用户名: 密码: 验证码:
东北地区地震综合信息联合成像与震源机制反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北地区濒临欧亚板块与太平洋板块碰撞带,并且东北地区的构造复杂,在此两者的影响下,东北地区地震研究有着重要意义。为此,我们利用2001年—2008年的走时数据和2007年11月—2009年3月我们布设的台站的走时数据以及波形数据,对东北地区的地震进行定位、层析成像和震源机制解的研究。
     研究结果表明:东北地区发生的地震大体可以划分为四个地震区,但主要分布在断裂分布带上,大多发生在盆地外围隆起区,而在断陷盆地内部很少发生。南边地震深度较深,而北边地震深度较浅。44。N南北两侧差异明显,各存在两个地震活跃层位。
     华北板块是由SE向倾向于NW向的“低-高-低-高”的四层速度异常带构造成的“穹隆”式的结构;华北板块北缘增生带,主要体现为三层“低-高-低”条带状速度异常结构;额尔古纳-兴安地块表现为由SW倾向于NE方向的三层“低-高-低”条带状速度异常结构;松嫩地块SW部,即经过松辽盆地的区域,表现为“高-低-高”的三层条带状速度异常结果,NE部过渡为“低-高-低-高”的近似水平的四层条带状速度异常,最上层的低速带较薄;兴凯地块与佳木斯地块表现为“低-高-低”的三层条带状速度异常,与松嫩地块的NE部地层连续性较好,但兴凯地块与佳木斯地块相同性质的速度异常,深度较浅。
     长白山火山下方存在着低速异常体,与他人的研究工作,长白山火山是一个弧后板内火山是相一致的。震源的位置主要分布在高速异常区与零速度扰动线附近,也即高速异常与低速异常相交的区域,可见震源的发生与高速异常有很密切的关系,应发生在高速异常区或速度变化过渡带上。华北板块有个别地震分布于低速异常区内,这些地震与地层中水的作用有关。
     深源地震的震源机制解为典型的板块俯冲造成的结果,远离东北地区的日本海域的深源地震主节理面近乎于水平,辅节理面近乎于垂直,因此俯冲角度较小,到东北的珲春地区,俯冲角度增大。陆地浅源地震,从震源机制解来看,一对节理面近乎于垂直,主要为右旋走滑及左旋走滑断层,为地块走滑造成。
The earthquakes which are the Violent release pattern of energy in the Earth, give a huge disaster and economic losses to the persons. The Wenchuan earthquake occurred on May 12, 2008, the Haiti earthquake occurred on Jan. 12, 2010 and the Chile earthquake occurred on Feb. 17, 2010 all give tremendous losses and casualties. it has long been a goal of seismologists to really understand the mechanism of the earthquake. There is the chinese largest oil field-Daqing Oilfield in the Northeast china, and there are a large number of industrial and character-intensive areas here,but the Northeast China is located in the Eurasian Plate and the Pacific plate collision zone, near one of the world's two major seismic zone, Central Pacific seismic zone, seismic activity has its particularity. To further study the causes of earthquakes as well as the relationship between crustal structure, the Northeast China is chosen to be the study area.
     We selected seismological travel time data from 2001 to 2008 in the Northeast seismological stations net and seismological travel time and waveform data from 2007 to 2009, in the 16 stations we laid in the Northeast China. We did the re-positioning, tomography and focal mechanisms to the earthquakes in the Northeast China.to try to explain the cause of the earthquakes and its relationship with the crust-mantle structure and stress field in the Northeast China.
     For the inversion of geophysical work, the well posed solution is very important, including wellposedness existence, uniqueness and stability. For the inversion problem, the establishment of an appropriate model is very important. The earthquake relocation, tomography and the inversion of focal mechanisms, are based on one-dimensional velocity model. So we first determine the one-dimensional velocity model. The one-dimensional Global velocity model has four kinds. We go through the average standard deviation of the residuals of the theoretical and actual travel time to determine the one-dimensional velocity model. When the average standard deviation is smaller, it illustrate the difference between the theoretical travel time and the actual travel time is smaller and the model is more similar to the actual formation.
