用户名: 密码: 验证码:
微震空间自相关法在地下空间探测中的可行性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用环境背景噪声发展的微震勘查方法是一个非常便利又适合于常规地震方法很难去实现的区域,比如城市、环境易遭到破坏的区域,近年来此方法已经得到广泛的应用。但由于是利用随机噪声,该方法的精度问题一直受人们关注。本论文主要研究微震勘查法中的空间自相关法的勘探精度问题,探索该方法的精度改善技术路线。空间自相关法是基于利用小规模圆形地震仪排列的微震观测方法,用于探测地下S波速度构造的经济捷快方法,该方法自开发以来到目前为止主要在地震工程学的地层研究中应用,但是因为其精度上的问题该方法还属于普查法,还未引入到需要精密性较高的地下勘探工作中。这说明,在微震排列观测、地层参数反演等空间自相关法每个过程中依然存在不完善的地方,研究这些问题是本论文研究的主要工作。
     本文从考察该方法中瑞雷波频散曲线正演及反演、微震观测及频散曲线提取等几个阶段入手,研究了一些造成偏差的原因和相应的措施。论文在第2章中简单考察一个瑞雷波频散曲线正演计算方法及其精度问题。在第3章中通过模型计算评价遗传算法在瑞雷频散曲线反演中的性能,并且探索克服其算法弱点的方法。本论文第4章中研究微震观测以及瑞雷波频散曲线提取工作中可能出现的误差和其特性,研究中主要采用模拟实验分析方法,这为本身带有被动性的空间自相关法偏差特性研究提供便利。通过模拟记录分析,可以给出一些在实际现场实验实验中不易发现的问题。
     在瑞雷波相速度反演工作中,提出全局优化的遗传算法和局域搜索技术的联合思想、微震观测和人工波观测的配合方法等,提升了空间自相关法精度。
As a convenient survey method, the Microtremor Survey Method (MSM) that uses background ambient noise, is very suitable for surveying environment-sensitive areas such as urban. It has already found its broad application. Nevertheless, because of using ambient ground noise, the accuracy of that method still would not be able to compare with ordinary seismic method. This treatise mainly studies the problem of accuracy in the spatial autocorrelation (SPAC) method-a kind of the MSM. The SPAC method detects underground S-wave velocity structure by using a small scale seismic circular array, it has been known as a very rapid and economized survey method. It has been mainly applied to the underground research work for earthquake engineering. But, because of low accuracy level of the results, the method has still not found its application in the high-grade survey work such as oil exploration. It means that there still exist some imperfect aspects to be study in each stage such as measuring and data processing in the SPAC method, and that it would be needed to introduce some useful schemes for to accomplish acculate survey under the random wave-fields. To solve the problems has become major objectives in this work.
     In this treatise, attention was paid in every aspects of the method, such as the forward calculation & inversion of Rayleigh-wave dispersion curve, the measuring of microseism and extracting the phase velocity dispersion in order to find the origins of error and corresponding way from it. In Chapter 2, it discusses briefly a calculation method of Rayleigh-wave dispersion curve and its accuracy. In Chapter 3, it analyses some results of invertion using genetic algorithm and discusses a way of overcoming its weakness. The main works in Chapter 4 of this treatise are related with the study of errors and their properties which would occur in the courses of field observation and in the extracting of Rayleigh-wave dispersion from microtremor records, for such complicated study, this work mainly adopts simulated experiment method, it is found to be a convenient approach for the study of self-passive SPAC method. Through the simulated experiments and accompanied analyses, it become clear some important aspects of the method that could not distinguish through ordinary field experiment.
     This paper shows some useful results and proposes such as joint inversion of the global optimizing GA with the LM algorithm in the local researching technique and the idea of the combination measurement of ambient noise with the measurement of waves from an active source in a given special direction, which would essentially improve the SPAC method.
