用户名: 密码: 验证码:
基于小波变换的二维地球化学景观多重分形建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内外大量研究结果表明,尺度不变性是由各种地质过程和地质事件所产生的地质特征和模式的本质属性。多重分形理论所提供的奇异性、广义自相似性、多重分形谱等概念和相关的模型,不仅能够客观的描述成矿系统、成矿过程、成矿富集规律、矿产资源时空分布,还提供了定量模拟和识别成矿异常(地质、地球物理、地球化学和遥感异常)的有效模型和实用方法。
     作为傅里叶分析的延续,小波分析既保留了数据空间位置或时间上的信息,同时也包括了频域中的信息,因此对于处理这些由各种地质过程和地质事件形成的非平稳、奇异的二维地学信息时,小波变换有它的内在优势。此外,小波分析与多重分形都是描述尺度特征的工具,多重分形是从整体上描述了关于测度的尺度所具有的统计规律,而小波变换是通过多分辨率的特点由粗到细的观察某一点上的尺度信息,相当于对数据进行频率分割,小波分析和多重分形在尺度分析方面就一点和全局达到了统一。
     围绕近几年多重分形理论在固体地球科学中的发展和应用,结合另外一种尺度分析手段——小波分析理论,本文开展的主要研究工作和获得的主要结论包括以下几个方面:
     (1)首先总结了近几年国内外基于小波系数的高阶矩的多重分形分析方法,主要包括小波系数,WTMM,WLs等方法,并通过经典矿物分割模型de Wijs模型与对应的盒子测度法相对比,结果表明,以小波系数为基础的分析在一些前提下是比较有效的,总体表现没有传统的盒子测度法表现稳定。
     (2)其次引入了一种新的尺度分析方法——累积量分析,一种在湍流域中被证实的可以避免少数误差扰动,增强整体尺度性分析稳定的估计方法,通过基于累积量的低阶矩统计量与差分导数对比,参照高阶矩估计,证明对于一些由简单多重分形构成的数据,基于累积量估计还是比较有效的。
     (3)作为C-A,S-A方法等基于幂律关系的滤波模型的延续,本文基于小波能谱与尺度之间的幂律关系,构建了W-A模型(小波能谱和面积)滤波器,并通过云南个旧地区水系沉积物Sn,Pb和Cu元素的异常滤波的分析验证,证明该方法是有效的。
Scale-invariance has been viewed as a fundamental property of the nature for describing the geological characteristics and patterns caused from various geological processes and events. It has been demonstrated that the concepts and models relevant to multifractal theory are useful not only for characterizing the fundamental properties of non-linearity of the mineralization processes, the singular distribution of mineral deposits and ore element concentrations in mineral districts, but also for singularity analysis and anomaly delineation.
     As an extension to Fourier analysis, it has been demonstrated that singular or non-stationary signals such as geochemical or geological patterns under wavelet analysis shows more efficient than Fourier analysis based on the retaining both space or time position and frequency components. Wavelet analysis and multifractals are different descriptions concerned with scaling analysis, one focuses on the general similarity and the other focuses on the scale information of one point.
     This dissertation mainly devoted to some contents as follows:
     Firstly, various multifractal formalisms based on wavelet transforms are summarized including wavelet coefficients, WTMM, and WLs methods. It is demonstrated by the case study of de Wijs model and stream sediment elements concentrations that box-counting is superior to the WLs and wavelet coefficient.
     Secondly, a new scaling analysis method called cumulant analysis is proposed, which has been demonstrated to be an efficient method for general scaling analysis in fully developed turbulence fields and efficiently overcome the influence of some noises. Meanwhile, the lower orders moment estimation derived from cumulant analysis, compared with direct polynomial expansion using difference derivatives, shows good behavior for simple multifractals.
     Finally, a new filter is proposed based on the power laws existed between wavelet coefficients and scales extended from C-A, S-A models. It has been showed us that by the case of stream sediment elements concentrations that W-A model is an efficient model for anomalies identification and can effectively avoid the influence caused from pseudo-high frequency components.
引文
Agterberg, F. P., 2001. Multifractal Simulation of Geochemical Map Patterns. Journal of China University of Geosciences, 12(1): 31-39.
