before critical point that causes horizontal force to push lunar soil particles forward, and the direction is opposite behind critical point that adds thrust to push lunar soil particles backward. The influence of wheel structure parameters to traction performance of wheel is studied by experimental optimum design. The test results show that the DP increases with the increase of wheel diameter, and sinkage reduces. The DP and sinkage increase with the increase of the length and width of grouser. The DP and sinkage have cyclical fluctuation with the increase of number of grouser. The wheel structure parameters are optimized by orthogonal test. The results show that increase of wheel diameter has good effect on improving the DP, and it determins the factors and optimal combination that affecting DP, which is A>B>C>D and A3B3C1D2. According to optimization test, the DP can reach up to 135.21N when the wheel diameter is 300mm, the wheel height is 20mm, the wheel width is 5mm, and the number of wheel grouser is 18.
     Based on DEM software PFC2D?, the continuum/discontinuum multiscale analytical system of the interaction between rigid wheel and lunar soil by coupling discrete elements and matrix module is proposed. Through comparing particles’equilibrium time using the multiscale model and the DEM model when balancing stress and dissipating energy among particles, it can be seen that the multiscale numerical model can greatly save time. Through a kind of driving wheel-soil bin test using two numerical models, and comparing the simulation results with the soil-bin test results, the high accuracy and the computation efficiency of the multiscale model are validated.
引文
[1]栾恩杰.中国的探月工程-中国航天第三个里程碑[J].中国航天,2007(2):3-7.
    [2]欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004(3):351-358.
    [3]叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学,2006,8(10):13-18.
    [4]欧阳自远.月球探测推动科学的创新与发展[J].科学中国人,2007(1):6-12.
    [5]梁斌,王巍,王存恩.未来我国发展月球车的初步设想[J].中国航天,2003(1):29-33.
    [6]李舜酩,廖庆斌.星球探测车的研发状况综述[J].航空制造技术,2006(11):68-71.
    [7]刘晓川,月球探测关键技术的发展分析[J].中国航天,2004(7):39-44.
    [8]任露泉,贾阳,李建桥等.月球车行走性能地面模拟试验方案设想[C].中国宇航学会深空探测技术专业委员会第二届学术年会,北京,2005(10):458-466.
    [9]邹猛,李建桥,任露泉等.月面探测车辆牵引通过特性研究[J].深空探测研究.2007,5(3):16-21.
    [10] Hayati S,Volpe R,Backes P,Balaram J,Welch R,Ivlev R,Tharp G,Peters S,Ohm T,Petras R,L aubach S.The Rocky 7 rover:a Mars science craft prototype[C].Proceedings of IEEEInternational Conference on Robotics and Automation,1997,2485-2464.
    [11] Klaus Schilling,Christoph Jungius.Mobile robots for planetary exploration[C].Espoo,Finland:IFAC Intelligent Autonomous Vehicles, 1995,109-119.
    [12] A L Kemurdjian. Planet rover as an object of the engineering design work[C]. Leuven Belgium:P roceedings of the 1998 IEEE International Conference on Robotics&A utomation,1998,140-145.
    [13] Iagnemma K,Shibly H,Rzepniewski A,etc.Planning and control algorithms for enhanced Rough terrain rover mobility[C].Proceeding of the 6th international Symposium on Artificial Intelligence and Robotics&Automation in Space:ISAIRAS 2001,Canadian Space Agency,StHubert,Quebec, Canada,2001,18~22.
    [14] Farritor S,Hacot H,Dubowsky S. Physics based planning for planetary exploration[C].Proceedings of the 1998 IEEE International Conference on Robotics and Automation:1998.278~283.
    [15]陈百超.月球车悬架研究及动力学仿真[D].长春:吉林大学,2006.
    [16]А·Л·克姆尔吉安[M].NLAHETOXOG.
    [17] April.太阳能驱动月球车—探测阿波罗登月点[EB/OL].(2009-07-27 ). http://www.farmer.com.cn/news/kjxw/200907/t20090727_471379.htm
    [18] Yasuharu Kuniia,Yoji Kurodab,Takashi Kubotac.Developmentofmicro-Manipulator fortele-Science by lunar rover:Micro5[J].Acta Astronautical. 52(2003)433–439.
    [19] Alex Ellery.Environment–robot interaction—the basis for mobility in Planetarymicro-rovers[J].Robotics and Autonomous Systems,2004,27: 1-10.
    [20]邓宗全,李运堂,毕贞法,陈明,于卫真.双轮并列式移动车[P]:中国专利,02274927.6,2003-8-13.
    [21]邱雪松,邓宗全,胡明.月球探测车可展开式悬架的设计分析[C].中国空间技术研究院总体部.中国宇航学会深空探测技术专业委员会第二届学术会议论文集,2005:436-439.