     Main results obtained through this study on SPAC method can be summarized as follows:
     1) In SPAC method, there are three parts of implementation. Those are theprocedure of extracting of dispersion feature of Rayleigh-wave from the array recordsmicrotremors, the procedure of forward calculation of dispersion curve using theparameters of layered earth, and the procedure of inversion of ground layerparameters from the dispersion curve. Through the study, it can be accomplished thebases for carrying such procedures: the base of study on the estimation of dispersionby accomplishing the algorithm based Haskell's transfer matrix method; the base ofinversion calculation using GA and LM algorithm; and the numerical procedureextracting SPAC coefficients.
     2) It presents some methodological issues for enhancing the accuracy in forward andinversion calculation of dispersion. It includes the estimation of phase velocity usingcurve-fitting and the idea of joint inversion of genetic algorithm in the globalsearching and LM algorithm in the local searching.
     3) In this study, it introduces the technique of simulation of the array-based recordsmicrotremors. For the study of the deviation properties of the SPAC coefficientsestimates incurred by various conditions, it provides convenience.
     4) By using the technique of simulated experiment, it can be able to obtain someattributes of deviation in SPAC coefficients estimates that is difficult to detect in fieldsurvey. Through the simulated experiments and accompanied analysis, it has beenmade clear the combined effect of finite array nature and azimuth-restricted waveincidence (directional aliasing) on the deviation of SPAC coefficients, and obtainedfigures exhibiting the structures of such deviations. And, it presents some usefulsuggests and implications for field survey, an important one in them is the suggestionof combination of the traditional measurement of microtremors with the additionalmeasurement of artificial seismic waves in the SPAC method, which will provide us apossibility to positively overcome the deviation in high frequency range of SPACcoefficient estimates which inccured in relation with random wave-field and limitedmumber of stations in array. In this paper, the effect of irregular installing of circulararray on the deviation of SPAC coefficients is exhibited in intuitive manner. It mainlycomes from radial irregularity. In the end of chapter 4, a particular consideration ismade on the deviation features occurred in the case of omni-directional waveincidence. Main attention is paid on the systematic deviation of SPAC coefficients inlow frequency ranges below its first minimum. This fact provides us a new view onthe SPAC method: provided that microseism sources are distributed in all azimuthes,the array measerved SPAC coefficients exhibits a definite deviation from the targetideal SPAC coefficients, which is not incurred by the directional aliasing effect andhas no relation with the mumber of stations in arrays. The deviation effect diminisheswith decreasing the azimuth range in which wave sources distributed, and so, whenthe sources restricted in a direction, the observed SPAC curves just closely coinside with the ideal Bessel curves. Although still having not plenty of field verification, the deviation property that has not yet discussed in earier studies seems to be worth of further study. Additionally is mentioned the problem of appropriate selection of array radius.
     In brief, errors in the exploration works using SPAC method that would be incurred by various reasons would have their more deep interpretation through this study. It will give significant contribution for development and improvement of the method.
引文
[1] Aki K. Space and time spectra of stationary stochastic waves, withspecial reference to microtremors [J]. Bull. Earthquake Res. Inst.Univ. Tokyo, 1957, 35: 415-456.
    [2] Aki K. A note on the use of microtremors in determining the shallowstructures of the Earth' s crust, Geophysics [J]. 1965, 30: 665-666.
    [3] Abo-Zena A. Dispersion function computations for unlimited frequencyvalues [J]. Geophys. J. R. Astro. Soc. , 1979, 58: 91-105.
    [4] Apostolidis P I, Raptakis D G et al. Determination of S-wave velocitystructure using microtremors and SPAC method applied in Thessaloniki(Greece) [J]. Soil dynamics and earthquake engineering, 2004, 24:49-67.
    [5] Arai H, Tokimatsu K. S-Wave velocity profiling by joint inversionof Microtremor dispersion curve and Horizontal-to-Vertical (H/V)spectrum [J]. Bull. Seism. Soc. Am., 2005, 95(5): 1766-1778.
    [6] Asten M W, T Dhu, N Lam. Optimized array design for microtremor arraystudies applied to site classification; comparison of results withSCPT logs [C]. Proc. 13th Annual World Conf. Earthq. Engineering,2004, Paper 2903.
    [7] Asten M W. On bias and noise in passive seismic data from finitecircular array data processed using SPAC methods [J]. Geophysics,2006, 71 (6): 153-162.