     After the establishment of one-dimensional velocity model, we take the travel time data in the Northeast China to relocate the earthquakes source to analyze the northeast China's spatial distribution of earthquakes, the depth layer of the earthquake based on the re-positioning results,
     Using the travel time data, we carry on the tomographic imaging of the crust and mantle in the Northeast China using the pseudo-bending ray tracing to study the crust and mantle in Northeast China , the earthquake distribution and its relationship with the crust-mantle structure and the structural characteristics of the Changbai volcano in Northeast China.
     We carry on the inversion of focal mechanisms with moment tensor inversion in Northeast China to determine the principal stress axis, advocated force axis. The very important issue in moment tensor inversion is the synthetic theory of wave. The Green's function in the waveform synthesis problem is calculated to use the coefficient matrix and the wave number integral method, then according to the synthetic theory waveform fit with the observed waveform , the best focal mechanism is found.
     According to the relocation research, the earthquakes in the Northeast China can be roughly divided into four area, which are mainly distributed in the fracture areas, mostly in uplifts surrounding the basin area, rarely in the sedimentary basin; In the spatial distribution, the depth of the earthquakes in southern area is deeper and the depth of the earthquakes in northern area is shallower. There are significantly differences between the north and south sides separated by the latitude 44°, which separately has two active earthquake layers.
     Based on the tomographic result, the horizontal sections can be divided into 3 bands of speed anomaly with nearly NE-SW direction. A band anomalies shows low anomaly in the Northeast, high-speed anomalies in the central, the major changes in the southwest is that the high-speed anomaly changes into the low-speed anomaly from 2km section to 5km section , which changes into high-speed anomaly untile 30km section; B band anomaly always shows low-speed anomaly in the southwest, whose area increases continuously, and it shows low-speed anomaly in the Northeast and quickly disappears and change into high-speed anomaly, take on the low-speed anomaly in the 30km section, and in the central of the section it shows high-speed anomaly and only performance low speed abnormal in the 30km section. C band anomaly performance the low-speed anomalies in the northeast and high-speed anomalies in southwest, and both areas are expanding. From the NE and NW vertical profile sections, the North China plate is composed of "low - high - low - high" four velocity anomalies which is inclining to NW to form a "dome" structure; The northern accretion zone of North China Plate takes on“low-high-low”three velocity anomalies; The Ergun-Xingan masiff presents“low-high-low”three velocity anomalies which is inclining to NE; The SW part of the Songnen masiff which crosses the Songliao basin shows“high-low-high”three velocity anomalies, and the NE part of the Songnen masiff takes on the nearly horizontal“low-high-low-high”four velocity anomalies, and the top layer is thin; The Xingkai masiff and the Jiamusi masiff both show“low-high-low”three velocity anomalies, and compared with the Songnen masiff the stratum has good continuity, but the same characteristic anomaly in the Xingkai masiff and the Jiamusi masiff is shallower than in the Songnen masiff.
     .The Changbai volcano has low velocity body below, ,which is consistent with previous research work which is a volcanic arc plate. The locations of the earthquakes source are mainly in the high anomaly areas or near 0 velocity disturbance line, ie, high-speed anomaly and low-speed anomaly intersection region, which shows that the earthquake occurrence has close relationship with the high-speed anomaly. The earthquakes should occur in the high-speed area or anomalies transition zones. The individual earthquakes in North China plate are in the low velocity zone, which has close relation with the water.
     The focal mechanism can be divied into two types based on the focal mechanism solutions. Deep earthquake focal mechanism solutions is the typical result of plate subduction, the main plane in the Japan Sea is nearly horizontal and the secondary plane is nearly vertical, so the dive angle is small,and near the northeast, the subduction angle increases; A pair of plane of focal mechanism solutions of the shallow earthquakes in the land is nearly vertical ,which indicate the dextral strike-slip and sinistral strike-slip fault caused with the massif slip movement.
     Through the focal relocation, tomography and focal mechanism studies, we can see that the Northeast region is influenced by the subduction of the Pacific plate whose subduction angle increases from SE to NW and velocity structural abnormalities among the masiff, make the blocks strike-slip movement to form four major earthquake zone in the deep fault belt.
引文
[1]谢鸣谦.拼接板块构造及其驱动机理——东北及邻区的大地构造演化[M].北京:科学出版社,2000.
    [2]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社,1989.
    [3]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    [4]赵济,赵传康.中国地理[M].北京:高等教育出版社,1999.
    [5]丁国瑜.中国岩石圈动力学概论[M].北京:地震出版社,1991.
