用户名: 密码: 验证码:
大量程柔性铰并联六维力传感器基础理论与系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六维力传感器能够同时感知三维坐标空间的全力信息。近年来,应用于火箭发动机推力试验、飞机试飞试验、航天器对接模拟试验及风洞试验等领域的大量程六维力传感器,成为急需的高科技产品。为了克服传统铰链的摩擦对大量程六维力传感器测量精度的制约,本课题对大量程柔性铰并联六维力传感器进行了较为系统的研究。主要内容如下:
     (1)基于螺旋理论,对Stewart平台六维力传感器进行了静力分析,推导出Stewart平台六维力传感器静力映射矩阵解析式,讨论了面向任务的六维力传感器基准坐标系选取的原则。
     (2)在六维力传感器性能指标定义的基础上,利用空间模型理论,绘制了传感器各性能指标图谱,分析了各性能指标与传感器结构参数间的变化规律,建立了相应目标函数,对六维力传感器进行了优化设计,得到了综合性能优良的传感器结构设计参数。
     (3)基于影响系数和虚功原理,提出了一种建立并联机构连续刚度模型的一般方法。结合刚度矩阵瑞利商定义了并联机构连续刚度性能判定指标,对柔性铰六维力传感器刚度性能进行了分析,探讨了传感器机构的方向刚度特性。
     (4)基于李群李代数SE(3)/se(3)的伴随矩阵,推导了六自由度并联机构动力学的线性-双线性公式,建立了六自由度并联机构的动力学模型。
     (5)将柔性铰链应用到大量程并联六维力传感器结构设计,设计了传感器各部分结构并选取了材料,基于有限元技术对方案整体结构进行了受力及其模态分析,研制出了大量程柔性铰并联六维力传感器样机。
     (6)设计了大量程六维力传感器标定装置机械结构与液压动力单元,研制出基于液压系统原理的大吨位六维力加载装置,搭建了六维力传感器信号采集处理系统,开发了六维传感器标定及测量软件,研制出大量程柔性铰并联六维力传感器标定系统。
     本研究为开展大量程柔性铰六维力传感器静、动态标定实验研究奠定了基础,对大型六维力传感器的研发具有重要的指导意义。
The six-component force/torque sensor can measure the force and moment information together in three-dimension coordinate space. Recently, the wide-range six-component force/torque sensor becomes the urgent need high-tech product, which can be used in thrust testing of rocket engines, flight testing of airplane, testing of spacecraft docking simulation and wind tunnel. In order to overcome obstacle of traditional joints’friction to precision of wide range six-component force sensor, this paper presents the relative systematic research on the wide range parallel six-component force sensor with flexible joints. The main research contents are as follows:
     (1)Based on the screw theory, the statics force of the Stewart six-component force sensor is analyzed, and the static mapping matrices expression of the Stewart platform six-component force sensor is derived. The selection principle of the task-oriented six-component force sensor base coordinate system is discussed.
     (2)Based on the definition of six-component force sensor’s performance evaluation indices and with the theory of the space physical model, the performance indices atlases of sensor are plotted. The law of the indices following the changing of force sensor structure parameters is summarized. With the built optimization objective function, six-component force sensor is optimized design, and sensor structure design parameters with integration choiceness performance are obtained.
     (3)Based on influence coefficient method and principle of virtual work, continuous stiffness nonlinear mapping general model of spatial parallel mechanism is presented. Combining Rayleigh quotient of the continuous stiffness matrix, the performance index k used to estimate the spacial parallel mechanism continuous stiffness is defined. The stiffness performance of the six-component force sensor with flexible joints is analyzed, and the directional stiffness characteristic is discussed.
     (4)Based on the adjoint representation on lie group and lie algebra SE(3)/se(3), the linear-bilinear formulation of six degree-of-freedom parallel mechanisms is deduced, and the dynamic functional expressions of six degree-of-freedom parallel mechanisms are developed.
     (5)The flexible joints are introduced into the wide-range six-component force sensor structure design. The structure of sensor parts are designed, and the materials are selected. Force and mode of the whole sensor structure scheme are analyzed. The prototype model of the wide-range six-component force sensor with flexible joints is designed and developped.