    [22]刘方湖,陈建平,马培荪,姚沁,王美龄.五轮月球机器人及其特性分析[J].机器人,2001,15(04):15-18.
    [23]邓宗全,高海波,胡明,王少纯.行星越障轮式月球车的设计[J].哈尔滨工业大学学报,2003,35(2):203-209.
    [24]高海波,邓宗全,胡明,王少纯,胡明.行星轮式月球车动力学分析[J].哈尔滨工业大学学报,2005,37(1):32-37.
    [25]郭一江.上海交通大学启动计划加速研制月球车[EB/OL].(2005-04-05) http://tech.163.com/05/0405/10/1GIMKU5U00091537.html
    [26]李翠兰,马培荪,高雪官,曹志奎.一种新型的可被动适应崎岖表面的六轮月球漫游车[J].传动技术,2005,19(1):9-13.
    [27]汪新,杨栋,许旻,范明聪,吴月华,杜华生,杨杰.高机动越障机器人攀登机构的关键问题解析[J].中国科学技术大学学报,2005,35(4):506-511.
    [28]邹艳波.六轮摇臂式月球车悬架的参数化分析及优化[D].哈尔滨:哈尔滨工业大学,2007.
    [29]邓宗全,张朋,胡明,,高海波.轮式行星探测车移动系统研究状况综述及发展态势[J].机械设计,2008,25(1):1-5.
    [30]徐贺,谭大伟,张振宇.崎岖地面上移动机器人构型发展综述[EB/OL].中国科技论文在线.(2009-1-28).http://www.paper.edu.cn
    [31]刘方湖,马培荪,陈建平.星球探测自位机器人的研究现状和发展趋势[J].机械设计,2003,20(3):1-3.
    [32]刘玲.基于智能计算的移动机器人路径规划方法研究[D].湖南:湖南大学,2007.
    [33] Bekker M.G.地面-车辆系统导论[M].北京:机械工业出版社,1978.
    [34] J. Y. Wong.地面车辆原理[M].北京:机械工业出版社,1985.
    [35]庄继德.汽车通过性[M].长春:吉林人民出版社,1980.
    [36]庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [37]刘聚德.车辆沙地行驶理论[M].北京:机械工业出版社,1996.
    [38] M.Bekker.陆用车辆行驶原理[M].北京:工业出版社,1962.
    [39] J.Y. Wong, Wei Huang.”Wheels vs. tracks”-A fundamental evaluation from thetraction perspective [J]. Journal of Terramechanics, 2006, 43: 27-42.
    [40] A. Falk. Advanced mobility in difficult terrain [J]. Journal of Terramechanics, 2004, 41: 101-111.
    [41] Taylor JH, Burt E, Bailey AC. Effect of total load on subsurface soil compaction [J]. Trans ASAE, 1980, 23(3):568-70.
    [42] Alakukku L, Elonen P. Finnish experiments on subsoil compaction by vehicles with high axle load [J]. Soil till Res., 1994, 29(3):15-25.
    [43] Yoshida. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor[C]. Abstract of Space Resources Roundtable II.G olden, U SA, 2000.
    [44] Bernstein R. Problems of the experimental mechanics of motor ploughs[M]. Der motorwagen, 1913, 16.
    [45] Miklethwait E W E. Soil mechanics in relation fighting vehicles[M]. Military coll. of science, 1944.
    [46] Bekker M G. Theory of land locomotion[M]. The Univ. of Michigan press, Ann Arbor, Michigan, 1956.
    [47] Chen Bin, Li Jianqiao, Zhangrui, Li Yinwu, Zou Meng. Study on the Pressure-sinkage Characteristics of Simulanted Lunar Soil[C]. Proceeding of the 8th International Conference on Measurement and Control of Granular Materials, Shenyang, China, 2009:428-434.
    [48] Z.Janosi, Hanamoto B. Analytical Determination of Drawbar Pull as a Function of Slip for Tracked Vehicle in Deformable Soils[C]. Proc.1st.Conf.of ISTVS,Torino,1961.
    [49] J. Y. Wong, Reece A. Prediction of rigid wheel performance of driven rigid wheels, Part I [J]. Journal of Terramechanics, 1967; 4(1):81-98.
    [50] Chen Bin, Li Jian-qiao, Zou Meng, Li Yin-wu Liang Wei-kui.the Pressure-sinkage Characteristics of the Stimulant Lunar Soil[C]. 16th International Conference of the International Society for Terrain-Vehicle Systems.Turin, 2008: 144-149.
    [51] Bekker M G. Introduction to Terrain-Vehicle[M]. The Univ. of Michigan Press, Ann Arbor, Michigan, 1969
    [52] Chen Bin, Li Jianqiao, Zou Meng. Research on Traction Force Characteristics of the Rigid Wheel on the Loose Sand Bsaed by Orthogonal Experiment[C]. Proceedings of the International Agricultureal Engieering Conference, Thailand, 2007:Rd358.
