用户名: 密码: 验证码:
青藏高原老芒麦种质资源遗传多样性及优异种质筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
老芒麦(Elymus sibiricus L.)别名西伯利亚披碱草,是禾本科(Gramineae)小麦族(Triticeae)披碱草属(Elymus)的多年生优良牧草,是披碱草属的模式种。老芒麦在北半球温带地区分布较广,在我国特别是青藏高原地区有丰富的野生资源分布。由于其高产优质和对寒冷干旱气候的良好适应性,近年来,老芒麦已经成为青藏高原地区栽培利用最为广泛的当家草种之一。
     试验在调查我国青藏高原地区野生老芒麦种群生态分布的基础上,以该地区应用广泛的老芒麦国审品种“川草1号”(Elymus sibiricus L.cv.chuancao No.1)和“川草2号”(Elymus sibiricus L.cv.chuancao No.2)为对照,对收集到的54份野生资源从种群生态与形态学、生产性能、种子醇溶蛋白和DNA分子标记等方面进行系统的遗传多样性研究和优异种质筛选;同时利用穗部性状、SRAP和SSR分子标记对该地区东南缘的13个老芒麦自然居群进行了遗传变异和群体遗传结构分析。主要结果如下:
     1、对青藏高原老芒麦野生种群生态分布、生境类型、群落组成和形态学变异研究表明:(1)老芒麦在青藏高原地区分布广泛,群落生境初步划分为:高山亚高山草甸型、河谷草地型和森林灌丛型;群落组成以:高山红柳+老芒麦+发草,沙棘+老芒麦+蒿类,老芒麦+锦鸡儿+鹅观草,老芒麦+披碱草+多节雀麦4种类型最多。(2)野生老芒麦种质形态学性状具广泛变异,其中与牧草产量和种子产量相关的形态性状变异较大,而与分类相关的指标则变异程度较小。(3)聚类分析将不同形态的老芒麦聚为3大类群,聚类结果除与海拔有一定关系外,与其地理分布一致性不明显。(4)主成分分析表明内外颖长、内外颖芒长、旗叶宽、倒二叶片长、株高、内外稃长、外稃芒长、内外稃宽、穗中部节上每小穗的小花数、穗长、叶色、茎粗、灰度和穗中部节上的小穗数是引起老芒麦形态分化的主要指标。
     2、物候期观测将供试材料分为早熟型和晚熟型两大类,生育期最短的是SAG205119和SAG205151,仅为115天,最长的是老芒麦品种“川草2号”,为129天。在试验所在地,老芒麦于6月初到7月中旬出现生长高峰期,株高呈直线上升趋势。不同材料的单株产量存在一定的差异,鲜草产量为35.66g/株~87.59g/株,单株平均鲜重为58.16g,干草产量为11.09g/株~29.18g/株,单株平均干重为17.96g。所有老芒麦材料的茎叶比为1.84~2.71,平均值为2.17,粗蛋白含量为8.27%~14.79%,平均值为10.96%。大部分材料的茎叶比低于对照而粗蛋白含量高于对照,说明青藏高原野生老芒麦具有较高的牧草品质。聚类分析将所有材料聚为高产优质和表现一般两大类型,其中的6份材料SAG205167、SAG205179、SAG204089、SAG205230、SAG205124和SAG204451的单株鲜草产量和牧草品质都高于对照品种,开发利用价值较大,而对照品种在本次试验中表现出优良性状退化的现象。
     3、基于酸性聚丙烯酰胺凝胶电泳(A-PAGE)的醇溶蛋白标记对54份野生老芒麦种质进行遗传多样性分析。供试材料共分离出42条带纹,多态率达92.86%。4个电泳分区(α、β、γ和ω)的平均Shannon指数为0.4627,Nei-Li遗传相似系数(GS)变异范围为0.2424~0.9767,平均值为0.5822。说明供试野生老芒麦材料具有较为丰富的醇溶蛋白遗传多样性。对所有材料的聚类分析发现,在GS为0.562的水平上供试材料可聚成4个大类,绝大部分来自于相同或相似生态地理环境的材料聚成一类,主成分分析显示了相似的结果。基于Shannon多样性指数估算了老芒麦5个地理类群内和类群间的遗传分化,发现地理类群内和地理类群间的遗传变异分别占总变异的68.17%和31.83%。对各地理类群基于Nei's无偏估计的遗传一致度的聚类分析表明,各地理类群间的遗传分化与其所处的地理生态环境具有较高的相关性。