    [8] Ben-Hador R, P Buchen. Love and Rayleigh waves in Non-uniform media[J]. Geophys. J. Int., 1999, 137: 521-534.
    [9] Bettig B, P Y Bard, et al. Analysis of dense array noise measurementsusing the modified spatial auto-correlation method (SPAC):application to the Grenoble area [J]. Bollettino di Geofisica Teoricaed Applicata, 2001, 42, N. 3-4: 281-304.
    [10] Bixing Zhang, M Yu, C Q Lan, Wei Xiong. Elastic wave and excitationmechanism of surface waves in multilayered media [J]. J. Acoust. Soc.Am., 1996, 100(6) : 3527-3538.
    [11] Buchen P W, Ben-Hador R. Free-mode surface-wave computations [J].Geophys. J. Int., 1996, 124: 869-887.
    [12] Capon J. High-resolution frequency-wavenumber spectrum analysis [J]. Proc. IEEE, 1969, 57: 1408-1418.
    [13] Capon J, Greenfield R J, Kolker R J. Multidimensional maximum-likelihood processing of a larger aperture seismic array [J]. Proc. IEEE, 1967, 55: 192-211.
    [14] Chang F K, R F Ballard Jr. Rayleigh-wave dispersion technique for rapid subsurface explolation [C]. Miscellaneous Paper S-73-20,第42届国际地球物理年会,1973, 1-33.
    [15] Chavez-Garcia F J, T Dominguez, M Rodriguez, F Perez. Site effectsin a volcanic environment: A comparison between HVSR and arraytechniques at Colima, Mexico [J]. Bull. Seismol. Soc. Am., 2007, 97:591-604.
    [16] Chavez-Garcia F J, F Luzon, D Raptakis, J Fernandez. Shear-wavevelocity structure around Teide Volcano: Results using microtremorswith the SPAC method and implications for interpretation of geodeticresults [J]. Pure Appl. Geophys. , 2007,164: 697-720.
    [17] Chavez-Garcia F J, M Rodriguez, W R Stephenson. An alternativeapproach to the analysis of microtremors: Exploiting stationarityof noise [J]. Bull. Seismol. Soc. Am., 2005, 95: 277-293.
    [18] Chavez-Garcia F J, M Rodriguez, W R Stephenson. Subsoil structureusing SPAC measurements along a line [J]. Bull. Seismol. Sos. Am.,2006, 96: 729-736.
    [19] Cho I, Y Shinozaki. A theoretical study on circular array analysesfor an exploration method using microtremors [J]. Butsuri Tansa, (inJapanese), 2003, 56 (1): 29-42.
    [20] Cho I, T Tada, Y Shinozaki. A new method to determine phase velocitiesof Rayleigh waves from microseisms [J]. Geophysics, 2004, 69:1535-1561.
    [21] Cho I, T Tada, Y Shinozaki. Assessing the applicability of thespatial autocorrelation method: A theoretical approach [J]. J.Geophys. Res., 2008, 113, B06307.
    [22] Chouet B, G De Luca, GMilana, P Dawson, M Martini, R Scarpa. Shallowvelocity structure of Stromboli Volcano, Italy, derived fromsmall-aperture array measurements of Strombolian tremor [J]. Bull.Seismol. Soc. Am., 1998, 88: 653-666.
    [23] Dunkin J W. Computation of modal solutions in layered elastic mediaat high frequencies [J]. Bull. Seismol. Soc. Am., 1965, 55: 335-358.
    [24] Ferrazzini V, Aki K, Chouet B. Characteristics of seismic wavescomposing Hawaiian volcanic tremor and gas-piston events observedby a near-source array [J]. J. Geophys. Res., 1991, 96: 6199-6209.
    [25] Gucunski N, Woods R D. Inversion of Rayleigh wave dispersion curvefor SASW test [C]. Proc. 5th Int. Conf. on Soil Dyn. And Earthq. Eng. ,1991, Kalsruhe: 127-138.
    [26] Gucunski N, Woods R D. Numerical simulation of SASW test [J]. SoilDyn. And Earthq. Eng., 1992,11(4): 213-227.