    [53] Perumpral J V, Lilzedahl J B. and Perioff W H. A Numerical Method for Predicting the Stress Dotribution and Soil Deformation under a Tractor Wheel. Journal of Terramechanis,8(1),1971.
    [54] J.Y.Wong, J.R.Radforth, J.Preston-Thomas. Some further studies on the mechanical properties of muskeg in relation to vehicle mobility[J].Journal of Terramechanics, 1982, (2).
    [55] J.Y.Wong, J Preston Thomas. On the characterization of the pressure-sinkage relationship of snow covers containing on ice layer [J]. Journal of Terramechanics,1983, (1).
    [56] J.Y.Wong. Application of the computer simulation model NTVPM-86 to the development of a new version of the infantry fighting vehicle ASCOD [J]. Journal of Terramechanics. 1995, 32(1):53-61.
    [57] Karafiath L L, Nowatzki E A. Soil Mechanics for Off-Road Vehicle Engineering [M]. Trans Tech Publications, Clausthal,Germany,1978.
    [58]陈秉聪.土壤车辆系统力学[M].北京:农业机械出版社,1981.
    [59]张克健.车辆地面力学[M].北京:国防工业出版社,2002.
    [60]李杰,庄继德,魏东等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J].吉林大学学报,2006,36(6):510-514.
    [61]李杰,庄继德,季学武.车辆行驶的沙漠沙承压特性的研究[J].兵工学报,1999,20(1) :62-64.
    [62]李杰,庄继德,赵旗等.汽车地面力学中土的弹性本构模型研究[J].汽车技术,1997(1):31-35.
    [63]赵旗,徐颖,李杰,郭骁,车辆行驶工况下的沙漠沙本构特性模型的建立[J].吉林大学学报,2003,33(1):42-45.
    [64]魏东,洪涛,李杰,裘熙定,庄继德.车轮重复通过时新疆沙漠沙土力学特性的试验研究[J].吉林工业大学学报,27(2):1-6.
    [65]樊慧文,赵六奇.轮胎与土壤相互作用的数学模型和实验研究[J].清华大学学报,1997,37(11):28-31.
    [66]季学武,樊慧文,杨延辰.轮胎沙土相互作用的预测模型及试验研究[J].农业机械学报,2000,31(3):8-14.
    [67]左艳蕊,宗志坚,程源,樊世超.车辆地面力学土壤动力学建模和应用[J].兰州大学学报,2009,45(5):110-118.
    [68] Richter L, Ellery A, Gao Y et al. A Predictive Wheel-Soil Interaction Model for Planetary Rovers Validated in Test beds and Against MER Mars Rover Performance Data[C]. 10th European Conference of the International Society for Terrain-Vehicle Systems. Budapest, Hungary October 3– 6, 2006.
    [69] Sachiko Wakabayashi, Hitoshi SATO, Shin-Ichiro NISHIDA. Design and Mobility Evaluation of a Tracked Lunar Vehicle[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Alaska, 2007.
    [70] John. J. Caruso, Phillip B. Abel, James J. Zakrajsek. Gravity Effects on Lunar Mobility and the Human-Robotic Systems Program[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, Reno, Nevada..
    [71] Hayato Fujii ,Akira Oida, Hiroshi Nakashima, Juro Miyasaka, Masatoshi Momozu. Analysis of Interaction between Lunar Terrain and Treaded Wheel by Distinct ElementMethod[C].14th International Conference of the International Society for Terrain-Vehicle Systems Vicksburg, MS USA October 20– 24, 2002.
    [72] John. J. Caruso, Phillip B. Abel, James J. Zakrajsek, Michael J. Krasowski. and Lawrence C. Greer. Gravity Effects on Lunar Mobility and the Human-Robotic Systems Program[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit 8 - 11 January 2007, Reno, Nevada.
    [73] Kimberly S. Tyree. Robotic Assistance for Human Planetary and Lunar Exploration[C]. Space 2004 Conference and Exhibit 28-30 September 2004, San Diego, California.
    [74] Jerry B. Graham. Prospecting Rovers for Lunar Exploration [M]. IEEEAC paper #1579, Version 4, Updated January 17, 2007:1-11.
    [75] Berkelman,P, M. Chen, J. Hancock, M. Martin, A. Mor, E. Rollins, A. Sharf, J. Silberman, T. Warren, D.Bapna. Design of a day/night lunar rover [M]. the robotics institute Carnegie melllon university, 1995.
    [76] Vivake Asnani , Damon Delap , Colin Creager. The development of wheels for the Lunar Roving Vehicle [J]. Journal of Terramechanics 46 (2009) 89–103.