     (6)The machine structure and the hydraulic power unit of wide range six-component force sensor calibration device are designed, and the big tonnage six-component force loading device with hydraulic system is developped. The signal acquisition and processing hardware system of six-component force sensor is built, and the calibration and measure software is developped. The calibration system of wide range six-component force sensor with flexible joints is developped.
     It lays a solid foundation for static and dynamic calibration experiment research of wide range six-component force sensor with flexible joints, and has important guidance significance for development of sizable six-component force sensor
引文
1 IFToMM. IFToMM Terminology. Mechanism and Machine Theory, 2003, 38(7-10):821
    2 A. Cauchy. Deuxieme Memoire Sur les Polygons et les Polyedres. Journal de I’Ecole Polytechnique, 1813, (5):87-88
    3 J. E. Gwinnett. Amusement Devices. US Patent No. 1,789,680, 1931-01-20
    4 W. L. G. Pollard. Spray Painting Machine. US Patent No. 2,213,108, 1940-08-26
    5 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. FISITA Ninth International Technical Congress, 1962:117-137
    6 K. L. Cappel. Motion Simulator. US Patent No. 3,295,224, 1967-01-03
    7 D. Stewart. A Platform with Six Degrees of Freedom. IMechE, 1965, 180(15):371-386
    8 I. Bonev. The True Origins of Parallel Robots, www.parallemic.org. 2003-06-29
    9黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997:3-8;18-21;65-78;135-147;179-186
    10 V. Murthy, K. J. Waldron. Position Kinematics of the Generalized Lobster Arm and Its Series-Parallel Dual. ASME Journal of Mechanical Design, 1992, 114:406-413
    11韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究.高技术通讯, 2001, (3):88-90
    12 K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford:Claredon Press, 1978
    13 E. F. Fichter. Stewart Platform-based Manipulator: General Theory and Practical Construction. International Journal of Robotics Research, 1986, 5(2):157-182
    14 Jean-Pierre Merlet. Force-feedback Control of Parallel Manipulators. Proceedings - 1988 IEEE International Conference on Robotics and Automation, 1988:1484-1489
    15张曙,U. Heisel.并联运动机床.北京:机械工业出版社, 2003:4-34
    16汪劲松,黄田.并联机床-机床行业面临的机遇与挑战.中国机械工程, 1999, 10(10): 1103-1107
    17 Jack Hollingum. Hexapods to Take Over?. Industrial Robot, 1997, 24(6):428-431
    18 Hans-Juergen Warnecke, Reimund Neugebauer, and Franck Wieland. Development of Hexapod Based Machine Tool. CIRP Annals - Manufacturing Technology, 1998, 47(1):337-340
    19 Bruno Siciliano. Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-loop Direct Kinematics Algorithm. Robotica, 1999, 17(4):437-445
    20 L. Romdhane. Design and Analysis of a Hybrid Serial-parallel Manipulator. Mechanism and Machine Theory, 1999, 34(7):1037-1055
    21 Jiegao Wang, Clement M. Gosselin. Static Balancing of Spatial Four-degree-of-freedom Parallel Mechanisms. Mechanism and Machine Theory, 2000, 35(4):563-592
    22 Clement M. Gosselin, Jiegao Wang. Static Balancing of Spatial Six-degree-of-freedom Parallel Mechanisms with Revolute Actuators. Journal of Robotic Systems, 2000, 17(3):159-170
    23 Lorenzo Molinari-Tosatti, Irene Fassi. Parallel Kinematic Machines for an Application in Shoes Manufacturing: From the Conceptual Design to the First Experimental Campaign. IEEE International Conference on Intelligent Robots and Systems, 2001, 1:433-438
    24 M. Weck, D. Staimer. Parallel Kinematic Machine Tools - Current State and Future Potentials. CIRP Annals - Manufacturing Technology, 2002, 51(2):671-683
    25汪劲松,段广洪,杨向东.虚拟轴机床的研究进展-兼谈在清华大学研制成功的VAMT1Y型原型样机.科技导报, 1998, (10):32-34
    26 J. C. Hudgens, D. Tesar. Fully-parallel Six Degree-of-freedom Micromanipulator: Kinematic Analysis and Dynamic Model. ASME Trends and Developments in Mechanisms, Machines, and Robotics, Kissimmee, FL, USA, 1988, 15(3):29-37
    27 Masao Washizu. Manipulation of Biological Objects in Micromachined Structures. Proceedings of the IEEE Micro Electro Mechanical Systems Workshop, Travemuende, Germany, 1992:196-201
    28 Robert Stoughton, Tatsuo Arai. Kinematic Optimization of a Chopsticks-type Micromanipulator. Proceedings of the 1992 Japan– USA Symposium on Flexible Automation Part 1 (of 2), San Francisco, CA, USA, 1992:151-157.