    Agterberg, F. P., 2007. New applications of the model of de Wijs in regional geochemistry. Mathematical Geology, 39(1): 1-25.
    Agterberg, F. P., Cheng, Q., Wright, D., 1993. Fractal modeling of mineral deposits, In: Proceedings XXIVAPCOM, October 31-November 3, Montreal, Quebec. 43-53.
    Arneodo, A., Grasseau, G. and Holschneider, M., 1988. Wavelet transform of multifractals. Phys. Rev. Lett., 61(20), 2281–2284.
    Arneodo, A., Bacry, E. and Muzy, J. F., 1995a. The thermodynamics of fractals revisited with wavelets. Physica A, 213(1-2), 232–275.
    Arneodo, A., Bacry, E. and Muzy, J. F., 1995b. Oscillating singularities in locally self-similar functions. Phys. Rev. Lett., 74(24), 4823–4826.
    Arneodo, A., Bacry, E., Jaffard, S., et al., 1997a. Oscillating singularities on cantor sets: A grand-canonical multifractal formalism. J. Stat. Phys., 87(1-2), 179–209.
    Arneodo, A., Muzy, J. F., and Roux, S. G., 1997b. Experimental analysis of self-similarity and random cascade processes: Application to fully developed turbulence data. J. Phys. II, 7(2), 363–370.
    Arneodo, A., Bacry, E., Manneville, S., et al., 1998a. Analysis of random cascades using space-scale correlation functions. Phys. Rev. Lett., 80(4), 708–711.
    Arneodo, A., Bacry, E. and Muzy, J. F., 1998b. Random cascades on wavelet dyadic trees. J. Math. Phys., 39(8), 4142–4164.
    Arneodo, A., Bacry, E. and Muzy, J. F., 1998c. Towards log-normal statistics in high Reynolds number turbulence. Eur. Phys. J. B, 1(1), 129–140.
    Arneodo, A., Manneville, S., Muzy, J. F., et al., 1999. Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis. Philos. Trans. R. Soc. London, Ser. A, 357(1760), 2415–2438.
    Arneodo, A., Decoster, N., Roux, S. G., 2000. A wavelet–based method for multifractal imageanalysis 1 Methology and test applications on isotropic and anisotropic random rough surfaces. Eur. Phys. J. B., 15, 567-600.
    Bacry, E., Muzy, J. F. and Arneodo. A., 1993. Singularity spectrum of fractal signals from wavelet analysis: Exact results. J. Stat. Phys., 70(3-4): 635–674.
    Chhabra, A. B., Sreenivasan, K. R., 1991. Negative dimensions: theory, computation and experiment. Phys. Rev. A, 43(2): 1114–1117.
    Ciuciu, P., Abry, P., Rabrait, C., et al., 2008. Ieee journal of selected topics in signal processing. 2(6): 929-943.
    Cheng, Q., 1997. Discrete Multifractals. Mathematical Geology, 29(2): 245-266.
    Cheng, Q., 1999a. Multifractality and spatial statistics. Computers&Geosciences, 25(9): 949-961.
    Cheng, Q., 1999b. Spatial and scaling modeling for geochemical anomaly separation. Journal of Geochemical Exploration, 65: 175-194.
    Cheng, Q., 2000. GeoData analysis system (GeoDAS) for mineral exploration: User's guide and exercise manual. Material for the training workshop on GeoDAS held at York University,Nov. 1 to 3, 2000, 204. Available at www.gisworld.org/geodas.
    Cheng, Q., 2003. Fractal and multifractal modeling of hydrothermal mineral deposit spectrum: application to gold deposits in the Abitibi Area, Canada. Journal of China University of Geosciences, 14(3): 199-206
    Cheng, Q., 2004. A new model for quantifying anisotropic scale invariance and decomposing of complex patterns. Mathematical Geology, 36(3): 345-360.
    Cheng, Q,2005. Multifractal distribution of eigenvalues and eigenvectorsfrom 2d multiplicative cascade multifractal fields. Mathematical Geology, 37(8): 915-927.