    [77] Takahisa Shigematsu, Tatsuro Muro, Takeshi Ohchi, Koji Shimooka. Optimal Tread Design of a Moon Rover Running on Lunar Terrain[C]. Proceedings of the 15th International Conference of the ISTVS Hayama, Japan, September 25 to 29, 2005.
    [78] Kojiro Iizuka, Hiroshi Kanamori, Takashi Kubota. Experimental Study on Rover Mobility on Lunar Simulant Terrain[C]. Proceedings of the 15th International Conference of the ISTVS Hayama, Japan, September 25 to 29, 2005.
    [79] Kojiro Iizuka, Yoshinori Sato, Yoji Kuroda, Takashi Kubota. Experimental Study of Wheeled Forms for Lunar Rover on Slope Terrain[C]. AMC’06-Istanbul, Turkey 2006 IEEE: 266-271.
    [80]弓永涛,高峰,李雯,孙鹏.刚性车轮月面牵引通过性的模型试验[J].北京航空航天大学学报,2009,35(5):649-652.
    [81]丁亮,高海波,邓宗全,刘吉成,陶建国.基于应力分布的月球车轮地相互作用地面力学模型[J].机械工程学报,2009,45(7):49-55.
    [82]禹鑫燚,高海波,邓宗全.新型八轮双摇杆摇臂扭杆月球车悬架设计[J].哈尔滨工程大学学报,2009,30(2):160-165.
    [83]邹猛,李建桥,李因武,贾阳,马文哲.刚性轮—月壤相互作用预测模型及试验研究[J].农业工程学报,2007,23(12):119-123.
    [84]李建桥,邹猛,李因武,贾阳,彭剑波.驱动轮结构参数对月球车牵引性能影响研究[J].深空科学学报.2008,28(4):335-339.
    [85]欧阳自远.月球科学概论[M].中国宇航出版社,2005.
    [86]郑永春,欧阳自远,王世杰.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [87]邹永廖,欧阳自远,徐琳等.月球表面环境特征[J ].第四纪研究,2002,22(6):533-539.
    [88] M.B. Duke, P. Eckart, in: P. Eckart (Ed.), the Lunar Base Handbook, the McGraw Hill Companies Inc[M]., 1999.
    [89] Laul J C, Papike J J. The lunar regolith: Comparative chemistry of the Apollo sites. In: Lunar and Planetary Science Conference[C].1980.
    [90] Heiken G.H., Vaniman D.T., French B.M., a User's Guide to the Moon [M]. Cambridge University Press. 1993.
    [91] Carrier WD, III. 1973. Lunar Soil Grain Size Distribution [M]. Moon 6:250.
    [92] Gromov V. 1999. Physical and Mechanical Properties of Lunar and Planetary Soils [J]. Earth Moon and Planets 80:51-72.
    [93] McKay DS, Fruland RM, Heiken GH. Grain size and the evolution of lunar soils [M]; Houston.Pergamon Press. 1974 p 887-906.
    [94] Heywood H. Particle size and shape distribution for lunar fines sample 12057, 72 [M]. MIT Press. 1971 p 1989-2001.
    [95] Heiken GH, McKay DS, Frularld RM. 1973. Apollo 16 Soils: Grain Size Analyses and Petrography. Geochimica et Cosmochimica Acta [C] (Proc of 4th Lunar Science Conf) 1(Suppl. 4):251-265.
    [96] Bin Chen, Jianqiao Li, Rui Zhang, Yinwu Li. Pressure-sinkage Model and Experimental Research of Interaction between Rigid-wheel and Simulant Lunar Soil[C]. Proceeding of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China,2009: 1328-1333.
    [97] E. Robens, A. Bischoff, A. Schreiber. Investigation of surface properties of lunar regolith: Part I [J]. Applied Surface Science 253 5710 (2007) 5709–5714.
    [98] Carrier WD, Olhoeft GR, Mendell W..Physical properties of the lunar surface. In: Heiken GH, Vaniman DT, French BM, editors. Lunar Source book. New York [M]: Cambridge Univ. Press. 1991 P 475-594.
    [99] Cadenhead DA, Brown MG, Rice DK, Stetter JR. Some surface area and porosity characterizations of lunar soils[J]; 1977 January 1, 1977: 1291-1303.
    [100] McKay D, Heiken G, Basu A, Blanford G, Simon S. The lunar regolith [M]. New York: Cambridge Univ. Press. 1991 p 285-356.
    [101] Lucey PG, Blewett DT, Taylor GJ, Hawke BR. Imaging of lunar surface maturity [J]. J Geophys Res-Planets 2000, 105(E8):20377-20386.
    [102] Korotev RL, Morris RV. 1993. Composition and maturity of Apollo 16 regolith core 60013/14[J]. Geochim Cosmochim Acta 57:4813-4826.