    29 Takeyoshi Dohl. Robot Technology in Medicine. Proceedings of the Laser Material Processing Symposium, Orlando, FL, USA, 1993, 75:179-187
    30 Kenneth W. Grace, J. Edward Colgate, Matthew R. Glucksberg, and John H. Chun. Six Degree of Freedom Micromanipulator for Ophthalmic Surgery. Proceedings - IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 1993, 1:630-635
    31 Tamio Tanikawa, Tatuo Arai, Pasi Ojala, and Masami Saeki. Two-finger Micro Hand. Proceedings - IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, 2:1674-1679
    32 Tamio Tanikawa, Tatsuo Arai, and Takanori Masuda. Development of Micro Manipulation System with Two-finger Micro Hand. IEEE International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, 2:850-855
    33 Tatsuo Arai, Jacques M. Herve, and Tamio Tanikawa. Development of 3 DOF Micro Finger. IEEE International Conference on Intelligent Robots and Systems, Osaka, Japan, 1996, 2:981-987
    34 J. -P. Merlet. Optimal Design for the Micro Parallel Robot MIPS. Proceedings - IEEE International Conference on Robotics and Automation, Washington, DC, United States, 2002, 2:1149-1154
    35杨宜民,李传芳,程良伦.仿生型步进式直线驱动器的研究.机器人, 1994, 16(1):37-39
    36孙立宁,安辉,蔡鹤皋.压电陶瓷驱动并联微动机器人的研究.高技术通讯, 1997, (3):29-31
    37毕树生,王守杰,宗光华.串并联微动机构的运动学分析.机器人, 1997, 19(4):259-264
    38赵永生.多机器人系统的动力协调及性能研究. [燕山大学工学博士学位论文]. 1999:12-65
    39赵铁石.灵活轻便仿生步行机构学研究研究. [燕山大学工学硕士学位论文]. 1992:2-10
    40 http://www.takanishi.mech.waseda.ac.jp/research/parallel/index.htm
    41 http://news.zj.com/china/detail/2007-07-09/827702.html
    42 Sujan VA., Dubowsky S. Design of a lightweight hyper-redundant deployable binary manipulator. ASME Journal of Mechanical Design, 2004, 126(1): 29-39
    43 http://news.hz66.com/main/news/international/2008090815271844.htm
    44姚裕,吴洪涛,张召明.基于Stewart平台的六维力传感器在风洞天平中应用.淮海工学院学报, 2002, 11(4):12-14
    45 Grant, P. Andris, Ballantyne, J. William. Force moment sensor. United States Patent, Patent No. 5 295 399, Date of Patent:1994,3
    46袁哲俊,王娜君.机器人用六维力、力矩传感器.中国专利,专利号:CN-2066134U,日期: 1990,11,21
    47 P. C. Watson, S. H. Drake. Pedestal and Wrist Force Sensors for Automatic Assembly. Proceedings of the 5th International Symposium on Industrial Robots, 1975:501-511
    48 H. Van Brussel, H. Belien, and H.Thielemans. Force Sensing for Advanced Robot Control. Proceedings of the 5th International Conference on Robot Vision and Sensory Controls, Amsterdam, Neth, 1985:59-68
    49 E. Kroll, et al. Decoupling Load Components and Improving Robot Interfacing with anEasy-to-use 6-axis Wrist Force Sensor. Theory of Machines and Mechanisms, Proceedings of the 7th World Congress, 1986:354-356
    50 Robot Technology. London:Kegon page Ltd, 1983:155-158
    51 J. Schott. Tactile Sensor with Decentralized Signal Conditioning. The 9th IMEKO World Congress, Berlin, 1982:246-249
    52 B. Shimano, B. Roth. On Force Sensing Information and Its Use in Controlling Manipulators. Proceedings of the IFAC International Symposium on Information-control Problems, 1977:119-126
    53 T. Yoshikawa, T. Miyazaki. A Six-axis Force Sensor with Three-dimensional Cross-shape Structure. Proceedings of IEEE International Conference on Robotics and Automation, Scottsdale, AZ, USA, 1989, 1:249-255