    [27] Haskell N A. The Dispersion of Surface Waves on Multilayered Media[J]. Bull. Seism. Soc. Am., 1953, 43(1): 17-34.
    [28] Harkrider K G. Surface waves in multilayered elastic media,1. Rayleigh and Love waves from buried sources in a multilayeredelastic half-space [J]. Bull. Seismol. Soc. Am., 1964, 54(2):627-679.
    [29] Hatayama K, H Fujiwara. Excitation of secondary Love and Rayleighwaves in three-dimensional sedimentary basin evaluated by the direct boundary element method with normal modes[J].Geophys.J.Int.,1998,133:260-278.
    [30]Heisey J S,Stokoe K H,Meyer A H.Moduli of pavement systems from special analysis of surface waves [J].Transportation Research Record,1982,852:22-31.
    [31]Henstridge J D.A signal processing method for circular arrays[J].Geophysics,1979,44:179-184.
    [32]Horike M.Inversion of Phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized area[J].J.Phys.Earth,1985,33:59-96.
    [33]Hough S E et al.Ambient noise and weak-motion excitation of sediment responses:Results from the Tiber valley,Italy[J].Bull.Seismol.Soc.Am.,1992,82:1186-1205.
    [34]Hu J F et al.Using surface wave and receiver function to jointly inverse the crust-mantle velocity structure in the west Yinnan area [J].Chinese Journal of Geophysics,2005,48(5):1148-1155.
    [35] Ivansson S.Comment on‘Free-mode surface-wave computations’by P.Buchen and R.Ben-Hador[J].Geophys.J.Int.,1998,132:725-727.
    [36]James M B,M H Ritzwoller.Feasibility of truncated perturbation expansions to approximate Rayleigh-wave eigenfrequencies and eigenfunctions in heterogeneous media[J].Bull.Seismol.Soc.Am.,1999,89(2):433-441.
    [37] Knopoff L A Matrix Method for elastic wave problems[J].Bull.Seismol.Soc.Am.,1964,54:431-438.
    [38]Kennett B L N.Guided waves in three-dimenslenal structure[J].Geophys.J.Int.,1998,133:159-174.
    [39] Kennett B L N.Reflection rays and reverberations[J].Bull.Seismol.Soc.Am.,1974,64:1685-1696.
    [40]Kennett B L N,N J Kerry.Seismic waves in a stratified half-space [J].Geophys.J.R.Astr.Soc.,1979,57:557-583.
    [41] Kohler A,M Ohrnberger et al.Assessing the rel iability of the modified three-component spatial autocorrelation technique [J].Geophys.J.Int.,2007,168:779-796.
    [42] Koopmans L H.Spectral analysis of time series[M].Academic Press Inc.,1974.
    [43] Kudo K et al.Observation of 1-t0 5-sec microtremors and their application to earthquake engineering,Part IV,Elucidation of propagative characteristics by use of a temporary array net[J].Zizin,(in Japanese),1976,11(29):323-337.
    [44] Kudo K,T Kanno,H Okada et a1.Site-specific issues for strong ground motions during the Kocaeli,Turkey,earthquake of 17 August 1999.as inferred from array 0bservations of microtremors and after-shocks[J].Bull.Seismol.Soc.Am.,2002,92:448-465.
    [45] Kundu T,A R Mal.Elastic waves in multi-layered sol id due to a dislocation source [J].Wave Motion,1985,7:417-459.
    [46]Lacoss R T,Relly E J,Tokoz M N.Estimation of seismic noise structure using arrays[J].Geophysics,1969,34:21-38.
    [47]Landall M J.Fast programs for layered half-space problems[J].Bull.Seismol.Soc.Am.,1967,57:1299-1316.
    [48]Ling S,Okada H.An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors[C].Proc.89th Conf.SEGJ,(in Japanese),1993:44-48.
    [49]Madsen R et al.Methods for Non-linear Least Squares problems.Technical Wnivetsity of Denmark,Lecture notes[OL].2004,http://www.imm.dtu.dk/courses/02611/nllsq.pdf
    [50] Matsuoka T,N Umezawa,H Makishima.Experimental studies on the applicability of the spatial autocorrelation method for estimation of geological structure using microtremors[J].gutsuri Tansa,(in Japanese),1996,49:26-41.