    [103] R.B. Gammage, H.F. Holmes, Blocking of the water-lunar fines reaction by air and water concentration effects, in: Proceedings of the Sixth Lunar Science Conference[C], 1975, pp. 3305–3316.
    [104]欧阳自远,邹永廖,李春来等.月球某些资源开发利用前景[J].地球科学-中国地质大学学报,2002,27(9):498-503.
    [105] H.F. Holmes, R.B. Gammage. Interaction of gases with lunar materials: revised results for Apollo 11, in: Proceedings of the Sixth Lunar Science Conference[C], 1975:3343–3350.
    [106] D.A. Cadenhead, et al., Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments, in: Proceedings of the Third Lunar Science Conference[C] (Supplement 3, Geochimica ET Cosmochimica Acta), M.I.T. Press, 1972:2243–2257.
    [107]黄本诚,马有礼.航天器空间环境试验技术[M].北京:国防工业出版社,2002.
    [108]郑永春.模拟月壤研制与月壤的微波辐射特性研究[D].中国科学院地球化学研究所,中国科学院研究生院,2005.
    [109]郑永春,王世杰等.模拟月壤研制的初步计划[J].空间科学学报,2005,25(1):70-75.
    [110] Masami N et al. The moon as a beach of fine powders in lunar regolith simulant Materials Workshop[R].Madison: Marshall Space Flight Center,2005.
    [111] Rorald C A. he Effects of Lunar Dust on EVA Systems during the Apollo Missions. In:Lunar Regolith Simulant Materials Workshop[R]. Madision: Marshall Space Flight Center,2005.
    [112] John N D et al, Relative cleanliness as measure of lunar soil strength[J] .J.geophys,Res.,1968,73(12);3747~3758.
    [113] Perko H A et al.Surface cleanliness effect on lunar soil shear strength[J].J.Geotech. Geonv.Eng.,2001,127(4):371~38.
    [114] Smoluchowski R,Structure and coherency of the lunar dust layer[J].Jgeophys, Res.,1996,71(6):1569~574.Gaier JR. The Effects of Lunar Dust on EVA Sysetems During the Apollo Missions[R] . NASA/TM-2005-213610,2005.
    [115]姚日剑,王先荣,王鹢.月球粉尘的研究现状[J].航天器环境工程,2008,25(6):512-515.
    [116] Battler, M.M., Richard, J., Boucher. D., and Spray, J.G.,“Development and Production of a Lunar Highland Regolith Simulant,”in Proceedings of Planetary and Terrestrial Mining Sciences Symposium[C], Northern Centre for Advanced Technology, Sudbury, Ontario, Canada, 2006.
    [117] .Lee L H. Adhesion and cohesion mechanisms of lunar dust on the moon’s surface[J].Pol. Prep;Dic,Pol,Chem.,Amer.Chem.Soc.,1993,34(2):324~325.
    [118]樊世超,贾阳,向树红,刘闯.月面地形地貌环境模拟初步研究[J].航天器环境工程,2007,24(1):15-20.
    [119] Willman B M, Walter W. Boles, David s. McKay. Properties of lunar soil stimulant JSC-1[J]. J. Rock Mech. Mining, 1996, 33(1):13A.
    [120] David s. McKay, James L. Carter, Walter W. woles. JSC-1: A new lunar soil simulant. In: Engineering, Construction, and Operations[C]. Space IV American Society of Civil Engineers, 1994: 857-866.
    [121] Willman B M, Boles W W. Properties of lunar soil stimulant JSC-1. J .Aeros. Eng.1995, 8 (2):77-87.
    [122] Willman B M, Boles W W. Soil-tool interaction theories as they apply to lunar soil simulant[J]. J.Aeros. Eng., 1995, 8 (2):88-99.
    [123] Weiblen P W, Gordon K. Characteristics of a stimulant for lunar surface materials [J]. LPI Contributions, 1988, 65(2): 252-254.
    [124] Papike J J, Simon S B, Laul J C. The lunar regolith: chemistry, mineralogy and petrology [J]. Rev. Geophys. Space Phys., 1982.20:761-826.
    [125] Laul J C, Papike J J. The lunar regolith: Comparative chemistry of the Apollo sites[C]. Lunar and Planetary Science Conference.1980.
    [126] Subhayu Sen, Chandra S, Rayb, Ramana G, et al. processing of lunar soil simulant for space exploration applications [J]. Materials Science and Engineering, 2005: 592-597.
    [127] M.B. Duke, P. Eckart. The Lunar Base Handbook [M]. The McGraw Hill Companies Inc., 1999.
    [128] R.B. Gammage, H.F. Holmes, Blocking of the water-lunar fines reaction by air and water concentration effects[C]. Proceedings of the Sixth Lunar Science Conference, 1975: 305-3316.