    54 E. Bayo, J. R. Stubbe. Six-axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design for Robotic Applications. Journal of Robotic Systems, 1989, 6(2): 191-208
    55 Masaru Uchiyama, Eduardo Bayo, and Enrique Palma-Villalon. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1991, 113(3):388-394
    56 Y. Hatamura. A Ring-Shape 6-axis Force Sensor and Its Application. Proceedings of the International Conference on Advanced Mechatronics, Tokyo, Japan, 1989:647-652
    57 Dirk Diddens, Dominiek Reynaerts, and Herdrik Van Brussel. Design of a Ring-shaped Three-axis Micro Force/Torque Sensor. Sensors and Actuators A: Physical, 1995, 46-47:225-232
    58 Shigeo Hirose, Kan Yoneda. Development of Optical 6-axis Force Sensor and Its Signal Calibration Considering Non-linear Interference. Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 1990:46-53
    59 R. Little. Force/Toque Sensing in Robotic Manufacturing. Sensors, The Journal of Machine Perception, 1992, 9(11)
    60 Makoto Kaneko. Twin-head Six-axis Force Sensors. IEEE Transactions on Robotics and Automation, 1996, 12(1):146-154
    61 T. A. Dwarakanath, Bhaskar Dasgupta, and T. S. Mruthyunjaya. Design and Development of a Stewart Platform Based Force-torque Sensor. Mechatronics, 2001, 11:793-809
    62 Chul-Goo Kang. Closed-form Force Sensing of a 6-six Force Transducer Based on the StewartPlatform. Sensors and Actuators A: Physical, 2001, 90:31-37
    63 D. R. Kerr. Analysis, Properties and Design of a Stewart-Platform Transducer. Mech. Transm. Autom. Design, 1989, 1 (11):25-28
    64 M. Sorli, S. Pastorelli. Six-axis Reticulated Structure Force/Torque Sensor with Adaptable Performances. Mechatronics, 1995, 5(6):585-601
    65 R. Ranganath, P. S. Nair, T. S. Mruthyunjaya, and A. Ghosal. A Force-torque Sensor Based on a Stewart Platform in a Near-singular Configuration. Mechanism and Machine Theory, 2004, 39(9):971-998
    66 Tao Liu, Yoshio Inoue, Kyoko Shibata, Yohei Yamasaki, and Masafumi Nakahama. A Six-dimension Parallel Force Sensor for Human Dynamics Analysis. Proceedings of 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, 2004, 1:208-212
    67 M. Uchiyama, K. A. Hakomori. Few Considerations on Structure Design of Force Sensor. Proceedings of the Third Annual Conference on Japan Robotics Society, 1985:17-18
    68 Charles C. Nguyen, Sami S. Antrazi, and Zhen-Lei Zhou. Analysis and Implementation of a 6 DOF Stewart Platform-based Force Sensor for Passive Compliant Robotic Assembly. IEEE Proceedings of Southeastcon, 1991, 2:880-884
    69 F. Aghili. On-orbit Calibration of the SPDM Force-moment Sensor. Proceedings of 2000 IEEE International Conference on Robotics and Automation, 2000, 4:3603-3608
    70 Yon-Kyu Park, Rolf Kumme, and Dae-Im Kang. Dynamic Investigation of a Binocular Six-component Force-moment Sensor. Measurement Science and Technology, 2002, 13(8):1311-1318
    71 Nicholas Krouglicof, Luisa M. Alonso, and William D. Keat. Development of a Mechanically Coupled, Six Degree-of-freedom Load Platform for Biomechanics and Sports Medicine. Proceedings of 2004 IEEE International Conference on Systems, Man and Cybernetics, Hague, Netherlands, 2004, 5:4426-4431