    [6] J.B.赖特.矿床、大陆漂移和板块构造[M].北京:地质出版社,1982.
    [7]杨宝俊.在地学断面域内用地震学方法研究大陆地壳——以中国满洲里—绥芬河地学断面为例[M].北京:地质出版社,1999.
    [8]程裕淇.中国区域地质概论[M].北京:地质出版社,1994.
    [9]杨宝俊,张梅生,王璞珺.中国油气区地质-地球物理解析(上卷) [M].北京:科学出版社, 2003:1-185.
    [10]黑龙江小地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [11]石宝林,刘万崧.满——绥剖面重力数据处理及地壳结构的研究[J].长春地质学院学报,1995,25(2):195-199
    [12]窦喜英,吴燕冈,王恩利,等.重磁对应分析方法在东北地区实际资料处理中的应用[J].吉林地质,2006,25(2):42-47.
    [13]张建中,戴云,钟本善.下辽河裂谷型断陷盆地基底的重力解释方法[J].物探化探计算技术,1999,21(3):252-256.
    [14]孙德梅,顾玉民,赵金花.辽宁省酸性岩体的重力场解释及找矿[J].地质论评,1999,45(3):328-333
    [15]张凤旭,孟令顺,王世煜,等.用离散余弦变换(DCT)研究大庆探区外围DB1线重力场特征[J].吉林大学学报(地球科学版),2007,37(5):1009-1015
    [16]蒋甫玉,孟令顺,张凤旭,等.利用重力资料研究黑龙江省孙吴——嘉荫地区基底构造特征及油气远景[J].世界地质,2007,26(3):363-367
    [17]刘银萍,孟令顺.利用重力异常研究虎林盆地的构造分区和基底形态[J].吉林大学学报(地球科学版),2007,37(增刊):36-39
    [18]王彦国,孟令顺,张明仁.利用重力场研究漠河盆地的构造格局[J].吉林大学学报(地球科学版),2008,38(增刊):39-42
    [19]汪为为,周立宏,肖敦清,等.东北地区重磁场与地形结构特征[J].地球物理学进展,2006,21(3):730-738
    [20]涂广红,汪为为,朱东英,等.东北地区剩余地磁异常特征与地质构造及成矿带的关系[J].地球物理学进展,2006,21(3):746-755
    [21]汪为为,涂广红,朱东英,等.大庆外围盆地地球物理场与盆地基底特征[J].地球物理学进展,2006,21(4):1064-1076
    [22]刘伟,刘国兴,韩江涛.关于西拉木伦河断裂东延走向的研究——来自于MT资料的证据[J].世界地质,2008,27(1):89-94
    [23]刘国兴,张兴洲,杨宝俊,等.佳木斯地块及东缘岩石圈电性结构特征[J].地球物理学报,2006,49(2):598-603
    [24]刘国兴,张志厚,韩江涛,等.兴蒙、吉黑地区岩石圈电性结构特征[J].中国地质,2006,33(4):824-831
    [25]杨宝俊,刘财,刘万崧,等.东北地区岩石圈结构的地震学特征与对矿产资源的动力控制作用[J].中国地质,2006,33(4):866-873
    [26]张兴洲,杨宝俊,吴福元,等.中国兴蒙——吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823
    [27]杨宝俊,穆石敏,金旭,等.中国满洲里——绥芬河地学断面地球物理综合研究[J].地球物理学报,1996,39(6):772-783
    [28]卢造勋,蒋秀琴,潘科,等.中朝地台东缘地区的地震层析成像[J].地球物理学报,2002,45(3):338-351
    [29]赵金仁,张先康,杨卓欣,等.长白山天池火山区上地壳三维速度层析成像[J].地球物理学报,2003,46(6):796-882
    [30]赵大鹏,雷建设,唐荣余.中国长白山火山的起源:地震层析成像证据[J].科学通报,2004,49(14):1439-1446
    [31]宋建立.长白山火山区地壳结构研究及火山[D].北京:中国地震局研究所,2007.