    [51]Matsushima T,H Okada.Determination of deep geological structures under urban areas using long—period microtremors[J].gutsuriTansa,1990,43(1):21-33.
    [52] Meijian A,Marcelo S Assumpcao.Multi-objective inversion of surface waves and receiver functions by competent genetic algorithm applied to the crustal structure of the Parana Bas in,SE Brazil[J].Geophys.Res.Lett.,2004,31(5),D0i:10.1029/2003GLO19179.
    [53]Menke W.Comment on‘Dispersion function computations for unlimited frequency values’by Anas Abe-Zena[J].Geophys.J.R.Astr.Soc.,1979.95:315-323.
    [54]Mi l ler G F,Pursey H.On the partition of energy between elastic waves in a semi-infinite sol id[C].Proc.of the Royal society A/mathematical physics&engineering sciences,1955,233:55-69
    [55]Moorkamp M et al.Joint inversion of teleseismic receiver functions and magnetote]luric data using a genetic algorithm:Are seismic velocities and electrical conductivities compatible?[J].J.Geophys.Res.,2007,34(16),D0i:10.1029/2007GL030519.
    [56]Morikawa H,S Sawada,J Akamatsu.A method to estimate phase velocities of Rayleigh waves using microseisms simultaneously observed at two sites[J].Bull.Seismol.Soc.Am.,2004,94:961-976.
    [57]Ohori M,A Nobata,R Wakamatsu.A compari son of ESAC and FR methods of estimating phase velocity using arbitrarily shaped microtremor arrays[J].Bull.Seismol.Sos.Am.,2002,92(6):2323-2332.
    [58]Okada H,Sakajili N.Estimation of an S-wave velocity distributionusing long-period microtremors[J].Geophys.Bull.,HokkaidoUniversity,(in Japanese),1983,42:119-143.
    [59]Okada H,Ishigawa R,Sasabe R,Ling S.Estimation of underground structures in the Osaka-Robe area by array-network observations ofmicrotremors[C].Proc.96th SEGJ Conf.,(in Japanese),1997:435-439.
    [60]Okada H,Matsushima T.An exploration method using microtremors(1)-A theory to identify Love waves in microtremors [C].Proc.8lst SEGJ Conf.,(in Japanese),15-18.
    [61]Okada H,Matsushima T,Moriya T,Sasatani T.An exploration technique using long-period microtremors for determination of deep geological structures under urbanized areas[J].Butsuri-Tansa,(in Japanese),1990,43:402-417.
    [62]Okada H.Theory of efficient array observations 0f microtremors with special reference to the SPAC method[J].Exploration Geophysics,2006,37:73-85.
    [63]Park C B,Miller R D,Steeples D W et al.Swept impact seismic technique(SIST)[J].Geophysics,1996,61:1789-1803.
    [64]Park C B,Miller R D,Xia J.Multi-channel analysis of surface waves [J].Geophysics,1999,64(3):800-808.
    [65] Peatel E,F f Leckie.Mattix methods in elasto-mechanics [M].McGrawHill.NewYork:1963.
    [66]Pollitz F F.Surface waves scattering from sharp discontinuities[J].J.Geophys.Res.,1994,99(11):21891-21909.
    [67]Rayleigh J W S.On waves propagated along the plane surface of an elastic solid[J].Proc.London Math.Soc.,1885,17:4-11.
    [68]Richards P G,D C Witte,G Ekstron.Generalized Ray theory for seismic waves in structures with Planar nonparal led interfaces[J].Bull.Seismol.Soc.Am.,1991,81(4):1309-1331.
    [69]Robert J C,M W Asten.Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method[J].Exploration Geophysics,2004,35:14-18.
    [70]Roberts J,M Asten.Estimating the shear velocity profile of quaternary silts using microtremor array(SPAC)measurements[J].Exploration Geophysics,2005,36:34-40.