    72 J. K. Salisisbury, J. J. Craig. Articulate Hands: Force Control and Kinematics Issues. Int. J. Robot. Res., 1982, 1,(1):4-12
    73 Clement M. Gosselin. Dexterity Indices for Planar and Spatial Robotic Manipulators. Proceedings of 1990 IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 1990, 1:650-655
    74 M. Griffis, J. Duffy. Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement. Transactions of the ASME, Journal of Mechanical Design, 1991, (113):508-515
    75 Antonio Bicchi. A Criterion for Optimal Design of Multi-axis Force Sensors. Robotics and Autonomous Systems, 1992, 10(4)::269-286
    76 Robert S. Stoughton, Tatsuo Arai. A Modified Stewart Platform Manipulators with Improved Dexterity. IEEE Transactions on Robotics and Automation, 1993, 9(2):166-172
    77 Oren Masory, J. Wang, and Hanqi Zhuang. On the Accuracy of a Stewart Platform. Part II. Kinematic Calibration and Compensation. IEEE International Conference on Robotics and Automation, 1993, 1:725-731
    78 B. Dasgupta, S. Reddy, and T. S. Mruthyunjaya. Synthesis of a Force-torque Sensor Based on the Stewart Platform Mechanism. Proceedings of the National Convention of Industrial Problems in Machines and Mechanisms (IPROMM’94), Bangalore, India, 1994:14-23
    79 H. Q. Zhuang, O. Masory, and J. H. Yan. Kinematic Calibration of a Stewart Platform Using Pose Measurements Obtained by a Single Theodolite. Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems,‘Human Robot Interaction and Cooperative Robots’, 1995, 2:329-334
    80 W.–Y. Chung, K. J. Waldron. Wrench Reconstruction by Using a Six-axis Force Sensor. Mechanism and Machine Theory, 1995, 30(3):383-389
    81 M. M. Svinin, M. Uchiyama. Optimal Geometric Structures of Force/Torque Sensors. International Journal of Robotics Research, 1995, 14(6):560-573
    82 C. Ferraresi, S. Pastorelli, M. Sorli, and N. Zhmud. Static and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor. Journal of Robotic Systems, 1995, 12(12):883-893
    83 W. L. Jin, C. D. Mote, Jr. Development and Calibration of a Sub-millimeter Three-component Force Sensor. International Conference on Experimental Mechanics: Advances and Applications, 1997, 2921:364-369
    84 W. L. Jin, C. D. Mote, Jr. A Six-component Silicon Micro Force Sensor. Sensors and Actuators A: Physical, 1998, 65:109-115
    85 W. L. Jin, C. D. Mote, Jr. On the Calibration of Multicomponent Microforce Sensors. Journal of Microelectromechanical Systems, 1998, 7(2):156-163
    86 T. A. Dwarakanath, T. K. Bhaumick, and D. Venkatesh. Implementation of Stewart Platform Based Force-torque Sensor. Proceedings of the 1999 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI'99, Taipei, Taiwan, 1999:32-37
    87 Gab-Soon Kim, Dae-Im Kang, and Se-Hun Rhee. Design and Fabrication of a Six-component Force/Moment Sensor. Sensors and Actuators A: Physical, 1999, 77:209-220
    88 Seong W. Choi, Yong J. Choi, and Seungho Kim. Using a Compliant Wrist for a Teleoperated Robot. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999, 1:585-589
    89 N. K. Fowler, A. C. Nicol. A Force Transducer to Measure Individual Finger Loads During Activities of Daily Living. Journal of Biomechanics, 1999, 32:721-725