    [129] D.A. Cadenhead, et al., Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments[C]. Proceedings of the Third Lunar Science Conference, M.I.T. Press, 1972: 2243-2257.
    [130] E. Robens, A. Bischoff, A. Schreiber. Investigation of surface properties of lunar regolith: Part I [J]. Applied Surface Science, 2007: 5709-5714.
    [131] Yoshida. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor[C]. Abstract of Space Resources Roundtable II.G olden, U SA, 2000.
    [132] KanamoriH et al. Properties of lunar soil simulant manufactured in Japan[C]. Proceedings of the 6th International Conference and Exposition on Engineering Construction, and Operations in Space. Albuquerque: ASCE, 1998.
    [133] Green, A.J. and Melzer K.– J., The Performance of Two Boeing-GM Wheels (GM VI1 and GM VIII) for the Manned Lunar Rover Vehicle, Miscellaneous Paper No. M–71–[R]3, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, MS, 1971.
    [134] Costes, N.C, Farmer, J.E. and George, E.B., Mobility Performance of the Lunar Roving Vehicle: Terrestrial Studies– Apollo 15 Results, NASA TR R–401[R], NASA George C. Marshall Space Flight Center, Marshall Space Flight Center, AL, 1972.
    [135] Mullis, C.H., Final Report on Contract NAS8-26715: A Study and Analysis of the MSFC Lunar Roving Vehicle Dust Profile Test Program, BER Report No. 139-92[R], Bureau of Engineering Research, College of Engineering, University of Alabama, University, AL, 1971.
    [136] Freitag, D.R., Green, A. J., and Melzer, K.– J., Performance Evaluation of Wheels for Lunar Vehicles, Technical Report No. M–70–4[R], U. S. Army Engineer WaterwaysExperiment Station, CE, Vicksburg, MS, 1970.
    [137] Lin, T. D., Love, H., and Stark, D.,“Physical Properties of Concrete Made With Apollo 16 Lunar Soil Sample,[C]”in Proceedings of The Second Conference Lunar Bases and Space Activities of the 21st Century (1989), Houston, Texas, 1992: 483– 487.
    [138] Ishikawa,N., Kanamori, H., and Okada, T.,“The Possibility of Concrete Production on the Moon[C],”in Proceedings of The Second Conference Lunar Bases and Space Activities of the 21st Century (1989), Houston, Texas, 1992:489– 491.
    [139] Battler, M.M., Richard, J., Boucher. D., and Spray, J.G.,“Development and Production of a Lunar Highland Regolith Simulant[C],”in Proceedings of Planetary and Terrestrial Mining Sciences Symposium, Northern Centre for Advanced Technology, Sudbury, Ontario, Canada, 2006.
    [140] Haydar Arslan,Stein Sture,Susan Batiste。Experimental simulation of tensile behavior of lunar soil simulant JSC-1[J]。Materials Science and Engineering, 2008, 478:201–207.
    [141] Kazuyoshi Tateyama。Development of a Simple Shear Test Apparatus with Low Confining Pressure for a Regolith Simulant[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics Fairbanks, Alaska, USA, June 23-26, 2007.
    [142] Takahisa Shigematsu,Tatsuro Muro。Optimal Tread Design of a Moon Rover Running on Lunar Terrain[C]。Proceedings of the 15th international conference of the ISTVS,Hayama, Japan, September 25 to 29, 2005.
    [143] Robert J Gustafson,Marty A Gustafson,Raymond A French,Dr James L Carter。Simulants for Testing and Verifying Exploration Surface Activity[C]。American Institute of Aeronautics and Astronautics,19 - 21 September 2006, San Jose, California.
    [144]郑永春,欧阳自远,王世杰,邹永廖.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [145]郑永春,王世杰,冯俊明,欧阳自远,刘建忠,刘春茹.CAS-1模拟月壤[J].矿物学报,2004,24(3):571-578.
    [146]李涤徽,吴季,姜景山,张德海,张晓辉,张卫国。模拟月壤微波介电特性的初步研究[J].遥感技术与应用,2005,20(1):141-147.
    [147]刘春茹,王世杰,冯俊明,李雄耀,付绍洪,欧阳自远,郑永春.我国低钛月海型模拟月壤初始物质选择的地球化学依据[J].矿物岩石,2007,22(3):28-33.
    [148] Jianqiao Li, Meng Zou, Yang Jia, Bin Chen, Luquan Ren. Stimulation of Lunar Regolith for Vehicle-terramechanics Research in Laboratory [C]. Proceedings of the 10th European Conference of the International Society for Terrain-Vehicle Systems, Budapest, Hungary, 3rd-6th October, 2006.
    [149]李建桥,邹猛,贾阳,陈斌,马文哲.月面车辆系统试验用月壤模拟研究[J].岩土力学.2008,29(6): 1557-1561.