    [32]赵金仁,张先康,杨卓欣,等.长白山天池火山区上地壳三维速度层析成像[J].地球物理学报,2003,46(6):796-802
    [33]周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,763-775
    [34]周长勇,葛文春,吴福元,等.大兴安岭北段塔河辉长岩的岩石学特征及其构造意义[J].吉林大学学报(地球科学版),2005,35(2):143-149
    [35]李锦轶,莫申国,和政军,等.大兴安岭北段地壳左行走滑运动的时代及其对东北及邻区中行代以来地壳构造演化重建的制[J].地学前缘,2004,11(3):157-167
    [36]匡永生,赵书跃,秦秀峰,等.大兴安岭北段早石炭世洋岛玄武岩的确立及成因意义[J].吉林大学学报(地球科学版), 2005, 35(4):423-429
    [37]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D].长春:吉林大学,2007
    [38]刘伟,潘小菲,谢烈文,等.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式[J].岩石学报,2007,23(2):441-460
    [39]周新华,英基丰,张连昌,等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学——中国地质大学学报,2009,34(1):1-10
    [40]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,749-762
    [41]黎广荣,迟效国,董春艳,等.大兴安岭中段东南部糜棱岩化花岗岩的Rb-Sr年龄[J].吉林大学学报(地球科学版),2006,36(增刊):11-14
    [42]邵济安,张履桥,牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学D辑,1998,28(3):193-200
    [43]葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,396-406
    [44]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,181-189
    [45]范蔚茗,郭锋,高晓峰,等.东北地区中生代火成岩Sr-Nd同位素区划及其在地构造意义[J].地球化学,2008,37(4):361-372
    [46]傅淑芳,刘宝诚.地震学教程[M].北京:地震出版社,1991
    [47] Geiger L. Probability method for the determination of earthquake epicenters from arrival time only[J].Bull. St. Louis. Univ,1912,8:60-71
    [48] Douglas A. Joint epicenter determination[J].Nature,1976,215:45-48
    [49] Dewey J. Seismicity and tectonics of western Venezuela[J]. Bull. Seism. Soc. Am, 1972,62(6):1711-1751
    [50] Crosson R S. Crustal structure modeling of earthquake data,1, Simultameous least squares estimation of hypocenter and velocity parameters[J]. J. Geophys. Res. 1976,81(17):3036-3046
    [51] Waldhauser F, Ellsworth W L. A double-difference earthquake location algorithm:method and application to the Northern Hayward Fault, California[J]. Bull.Seism.Soc.Am, 2000,90(6):1353-1368
    [52] Jellreys H. The times of P,S and SKS and the velocities of P and S[J]. Mon.Not.R.A.S,,Geophys,Suppl,1939,4:498-533.
    [53] Jellreys H, Bullen K E. Seismological tables[M]. Brit. Assoc. for the Advanc. of Sci., Gray-Milne Trust,London,1940.
    [54] Jellreys H. The times of P in Japanese and European earthquakes[J], Mon. Not. R. A. S.,Geophys. Suppl.1954,6:557-565
    [55] Jellreys H, Bullen K E. Seismological tables[M]. Brit. Assoc. for the Advanc. of Sci., Gray-Milne Trust,London,1958
    [56] Dzinewonshi A M,Anderson D L. Preliminary reference earth model[J].physics of the earth and planetary interiors,1981,25(4):297-356
    [57] Kennett B L N,Engdahl E R. Traveltimes for global earthquake location and phase identification[J].Geophys. J. Int.,1991,105:429-465.
    [58] Kennett B L N, Engdahl E R,Buland R. Constraints on seismic velocities in the earth from travel times[J]. Geophys,J. Int, 122,108-124.
    [59] Aki K, Lee W. Determination of three dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes,1,Ahomogeneous initial model[J]. J. Geophys. Res., 1976,81:4381-4399.
    [60] Aki K, Christoffersson A, Husebye E. Determination of the three-dimensional seismic structure of the lithosphere[J]. J. Geophys. Res., 1977, 82:277-296.
    [61]刘福田.震源位置和速度结构联合反演-理论和方法[J].地球物理学报,1984,27(2):167-175.
    [62]金安蜀,刘福田,孙永智.北京地区地壳和上地幔的三维P波速度结构[J].地球物理学报,1980,23(2):172-182.
    [63]杨文采,李幼铭,应用地震层析成像[M].地质出版社,1993
    [64]滕吉文,张中杰,白武明,等.岩石圈物理学[M].北京:科学出版社,2004.
    [65] Zhao D. New advances of seismic tomography and its applications to subduction zones and earthquake fault zones: A reviews[J]. The Island Arc, 2001,10:68-84.
    [66] Thurder C. Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California[J]. J. Geophys. Res., 1983,88:8226-8236.