    [71]Roberts J,M Asten.A study of near source effects in array-based (SPAC)microtremor surveys[J].Geophys.J.Int.,2008,174:159-177.
    [72]Saccorotti G,B Chouet,P Dawson.Shallow-velocity models at theKilauea Volcano,Hawaii,determined from array analyses of tremorwavefields[J].Geophys.J.Int.,2003,152:597-612.
    [73]Schwab F,L Knopoff.Surface-wave dispersion computations[J].Bull.Seismol.Soc.Am.,1970,60:321-344.
    [74]Schwab F,L Knopoff.Fast Surface-wave and free mode computations [C].Methods in Computational physics,1972,2:87-180.
    [75] Schwab F.Surface-wave dispotsion computations:Knopoff’s method [J].Bull.Seismol.Soc.Am.,1970,60:1491-1520.
    [76]Schwab F,L Knopoff.Surface waveson multi layered anelastic media [J].Bull.Seismol.Soc.Am.,1971,61(4):893-912.
    [77]Sheu J C,Stokoe K H,Rosset J M.Effects of rollected wave in SASW testing of pavements[J].Transportation Research Record,1988,1196:51-61.
    [78]Shiraishi H,Matsuoka T.Complex coherence function represented by discrete formula on the basis of Lamb’s problem for Rayleigh waves:An application for new interpretation of the spatial autocorrelation method[J].gutsuri-Tansa,(in Japanese),2005,58(2):137-146.
    [79]Shiraishi H,T Matsuoka,H Asanuma.Direct estimation of the Rayleigh wave phase velocity in microtremors[J].Geophys.Res.Lett.,2006,33,L18307.
    [80] Snieder R.Phase speed perturbations and three-dimensional scattering effects of surface waves due to topography[J].Bull.Seismol.Soc.Am.,1986,76(5):1385-1392.
    [81] Stokoe K H,G L Rix,S Nazarian.In situ seismic testing with surfacewaves[C].Proceedings of the Twelfth International Conference onSoll Mechanics and Foundation Engineering,Rio de Janeiro,Brazil,1989,Vol.1,330-334.
    [82]Supranata Y E et al.Improving the uniqueness of surface waveinversion using multiple-mode dispersion data[J].ASCEInternational Journal of Geomechanics,2007,7(5):333-343.
    [83]Thrower E N.The computation of elastic waves in layered media[J].J.Sound Vib.,1965,2:210-226.
    [84]ToksSz M N,Lacoss R T.Microtremors:mode structure and sources,Science,1968,159:872-873.
    [85]Tromp J,F f Dahlen.Surface wave propagation in a slowly varying anisotropic waveguide[J].Geophys.J.Int.,1993,113:239-249.
    [86]Waston H T.f note on fast computation of Rayleigh wave dispersion in multilayered half-space[J].Bull.Seismol.Soc.Am.,1970,60:161-166.
    [87]Xia J,Miller R D,Park C B.Estimation of near-surface shear wave velocity by inversion of Rayleigh wave[J].Geophysics,1999,64(3):691-700.
    [88]Yamanaka H,Ishida H.Application of Genetic Algorithms to an inversion of surface-wave dispersion data[J].Bull.Seism.Soc.Am.,1996,86(2):436-444.
    [89]Yamanaka H.Application of simulated annealing to inversion of surface wave phase velocity[J].Butsuri-Tansa,(in Japanese with gnglish abstract),200l,54:197-206.
    [90]Yamanaka H.Inversion of surface-wave phase velocity using hybridhouristic search method[J].gutsuri-Tansa,(in Japanese with gnglishabstract),2007,60(3):265-275.
    [91]Yamanaka H,H Ishida.Phase velocity inversion using geneticalgorithms[J].J.Struct.Constr.Eng.,AIJ,(in Japanese),1995,468:9-17.
    [92]Yamamoto H.An experiment for estimating phase velocities of Love waves from three-component microtremor array 0bservations [J].Butsuri-Tansa,(in Japanese with English abstract),2000,53:153-166.
    [93]凡友华.层状介质中瑞利面波频散的正反演研究[D].博士学位论文,哈尔滨工业大学,2001.