    90 Bhaskar Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory, 2000, 35:15-40
    91 J. S. Dai, D. R. Kerr. A Six-component Contact Force Measurement Device Based on the Stewart Platform. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214:687-697
    92 Micheal Kobusch, Th. Bruns, R. Kumme, and Y. -K. Park. Preliminary Investigations of Dynamic Responses of a Multi-component Force-moment Sensor Subject to Impulse Forces. VDI Berichte, 2002, (1685):183-191
    93 Yon-Kyu Park, Rolf Kumme, and Dae-Im Kang. Dynamic Investigation of a Three-component Force-moment Sensor. Measurement Science and Technology, 2002, 13(5):654-659
    94李允明, C. S. George Lee.机器人腕部力传感器的标定.中国纺织大学学报, 1986, 12(2):33-42
    95黄惟一,王玉生.机器人腕力传感器传递矩阵的研究,东南大学学报. 1988, 24(3):45-48
    96陈滨.机器人的手腕测力装置.机械工程学报, 1988, 24(2):63-70
    97黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计.机器人, 1992, 14(5):1-7
    98熊有伦.机器人力传感器的各向同性.自动化学报, 1996, 22(1):10-18
    99陈雄标,姚英学,袁哲俊.六维力/力矩传感器干扰及其标定方法.传感器技术, 1995, (2):37-40
    100陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究.机器人, 1997, 19(1):7-12
    101陈雄标,袁哲俊,姚英学.多维力传感器设计的评价准则与优化设计研究.哈尔滨工业大学学报, 1997, 29(4):88-92
    102 H. G. Wang, M. Y. Zhao, L. J. Fang, B. Zhang, and Z. G. Xu. Identification of Parameters for a Stewart Platform-based Force/Torque Sensor. Proceedings of 2004 IEEE International Conference on Robotics and Biomimetics, 2004:46-50
    103 Pei-Yu Li, Da-Peng Tan, Guo Liu, and Mei-Yi Ying. Six-component Force Sensor and Its Calibration System. Proceedings of IEEE Networking, Sensing and Control, Tucson, AZ, United States, 2005:889–893
    104 Y. F. Li, X. B. Chen. On the Dynamic Behavior of a Force/Torque Sensor for Robots. IEEE Transactions on Instrumentation and Measurement, 1998, 47(1):304-308
    105姚裕,吴洪涛,张召明.基于Kane方法的Stewart传感器动力学及固有频率分析.动力学与控制学报, 2004, 2(2):84-87
    106 Lu-Ping Chao, Kuen-Tzong Chen. Shape Optimal Design and Force Sensitivity Evaluation of Six-axis Force Sensors. Sensors and Actuators A: Physical, 1997, 63(2):105-112
    107 Lu-Ping Chao, Ching-Yan Yin. The Six-component Force Sensor for Measuring the Loading of the Feet in Locomotion. Materials and Design, 1999, 20:237-244
    108 Sheng A. Liu, Hung L. Tzo. A Novel Six-component Force Sensor of Good Measurement Isotropy and Sensitivities, Sensors and Actuators A: Physical, 2002, 100:223-230
    109高晓辉,刘宏,蔡鹤皋,等.机器人手指尖六维力/力矩传感器的研制.高技术通讯, 2002, (3):67-69;95
    110 Jie Zhao, Xiaoyu Wang, Liang Zhang, and Hegao Cai. Finite Element Analysis of Six-dimension Stiff Force/Torque Sensor Elastomer for Robots. Proceedings of the Second International Symposium on Instrumentation Science and Technology, Jinan, China, 2002, 3:272-275
    111王国泰,易秀芳,王理丽.六维力传感器发展中的几个问题.机器人, 1997, 19(6):474-478
    112徐科军,江敦明,王国泰.腕力传感器三维自适应动态补偿方法.中国机械工程, 1997, 8(6):40-42;55
    113徐科军,殷铭.基于FLANN的腕力传感器动态建模方法.仪器仪表学报, 2000, 21(1):92-94
    114徐科军,李成,朱志能,等.机器人腕力传感器动态响应的实时补偿.自动化学报, 2001, 27(5):705-709
    115刘正士.机器人六分量腕力传感器加载试验台系统误差分析.计量学报, 1998, 19(1):44-50
    116刘正士,陆益民,陈晓东,等.一种高性能六轴腕力传感器弹性体结构设计.应用科学学报,2001, 19(1):57-61
    117 Hongrui Wang, Feng Gao, and Zhen Huang. Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering (English Edition), 1998, 11(3):217-222
    118王洪瑞,陈贵林,高峰,等.基于Stewart平台的6维力传感器各向同性的进一步分析.机械工程学报, 2000, 36 (4):49-52