    [67] Um J, Thurber C. A fast algorithm for two-point seismic ray tracing[J]. Bull. Seismol. Soc. Am., 1987,77:972-986.
    [68] Zhao D, Hasegawa A, Horiuchi S. Tomographic imaging of P and S wave velocity structure beneath Northeastern Japan[J]. J. Geophys. Res., 1992, 97:19909-19928.
    [69] Zhao D, Hasegawa A, Kanamori H. Deep structure of Japan subduction zone as derived from local, regional and teleseismic events[J]. J. Geophys. Res., 1994,99:22313-22329.
    [70] Russell B, Brian. Geophysics in the 21st Century, BUTSURITANSA, 1999,52:120-123.
    [71] Dziewonshi A M. Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6[J]. J. Geophys. Res.,1984, 89:5929-5952.
    [72] Humphreys E, Clayton R. Adaptation of back projection tomography to seismic travel time problems[J]. J. Geophys. Res., 1988, 93:1073-1085.
    [73] Lees J, Crossson R. Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data[J]. J. Geophy. Res., 1989, 94: 5716-5729.
    [74] Cerveny V, Molotkov I A, Psencik I. Ray method in seismology[M] Univ. Karlova Press, Prague, Czechoslovakia, 1977.
    [75] Zhao D, Horiuchi S, Hasegawa A. 3-D seismic velocity structure of the crust and uppermost mantle in the northeastern Japan arc[J].Tectonophysics, 1990, 181:135-149.
    [76] Zhao D, Matsuzawa T, Hasegawa A. Morphology of the subducting slab boundary in the northeastern Japan arc[J]. Phys. Earth Planet. Inter., 1997, 102:89-104.
    [77] Zhao D, Kanamori H. The 1994 Northridge earthquake: 3-D crustal structure in the rupture zone and its relation to the aftershock locations and mechanisms[J]. Geophys. Res. Lett., 1995, 22:763-766.
    [78] Zhao D, Xu Y, Wiens D, et al. Depth extent of the Lau back-arc spreading center and its relation to subduction processes[J].Science, 1997b, 278:254-257.
    [79] Gorbatov A, Dominguez J, Suarez G., et al. Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula[J].Geophys. J. Int., 1999, 137: 269-279.
    [80] Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions[J]. J. Geophys. Res., 2006,111:B09305.
    [81] Fan G., Wallace T, Zhao D. Tomographic imaging of deep velocity structure beneath the eastern and southern Carpathians, Romania: Implications for continental collision[J]. J. Geophys. Res.,1998,103:2705-2723.
    [82] Serrano I, Morales J, Zhao D, et al. P-wave tomographic images in the Central Betics-Alboran Sea(South Spain) using local earthquakes: Contribution for a continental collision[J]. Geophys. Res. Lett.,1998,25:4031-4034.
    [83] Zhao D, Kanamori H. P-wave image of the crust and uppermost mantle in southern California[J]. Geophys. Res. Lett., 1992, 19:2329-2332.
    [84] Zhao D, Kanamori H, Humphreys E. Simultaneous inversion of local and teleseismic data for the crust and mantle structure of southern California[J]. Phys. Earth Planet. Inter., 1996,93:191-214.
    [85] Wagner L S,Beck S,Zandt G. Upper mantle structure in the south central Chilean subduction zone(30°to 36°S)[J]. J.Geophys.Res.,2005,110,doi:10.1029.
    [86]赵大鹏,雷建设,唐荣余.东北长白山火山的起源:地震层析成像证据[J].科学通报,2004,49(14):1439-1446.
    [87] Lei J,Zhao D. P-wave tomography and origin of the Changbai intraplate volcano in northeast Asia[J]. Tectonophysics,2005,397:281-295.
    [88] Zhao D,Lei J,Inoue T,et al. Deep structure and origin of the Baikal rift zone[J].Earth Planet. Sci. Lett.,2006,243:681-691.
    [89] Huang J, Zhao D, Zheng S. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China[J].J.Geophys.Res.,2002,107:10.1029
    [90] Mishra O P,Zhao D.Crack density,Saturation rate and porosity at the 2001 Bhuj,India,earthquake hypocenter:A fluid driven earthquake?[J]. Earth Planet. Sci.Lett.,2003,212;393-405.
    [91]齐诚,赵大鹏,陈顒,等.首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J].地球物理学报,2006,49(3):805-815.