     4、采用SRAP分子标记技术,对52份野生老芒麦材料进行遗传多样性分析,筛选出的16对随机引物组合共扩增出318条清晰可辨的条带,其中多态性条带275条,占86.48%;每对引物扩增出14~27条带纹,平均为19.88条,多态性信息(PIC)含量为0.122~0.326之间,平均为0.24,SRAP标记效率(MI)为4.26;材料间的遗传相似系数(GS)范围在0.5064到0.9586之间,平均值为0.7921;52份种质的Nei's遗传多样性(He)为0.2270,Shannon's指数(Ho)为0.3472;这些结果说明供试野生老芒麦在分子水平具有较为丰富的遗传多样性。对所有材料的聚类分析和主成分分析发现,在GS=0.80的水平上,供试材料可聚为5类,大部分来自相同或相似生态地理环境的材料聚为一类。对5个老芒麦地理类群基于Shannon's指数的遗传分化估算发现,类群内遗传变异占总变异的65.29%,而类群间遗传变异占总变异的34.71%。对各生态地理类群基于Nei氏无偏估计的遗传一致度聚类分析表明,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。
     5、利用SSR标记技术对52份老芒麦材料的遗传变异及亲缘关系进行了研究。18对SSR引物共扩增出236条清晰的条带,其中多态性条带204条,多态性位点率(PPB)为86.44%;每对引物扩增出7~20条带纹,平均为13.1条,多态性信息(PIC)含量为0.267~0.471之间,平均为0.35,SSR标记效率(MI)为3.98;材料间的遗传相似系数(GS)为0.622到0.895之间,平均GS值为0.766;52份种质的Nei's遗传多样性指数(He)为0.3286,Shannon's指数(Ho)为0.4851,表明供试材料之间差异明显,具有较为丰富的遗传多样性。根据研究结果进行聚类分析和主成分分析,可将52份老芒麦材料分成5大类,具有相同地理来源或相似生境的材料趋向于聚为一类。
     6、对采集自青藏高原东南缘的13个野生老芒麦居群在原生境下的15项穗部性状变异进行了研究。Shannon指数分析表明,13个居群在穗部性状上具有丰富的遗传多样性(He=1.7937)且居群内遗传变异(69.28%)大于居群间(30.72%);聚类分析将这13个居群分为三个组;主成分分析表明单穗长和宽、单穗重、小穗长、内外稃长和每穗轴节小穗数等是造成13个居群老芒麦穗部特征差异的主要因素;相关分析的结果表明海拔、纬度、经度和降水量对青藏高原野生老芒麦居群穗部性状变异贡献较大,而年均温对此影响不大。根据研究结果提出了老芒麦资源的收集和保护策略。
     7、基于SRAP和SSR分子标记分析了青藏高原东南缘8个老芒麦自然居群遗传变异及群体遗传结构。16对SRAP引物在90个单株中共扩增出384条可统计条带,其中多态性条带334条,占86.98%。16个SSR位点共检测出等位变异221个,平均每个位点13.8个,其中具有多态性的位点数192个,占86.88%。两种分子标记检测到老芒麦居群水平的基因多样性(He)分别为0.1092和0.1296,而物种水平的基因多样性达0.2434和0.3732。基于两种标记的的Nei's遗传分化指数Gst(0.5525和0.5158)表明老芒麦居群出现了较大程度的遗传分化,居群间的基因流非常有限,分别为0.4050和0.4694。Shannon指数的群体分化系数(56.43%和53.19%)和分子方差变异(AMOVA)分析(58.64%和52.41%)结果与Nei's遗传分化指数基本一致,均显示老芒麦的遗传变异主要分布在居群间,居群内变异相对较小。基于聚类分析结果表明各居群间存在较为明显的地理分化,8个居群分化为采集地范围内的南、北和中部3个分支。通过对老芒麦遗传多样性和遗传结构的分析提出了对该物种遗传多样性的保护策略。
As the type species of the genus Elymus, E. sibiricus L. (Siberian wildrye) is a perennial, high quality forage indigenous to eurasia,. and in China especially in the Qinghai-Tibetan Plateau, there are abundant natural resources of E. sibiricus. E. sibiricus is an important component of native grasslands and has been recently developed as a major cultivated forage in Qinghai-Tibetan Plateau, owing to its good palatability and excellent capability of adaptation to cold and drought condition.