    119 Zhenlin Jin, Feng Gao, and Xiaohui Zhang. Design and Analysis of a Novel Isotropic Six-component Force/Torque Sensor. Sensors and Actuators A: Physical, 2003, 109:17-20
    120 Feng Gao, Jianjun Zhang, Yulong Chen, and Zhenlin Jin. Development of a New Type of 6-DOF Parallel Micro-manipulator and Its Control System. Proceedings of the 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, 2003, 2:715-720
    121侯雨雷.超静定并联式六维力与力矩传感器基础理论与实验研究. [燕山大学工学博士学位论文]. 2007:102-103
    122 JianTao Yao, Yulei Hou, Jie Chen, Ling Lu, Yongsheng Zhao. Theoretical Analysis and Experiment Research of a Statically Indeterminate Pre-stressed Six-axis Force Sensor. Sensors and Actuators: A. Physical, 2009, 150:1-11
    123牛建业.大量程超静定并联式六维力传感器静态标定研究. [燕山大学工学硕士学位论文]. 2008:33-34
    124赵现朝. Stewart结构六维力传感器设计理论与应用研究. [燕山大学工学博士学位论文]. 2002:98-101
    125苑会领.基于Stewart平台的预紧式六维力传感器的研制与开发. [燕山大学工学硕士学位论文]. 2003:22-50
    126周铁玲.大量程超静定并联六维力传感器及标定台结构设计与研究. [燕山大学工学硕士学位论文]. 2008:53-54
    127王宣银.并联六维力传感器标定装置.中国发明专利.专利号: 200510050822.1
    128黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社, 2006:195-201
    129 R. Ranganath, P.S. Nair, T.S. Mruthyunjaya,etc. A Force-torque Sensor based on a Stewart Platform in a near-singular Configuration. Mechanism and Machine Theory, 2004, 39:971-998
    130 L. Tao, I. Yoshi, S. Kyoko. A Six-dimension Parallel Force Sensor for Human Dynamics Analysis.Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics 2004:208-212
    131 Kejun Xu. Study on Dynamic Characteristics of Six-axis Wrist Force/torque Sensor. Focus on Tactile, Force and Stress Sensors, I-Tech Education and Publishing, Vienna, Austria, 2008, 163-164
    132苏金明,张莲花,刘波,等. MATLAB工具箱应用.北京:电子工业出版社, 2004:12-14
    133 Tie Shi Zhao, Jian S Dai. Constraint and Stiffness of Coordinative of Manipulators With Passive Flexible-Joints. Proceedings of the 11th World Congress in Mechanism and Machine Science. 2004, 04: 1852-1856
    134师丽菊.三自由度弹性铰链机器人刚度与动力学研究. [燕山大学工学硕士学位论文]. 2006:22-23
    135温锐.基于SE(3)/se(3)的并联六维力传感器性能研究. [燕山大学工学硕士学位论文]. 2007:7-8
    136 M. Thomas, D. Tesar. Dynamic Modeling of Serial Manipulator Arms. J. Of Dyn. Sys, Meas. and Cont., 1982,104(9):218-227
    137张立先.基于几何代数的机构运动学及特性分析. [燕山大学工学硕士学位论文]. 2008:5-6
    138 R. S. Ball. A Treatise on The Theory of Screws. England: Cambridge University Press, 1900:62-67
    139 R. M. Murray. Z. Li, S. Shankar Sastry. A Mathematical Introduction to Robotic Manipulator. Boca Raton, FL: CRC, 1994:168-167
    140 J. Selig. Geometrical Foundations of Robotics, World Scienctifical Publishing Co. Pte. Ltd 2000:27-39
    141 Fichter E F. A Stewart Platform Based Manipulator: General Theory and Practical Construction. The Int. J. of Robotics Research, 1986,5(2):157-182
    142 Alain Codourey. Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation. The Int. J. of Robotics Research, 1998,17(12):1325-1336
    143 Bhaskar Dasgupta, Mruthyunjaya T S. A Newton-Euler Formation for the Inverse Dynamics of the Stewart Platform Manipulator. Mechanism and Machine Theory, 1998,33(8):1135-1152
    144小飒工作室.最新经典ANSYS及Workbench教程.北京:电子工业出版社, 2004:23-26
    145王磊,陶梅编著.精通LabVIEW 8.X.北京:电子工业出版社, 2008:55-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700