    [92] Sadeghi H. Fatemi A S M,Suzuki S,et al. 3-D velocity structure of the 2003 Bam earthquake area(SE Iran):Existence of a low-Poisson’s ratio layer and its relation to heavy damage[J]. Tectonophysics,2006,417:269-283.
    [93]傅淑芳,刘宝诚,李文艺.地震学教程(下册)[M].北京:地质出版社, 1980
    [94] Turcotte D, Schubert G.. Geodynamics, Applications of continuum physics to geological problems[M]. New York: John Wiley and Sons Press,1982.
    [95] Tatsumi Y, Maruyama S, Nohda S. Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection[J]. Tectonophysics, 1990, 181:299-306.
    [96]田有.中国华北和美国加州地区地震层析成像研究[D].北京:中国科学院研究生院,2008.
    [97] Aki K, Richards P G. Quantitative Seismology[M].Sausalito:University Science Books,2002
    [98] Love A E H,M A, Sc D.et al.A treatise on the mathematical theory of elasticity[M]. Oxford, 1927
    [99] Sezawa K. On the transmission of seismic waves on the bottom surface of an Ocean[J].Bull. Earthquake Res. Inst. 1931,v9:115-143
    [100] Thomso W T. Transmission of elastic waves through a stratified solid medium[J]. J.appl.Phys., 1950,21:89-93.
    [101] Haskell N A. The disperdion of surface waves on multilayered media[J]. Bull.Seism.Soc.Am., 1953,43: 17-34.
    [102] Haskell N A.Radiation pattern of rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium[J]. Bulletin of the Seismological Society of America,1963,53(3):619-642
    [103] Haskell N A. Radiation pattern of surface waves from point suouces in a multi-layered medium[J]. Bulletin of the Seismological Society of America, 1964, 54(1):377-393
    [104] Hudson J A. A quantitative evaluation of seismic signals at teleseismic distances—Ⅰradiation from point sources[J]. Geophys. J.R.astr.Soc, 1969, 18:233-249.
    [105] Gilbert F, Buland R. An enhanced deconvolution procedure for retrieving theseismic moment tensor from a sparse network[J].Geophys. J. R. Astr. Soc., 1976, 47:251-255.
    [106] Wang C Y, Herrmann R B.A numerical study of P- SV- and SH-wave generation in a plane layered medium[J].Bulletin of the Seismology Society of America,1980,70(4):1015-1036.
    [107] Herrmann R B, Wang C Y. A comparison of synthetic seismograms[J]. Bulletin of the Seismological Society of America,1985,75(1):41-56.
    [108] Jost M L, Herrmann R B. A student’s guide t and review of moment tensors[J]. Seismological research letters,1989,60(2),37-57.
    [109] Gilbert F, Dziewonski A M. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Phil.Trans.R.Soc.,1975A,278:187-269.
    [110] Nakanishi I, Kanamori H. Effects of lateral heterogeneity and source process time on the linear moment tensor inversion of long-period Rayleigh waves[J]. Bull. Seism.Soc.Am.,1982,72:2063-2080.
    [111] Dziewonshi A M, Friedman A, Giardini D, et al. Global seismicity of 1982: centroid-moment tensor solutions for 308 earthquakes[J].Phys. Earht Planet. Interiors,1983a,33:76-90.
    [112] Seth S, Michael W. An introduction to seismology, earthquakes and earth structure[M]. Cornwall, Blackwell Publishing Ltd.,2003.
    [113] Ewing W M , Wenceslas S. J , Frank P .Elastic waves in layered media[M]. New York,McGRAW-Hill,1957.
    [114] Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J. Geophys. Res,1981,86,2825-2852.
    [115] Helmberger D V. Theory and application of synthetic seismograms,in earthquakes:Observation, Theory,and Interpretation[J].Italian physical Society,1983,37:174-217.
    [116]赵翠萍. 1997-2003新疆伽师震源区特征的地震学方法研究[D].北京:中国地震局地球物理研究所,2006.
    [117]刘瑞丰,陈培善,党京平,等.宽频带数字地震记录仿真的应用[J].地震地碰观测与研究,1997,18(3):7-12.
    [118]李文军,王培德,陈棋福.1982年卢龙Ms6.1地震余震序列震源机制的矩张量反演[J].地震学报,2006,28(2):111-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700