    [150]孙刚,高峰,李雯.地面力学及其在行星探测研究中的应用[J].力学进展,2007,37(3):453-464.
    [151] Cundall P.A. A computer model for simulating progressive large scale movements in blocky system[C]. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971(1): 8-12.
    [152] Cundall P.A. The measurement and analysis of acceleration in rock slopes [D]. Ph.D. Dissertation, University of London, Imperial college of Science and Technology, 1971.
    [153] Wb1ton O R. Particle dynamics modeling of geological materials[R]. Lawrenee Livermore Mational Lab. 1980, RePort UCRL一52915.
    [154]徐泳,孙其诚,张凌,黄文彬.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [155] Oida M., Iwashita K., et al. Mechanics of Granular Materials, An introduction. Rotterdam: Balkema A. A., 1999: 147-223.
    [156]王泳嘉.离散单元法—一种适用于节离岩石力学分析的数值方法[C].第一届全国岩石力学数值计算及模型试验讨论论文集,1986:32-37.
    [157]剑万禧.离散单元法的基本原理及其在岩体工程中的应用[C].第一届全国岩石力学数值计算及模型试验讨论论文集,1986:43-46.
    [158]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [159]傅巍,蔡九菊,董辉.颗粒流数值模拟的现状[J].材料与冶金学报,2004,3(3):172-176.
    [160]王泳嘉,邢纪波.离散单元法及其在岩土力学的应用[M].沈阳:东北工学院出版社,1991.
    [161]于建群,钱立彬,于文静,潘世强,方瑛,付宏.开沟器工作阻力的离散元法仿真分析[J]..农业机械化学报,2009,40(6):53-57.
    [162]于建群,付宏.基于离散元法的数字化设计软件及其应用[C].中国农业机械学会2008年学术年会论文集,2008,748-752.
    [163]周健,王家全,孔祥利,贾敏才.砂土颗粒与土工合成材料接触界面细观研究[J].岩土工程学报,2010,32(1):61-67.
    [164]周健,白彦峰,张昭,贾敏才.砂土中群桩室内模型试验及颗粒流模拟研究[J].岩土工程学报,2009,31(8):1275-1280.
    [165]张丽,刘晓宇,李世海.裂隙岩体稳定/非稳定渗流数值模拟[J].岩石力学与工程学报,2009,28(2):3409-3416.
    [166]李世海,刘天苹,刘晓宇.论滑坡稳定性分析方法[J].岩石力学与工程学报,2009,28(2):3309-3324.
    [167]张锐,李建桥,李因武,刘子斌,陈斌.部件复杂表面影响土壤扰动行为的离散元宏细观分析[J].吉林大学学报,2009,39(5):1218-1223.
    [168]张锐.基于离散元细观分析的土壤动态行为研究[D].吉林:吉林大学,2005.
    [169] Perko H A, Effects of surface cleanliness on lunar regolith mechanics[R].AIAA 96*0015,1996.
    [170] A. Oida, S. Ohkubo, H. Schwanghart. Effects of tire lug cross section on tire performance simulated by distinct element method[C]. Proceedings of the 13th International Conference of the International Society for Terrain-Vehicle Systems, Munich, Germany, September 14-17, 1999: 345-352.
    [171] A. Oida, H. Schwanghart, S. Ohkubo, and M. Yamazaki. Simulation of soil deformation under a track shoe by the DEM[C]. Proceedings of the 7th European Conference of the International Society for Terrain-Vehicle Systems, Ferrara, Italy, October 8-10, 1997: 155-162.
    [172] H. Fujii, A. Oida, H. Nakashima etc. Analysis of Interaction between lunar terrain-wheel and treated wheel by Distinct Element Method[C]. Proceedings of the 14th International Conference of the International Society for Terrain-Vehicle Systems, Vicksburg, MS USA. October 20-24, 2002.
    [173] Chen Bin, Li Jianqiao, Li Yinwu, Zou Meng. Application Research of Numerical Simulation of Pressure Characteristics of Lunar Soil[C]. International Symposium on Discrete Methods and Numerical Modeling of Discontinuum Mechanics.,Beijing,China, 2008: 381-389.
    [174] H. Nakashima, H. Fujii, A. Oida, M. Momozu etc.Parametric analysis of lugged wheel performance for a lunar micro rover by means of DEM[J]. Journal of Terra-mechanics, 2007, 44: 153–162.
    [175] Hiroshi Nakashima, Takayuki Konishi, Yusuke Toki.Numerical Analysis for Cone Penetration of Mesoscopic Soil Model[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics Fairbanks, Alaska, USA, June 23-26, 2007.
    [176] Hiroshi Nakashima, Yusuke Toki, Takayuki Konishi. Some Experimental Observations on Cone Penetration of Mesoscopic Soil Model[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics Fairbanks, Alaska, USA, June 23-26, 2007.