    Cheng, Q., 2006. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324.
    Cheng, Q., 2007a. Multifractal imaging filtering and decomposition methods in space, fourier frequency, and eigen domains. Nonlin. Processes Geophys., 14(3): 293-303
    Cheng, Q., 2007b. Singularity of mineralization processes and power-law models for mineral resources quantitative assessment, In: 6th Annual Meeting of the
    International-Professionals-for-the-Advancement-of-Chinese-Earth-Sciences, Jun 25-28,2007 China Univ Geol Sci, Wuhan, 18(Sp.Iss.SI):245-247.
    Cheng, Q., 2008. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments. Mathematical Geosciences, 40(5): 503-532.
    Cheng, Q., Agterberg, F. P., 1995. Multifractal modeling and spatial point processes. Mathematical Geology, 27(7): 831-845.
    Cheng, Q., Agterberg, F. P., 1996a. Comparison between two types of multifractal modeling. Mathematical Geology, 28(8): 1001-1016.
    Cheng, Q., Agterberg, F. P.,1996b. Multifractal modeling and spatial statistics. Mathematical Geology, 28(1): 1-16.
    Cheng, Q., Agterberg, F. P., Ballantyne, S. B., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2): 109-130.
    Cheng, Q., Agterberg, F. P., Bonham-Carter, G. F., 1996. A Spatial analysis method for geochemical anomaly separation. Journal of Geochemical Exploration, 56(3): 183-195.
    Cheng, Q., Xu, Y., and Grunsky, E., 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation, in Lippard, S. J., Naess, A., and Sinding-Larsen, R., eds.,Proc. lntern. Assoc. for Math. Geology Meeting, (Trondheim, Norway), vol. 1: 87-92.
    Delour, J., Muzy, J. F., Arneodo A., 2001. Intermittency of 1D velocity spatial profiles in turbulence: a magnitude cumulant analysis. European Physical Journal B, 23(2): 243-248.
    Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal measures. In: Peitgen, H.-O., Jurgens, H., Saupe, D. (Eds.), Chaos and Fractals. Springer-Verlag, New York, 922-953.
    Frisch, U., Parisi, G., 1985. On the singularity structure of fully developed turbulence, in Ghil, M., Benzi, R., Parisi G., eds., Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, New York, 84-88.
    Grassberger, P., 1983. Generalized dimensions of strange attractors. Phys. Lett. A, 97: 227-230.
    Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., Fractal measures and their singularities:The characterization of strange sets. Phys. Rev. A, 33(2): 1141-1151.
    Hentschel, H. G. E., Procaccia, L., 1983. The infinite number of generalized dimensions of fractals and strange attractors. Physica, 8: 435-44.
    Jaffard. S., 1997. Multifractal formalism for functions part 1: Results valid for all functions. SIAM J. Math. Anal., 28(4): 944–970.
    Jaffard. S., 1997. Multifractal formalism for functions part 2: Self-similar functions. SIAM J. Math. Anal., 28(4): 971–998.
    Jaffard, S Lashermes, B., and Abry, P., 2006. Wavelet leaders in multifractal analysis. In T. Qian, M.I. Vai, and X. Yuesheng, editors, Wavelet Analysis and Applications, Basel, Switzerland, Birkhauser Verlag. 219-264.
    Lashermes, B., Roux, S., Abry, P., et al., 2008. Comprehensive multifractal analysis of turbulent velocity using the wavelet leaders. Eur. Phys. J. B, 61(2): 201–215.
    Li, C. J., Ma, T. H., Shi, J. F., 2003. Application of a fractal method relating conentrations and distances for separation of geochemical anomalies from background. Journal of Geochemical Exploration, 77: 167-175.
    Li, Q. M., Cheng, Q., 2006. VisualAnomaly: A GIS-based multifractal method for geochemical and geophysical anomaly separation in Walsh domain. Computers & Geosciences, 32: 663-672.
    Mandelbrot, B. B., 1972. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence, in Rosenblatt, M., Van Atta, C., eds., Statistical Models and Turbulence, Lecture Notes in Physics 12, Springer, New York, 333-351.