    [94]凡友华,刘佳琦,肖柏勋.计算瑞利波频散曲线的快速矢量算法[J].湖南大学学报,2002,29(5):2530.
    [95]冯少孔.微动勘探技术及其在土木工程中的应用[J].岩石力学与工程学报,2003,22(6):1029-1036.
    [96]裴江云,吴永刚,刘永杰.近地表低速带反演[J].长春地质学院学报,1994,24(3):317-320.
    [97]关小平,黄嘉正,周鸿秋.工程勘察中稳态瑞利面波法解释理论的探讨[J].地球物理学报,1993,36(1):96-105.
    [98]何正勤,丁志峰等.用微动中的面波信息探测地壳浅部的速度结构[J].地球物理学报,2007,50(2):492-498.
    [99]何委徽,王家林,于鹏.地球物理联合反演研究的现状与趋势分析[J].地球物理学进展,2009,24(2):530-540.
    [100]黄嘉正,周鸿秋,关小平.工程地质中瑞利面波法理论的初探[J].物探与化探,199l,15(4):268-277.
    [101]李琼等.基于GA-BP理论的储层视裂缝密度地震非线性反演方法[J].地球物理学进展,2006,21(2):465-471.
    [102]刘云桢,王振东.瞬态面波法的数据采集处理系统及其应用实例[J].物探与化探,1996,20(1):28-33.
    [103]廖成旺,邓涛等.微动观测台阵定位方式研究[J].大地测量与地球动力学,2007,27(6):61-64.
    [104]李敏强等.遗传算法的基本理论与应用[M].北京,科学出版社,2004.
    [105]李幼铭,束沛镒.层状介质中地震面波频散函数和体波广义反射系数的计算[J].地球物理学报,1982,25(2):130-139.
    [106]牛滨华,何继善.半空间垂向非均匀复杂介质面波的频散方程[J].物探与化探,1996,20(6):420-425.
    [107]牛滨华,何继善.半空间非水平层状介质瑞雷面波的频散方程[J].物探与化探,1996,20(5):345-350.
    [108]石耀霖,金文.面波频散反演地球内部构造的遗传算法[J].地球物理学报,1995,38(2):189-198.
    [109]邵泽辉,李正文,许多.自适应GA-BP优化方法进行高分辨率反演[J].地球物理学进展,2004,19(4):942-945.
    [110]孙勇军,徐佩芬,凌甦群。微动勘查方法及其研究进展[J].地球物理学进展,2009,24(1):326-334.
    [111]王光杰等.基于遗传算法CSAMT反演计算研究[J].地球物理学进展,2006,21(4):1285-1289.
    [112]王伟君,刘澜波等.应用微动H/V谱比法和台阵技术探测场地响应和浅层速度结构[J].地球物理学报,2009,52(6):1515-1525.
    [113]王振东.面波勘探技术要点与最新进展[J].物探与化探,2006,30(1):1-6.
    [114]王振东.微动的空间自相关法及其实用技术[J].物探与化探,1986,10(2): 123-133.
    [115]吴世明,陈龙珠.岩土工程波动勘测技术[M].北京,地质出版社,1998
    [116]肖柏勋,李长征.瑞雷面波勘探技术研究述评[J].工程地球物理学报,2004, 1(1): 38-47.
    [117]徐佩芬,李传金,凌甦群等.利用微动勘察方法探测煤矿陷落柱[J].地球物理学报,2009,52(7):1923-1930.
    [118]喻明,许克克,兰丛庆等.频散瑞利波纵向衰减规律研究[J].声学学报,1998,23(1): 63-66.
    [119]叶太兰.微动台阵探测技术及其应用研究[J].中国地震, 2004, 20(1):47-52
    [120]赵东,王光杰,王兴泰等.用遗传算法进行瑞雷波反演[J].物探与化探,1995,19(3)。
    [121]张碧星,肖柏勋,杨文杰.瑞利波勘探中“之”字型频散曲线的形成机理及反演研究[J].地球物理学报, 2000, 43(4): 557-567.
    [122]张恒山,王庆海.瑞利波勘探的波长解释法新探[J].物探与化探,1998,22(4):279-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700