    [177]邹猛,李建桥,贾阳等.月壤静力学特性的离散元模拟研究[J].吉林大学学报.2008,38(2):383-387.
    [178]李建桥,邹猛,贾阳,任露泉,李因武.月球车轮与月壤相互作用动力学模拟研究[J].农业机械学报,2008,39(4):1-5.
    [179] Li Jian-qiao, Zou Meng, Jia Yang, Ma Wen-zhe, Ren Lu-quan, Li Yin-wu. Research of the Interaction between the Rigid Wheel and the Lunar Soil by DEM[C]. Proceedings of the Joint North America, Asia-pacific ISTVS conference and Annual Meeting ofJapanese Society for Terramechanics. Fairbanks, Alaska, USA. 2007-62-0248.
    [180]邹猛.月面探测车辆驱动轮牵引性能研究[D].吉林:吉林大学,2008.
    [181]李雯.轮式月面巡视探测器牵引通过性的细观力学研究[D].北京:北京航空航天大学,2008.
    [182]马文哲.月壤—车轮土槽试验系统精度的研究[D].吉林:吉林大学,2008.
    [183]陈斌.履刺式刚性轮在沙土上的牵引特性研究[D].吉林:吉林大学,2007.
    [184] C. Lo′pez-Fando , J. Dorado, M.T. Pardo. Effects of zone-tillage in rotation with no-tillage on soil properties and crop yields in a semi-arid soil from central Spain [J]. Soil and Tillage Research .2007, 95: 266–276.
    [185] Y. Sun, J. Lin, D. Ma, Q. Zeng, P. Schulze Lammers. Measurement of penetration force using a hall-current-sensor [J]. Soil and Tillage Research. 2007,92: 264–268.
    [186] Rohit K. Sahu, Hifjur Raheman. An approach for draft prediction of combination tillage implements in sandy clay loam soil [J]. Soil and Tillage Research. 2006, 90: 145–155.
    [187] G.F. Botta, D. Jorajuria, H. Rosatto, C. Ferrero. Light tractor traffic frequency on soil compaction in the rolling pampa region of argentina [J]. Soil and Tillage Research. 2006, 86: 9–14.
    [188] Heliodoro Catalan, Pilar Linares, Valeriano Mendez. Tractor PT: a traction prediction software for agricultural tractors [J].Computers and Electronics in Agriculture. 2008, 60: 289–295.
    [189] R.L. Raper. Agricultural traffic impacts on soil [J]. Journal of Terramechanics. 2005, 42: 259–280.
    [190] B.J. Radford, D.F. Yule, D. McGarry, C. Playford. Amelioration of soil compaction can take 5 years on a vertisol under no-till in the semi-arid subtropics [J]. Soil and Tillage Research. 2007, 97: 249–255.
    [191] Leroy O. Garciano, Shrinivasa K. Upadhyaya, Randolph A. Jones, Sarah R. Jersey. Determination of the soil pressure distribution around a cone penetrometer [J]. Journal of Terramechanics. 2007, 44: 265–273.
    [192] Miressa Duffera, Jeffrey G. White, Randy Weisz. Spatial variability of Southeastern U.S. coastal plain soil physical properties: implications for site-specific management [J]. Geoderma . 2007, 137: 327–339.
    [193] Humberto Blanco-Canqui, R. Lal. Soil structure and organic carbon relationships following 10 years of wheat straw management in no-till [J]. Soil and Tillage Research .2007, 95: 240–254.
    [194] M.R. Mosaddeghi, M.A. Hajabbasi, A. Hemmat, M. Afyuni. Soil compactibility as affected by soil moisture content and farmyard manure in central Iran [J]. Soil and Tillage Research. 2000, 55: 87-97.
    [195] Bruce Maclaurin. Comparing the NRMM (VCI), MMP and VLCI traction models [J]. Journal of Terramechanics. 2007, 44: 43–51.
    [196] D. Jorajuria, L. Draghi, A. Aragon. The effect of vehicle weight on the distribution of compaction with depth and the yield of Lolium/ Trijiolium grassland [J]. Soil and Tillage Research. 1997, 41: 1-12.
    [197] Gunnar Bygden, Lars Eliasson, Iwan Wasterlund. Rut depth, soil compaction and rolling resistance when using bogie tracks [J]. Journal of Terramechanics. 2004, 40: 179–190.
    [198]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [199]张锐,唐志平,郑航.离散元与有限元耦合的时空多尺度计算方法[J].吉林大学学报,2009,39(2):408-412.
    [200] Hiroshi Nakashima and Akira Oida. Simulation of soil-tire interaction by a coupled distinct element-finite element method. Proceedings of the 6th Asia-Pacific Conference of the International Society for Terrain-Vehicle Systems, Bangkok, Thailand, December 3-5, 2001: 59-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700