    Mandelbrot, B. B., 1974. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech., 62: 331-358.
    Mandelbrot, B. B, 1982. The Fractal geometry of nature. W. H. Freemanand Company, San Francisco, 468.
    Muzy, J. F., Bacry, E., and Arneodo, A., 1993. Multifractal formalism for fractal signals:The structure function approach versus the wavelet transform modulus-maxima method. Phys. Rev. E, 47(2): 875–884.
    Muzy, J. F., Bacry, E., and Arneodo, A., 1994. The multifractal formalism revisited with wavelets. Int. J. Bifurcat. Chaos, 4(2): 245–301.
    Paladin, G., and Vulpiani, A., 1987. Anomalous scaling laws in multifractal objects. Phys. Rep., 156, 147–225.
    Parisi, G., and Frisch, U., 1985. On the singularity structure of fully developed turbulence, in: Turbulence and Predictability in Geophysical Fluid Dynamics, edited by M. Ghil, R. Benzi,and G. Parisi, Elsevier, New York, 84-88.
    Schertzer, D., Lovejoy, S., 1991. Nonlinear geodynamical variability: multiple singularities, universality and observables, in: Non-linear Variability in Geophysics, edited by: Schertzer, D. and Lovejoy, S.,Kluwer Academic Publishers, Netherlands, 318.
    Turcotte, D. L., 2002. Fractals in petrology:Lilhos, 65: 261-271.
    Venugopal, V., Roux, S. G., Foufoula-Georgiou E., et al., 2006. Revisiting multifractality of high-resolution temporal rainfall using a wavelet-based formalism.Water resource research, 42(6): ARTN W06D14.
    Wendt, H., Roux, S. G., Jaffard, S., et al., 2008. Wavelet leaders and bootstrap for multifractal analysis of images. Signal Processing, 89(6): 1100-1114.
    陈志军, 2007.多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用(博士学位论文).武汉:中国地质大学.
    成秋明, 2000.多重分形理论和地球化学元素分布规律.地球科学——中国地质大学学报,25(3): 311-318.
    成秋明,2001a.空间自相似性与地球物理与地球化学异常分解.地球物理学进展, 16(2): 8-17.
    成秋明,2001b.多重分形方法与地质统计学方法用于勘查地球化学异常空间结构和奇异性分析.地球科学——中国地质大学学报,26(2): 161-166.
    成秋明, 2003.非线性矿床模型与非常规矿产资源评价.地球科学——中国地质大学学报,28(4): 445-454.
    成秋明, 2004.空间模式的广义自相似性分析和矿产资源评价.地球科学——中国地质大学学报, 29(6): 733-744.
    成秋明, 2006.非线性成矿预测理论:多重分形奇异性一广义自相似性一分形谱系模型与方法.地球科学——中国地质大学学报, 31(3): 337-348.
    成秋明, 2007.成矿过程奇异性与矿产预测定量化的新理论与新方法.地学前缘, 14(5): 42-53.
    成秋明, 2008.成矿过程奇异性与矿床多重分形分布.矿物学岩石地球化学通报, 27(3):298-305.
    成秋明,赵鹏大,张生元,等, 2009a.奇异性理论在个旧锡铜矿产资源预测中的应用:综合信息集成与靶区圈定.地球科学——中国地质大学学报, 34(2): 243-252.
    成秋明,赵鹏大,张生元,等, 2009b.奇异性理论在个旧锡铜矿产资源预测中的应用:成矿弱信息提取和复合信息分解.地球科学——中国地质大学学报, 34(2): 243-252.
    邓晋福,莫宣学,赵海玲,等, 1999.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境.矿床地质, 18(4): 309-315.
    胡伟文,苑秉成,杨鹏等, 2007.基于小波能量谱的舰艇目标信号特征量建模.系统仿真学, 19(17): 4025-4027.
    华仁民,毛景文, 1999.试论中国东部中生代成矿大爆发.矿床地质, 18(4): 300-307.
    李长江,麻士华,朱兴盛,等, 1999.矿产勘查中的分形、混沌与ANN.北京:地质出版社, 140.
    李军,庄镇泉,高清维,等, 2001.基于多重分形分析的图像边缘检测算法.电路与系统学报, 6(3): 16-19.
    李强,王其申, 2005.小波谱及其在线性调频中的应用.量子电子学报, 22(5): 685-689.
    李庆谋,成秋明, 2002.测井曲线分形校正.地球科学——中国地质大学学报, 27(1): 63-66.
    李庆谋,成秋明,2004.分形奇异值分解方法与异常重建.地球科学——中国地质大学学报,29(1): 109-118.
    卢耀, 2004.云南个旧矿区西区成矿条件及找矿远景探讨.矿物岩石地球化学通报, 23(1): 57-61.
    裴荣富,梅燕雄,李进文, 2004.特大型矿床与异常成矿作用.地学前缘, 11(2): 323-331.
    裴荣富,邱小平,尹冰川,熊群尧, 1999.成矿作用爆发异常及巨量金属堆积.矿床地质,18(4): 333-340.
    秦德先,谈树成,范柱国,等, 2004.个旧-大厂地区地质构造演化及锡多金属成矿.矿物学报, 24(2): 117-123.
    施俊法, 2000.地球化学异常的空间分形结构:理论与应用(博士学位论文).北京:中国地质大学(北京).
    谈树成,秦德先,陈爱兵,等, 2004.个旧锡矿区域地壳演化与成矿探讨.矿物学报, 24(2): 157-163.
    万天丰, 2004.中国大地构造学纲要.北京:地质出版社, 75-271.
    吴洪宝, 1997.小波能量谱及其在热带太平洋SSTA多时间尺度结构研究中的应用, 20(3): 301-307.
    夏庆霖,张寿庭,陈守余,等, 2007.云南个旧锡矿深部资源潜力评价的几个关键问题.矿物学报, 27(增刊): 530-531.
    谢淑云,鲍征宇, 2002.地球化学场的多重分形模式.地球化学, 2002(2): 191-200.
    徐启东,夏庆霖,成秋明, 2009.云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统.地球科学——中国地质大学学报, 34(2): 307-313.
    冶金工业部西南冶金地质勘探公司, 1984.个旧锡矿地质.北京:冶金工业出版社.
    於崇文, 1999.大型矿床和成矿区(带)在混沌边缘.地学前缘. 6(1): 85-102.
    於崇文, 2001.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上).地学前缘, 8(3): 9-28.
    於崇文, 2001.成矿动力系统在混沌边缘分形生长——一种的成矿理论与方法论(下).地学前缘, 8(4) 471-489.
    於崇文, 2002.地质系统的复杂性——地质科学的基本问题(I).地球科学. 27(5): 509-519.
    於崇文, 2003.地质系统的复杂性——地质科学的基本问题(II).地球科学. 28(1): 31-40.
    於崇文, 2004.地质系统的复杂性(上下册).北京:地质出版社. 1135.
    於崇文, 2006.矿床在混沌边缘分形生长(上下卷).安徽:安徽教育出版社. 705-724.
    於崇文,唐元骏,石平方,等, 1988.云南个旧锡多金属成矿区内生成矿作用的动力学体系.武汉:中国地质大学出版社, 394.
    曾允孚,刘文均,陈洪德,等, 1995.华南右江复合盆地的沉积构造演化.地质学报, 69(2): 113-124.
    张鹏, 2009.基于小波理论的白鹤隧道围岩稳定性非线性研究(博士学位论文).长春:吉林大学.
    张小飞,徐大专,齐泽锋,等, 2003.基于分形的奇异信号的检测.南京航空航天大学学报,35(4): 404-408.
    赵鹏大, 2002.“三联式”资源定量预测与评价——数字找矿理论与实践探讨.地球科学——中国地质大学学报, 27(5) : 482-489.
    赵鹏大, 2004.定量地学方法及应用.北京:高等教育出版社. 464.
    赵鹏大,陈永清,刘吉平,等, 1999.地质异常成矿预测理论与实践.武汉:中国地质大学出版社. 138.
    庄永秋,王任重,杨树培,等, 1996.云南个旧锡铜多金属矿床.北京:地震出版社, 124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700