     Based on the field investigation on ecological distribution and growth habits of E sibiricus populations in the Qinghai-Tibetan Plateau of China, fifty-four wild accessions were collected and tested both in assessment of genetic diversity and germplasm appraisal, according to population ecology, morphological, production performance, gliadin markers and DNA markers, by a comparison with two representative varieties E sibiricus L. cv. Chuancao No. 1 and E sibiricus L. cv. Chuancao No. 2. In addition, employing ear characters diversity, SRAP and SSR markers, we studied the population structure and genetic variation among E. sibiricus populations from the eastern alpine region of Qinghai-Tibetan Plateau. The main results showed as follows:
     1. According to studying on distribution characteristics, habitat types, community composition and morphological variation of wild E. sibiricus, below results were obtained: (1) E sibiricus were widely distributied in Qinghai-Tibetan Plateau, its habitat types could be classified into three types: alpine and subalpine meadow type, valley grassland type and forest-shrub type; the main community composition including four types: Salix cheilophila var.microstachyoides +E. sibiricus + Deschampsia caespitosa, Hippophae rhamnoides + E. sibiricus + Artemisia; E. sibiricus+ Caragana+ Roegneria, E. sibiricus + E. nutans+ Bromus plurinodes. (2) Natural E. sibiricus produces rich morphological diversity. Among the 30 observed properties, morphological variances most significantly occured in the traits related with forage and seed yield, as for classification index, there are less variation. (3) Based on the phenotypic characteristics, 37 accessions were clustered into three morphological types, and the cluster result don't agree well with geographical distribution but related to altitude. (4) Principlal component analysis results indicated that 17 of the characters measured: Outer and inner glume length, awn length of outer and inner glume, boot leaf width, length of the second leaf from the inflorescence, plant height, lemma length and width, palea length and width, awn length of lemma, floret number in each spikelet, ear length, leaf color, internode diameter, gray grade and spikelet number were the main sources of morphological differentiation of E. sibiricus accessions.
     2. Diversities were also detected exist in production performance of different E. sibiricus accessions. Twenty-three accessions could be divided into early maturing type and late maturing type on the basis of phenological observation. In all of the accessions, SAG205119 and SAG205151 showed the shortest growth period (115d), and "E. sibiricus cv Chuancao No. 2" showed the longest growth period (129d). E. sibiricus present the growth peak from beginning of June to the middle of July at the test place. The yield and quality characterizes of the twenty-three accessions also significantly different, the fresh yield was 35.66-87.59g/plant, with an average of 58.16g/plant, the hay yield was 11.09-29.18g/plant, and with an average of 17.96g/plant. The stem-leaf ratio was 1.84-2.71, with an average of 2.17, the crude protein content was 8.27%-14.79%, with an average of 10.96%, most of the accessions have the lower stem-leaf ratio and higher crude protein content than the CK, its means that the E. sibiricus accessions from Qinghai-Tibetan Plateau posses the high quality. Based on the production performance, all of the accessions were clustered into two types, one is high yield and quality, the other is generally showing. Among the former type, six accessions SAG205167, SAG205179, SAG204089, SAG205230, SAG205124 and SAG204451 showed a higher fresh yield and quality than CK, which hold a greater potentiality for further application. As for the "E. sibiricus cv Chuancao No.1" and "E. sibiricus cv Chuancao No.2", the excellent characteristics of them seems were degenerating in this study.
     3. Acid polyacrylamide gel electrophoresis (A-PAGE) was employed to detect the gliadin genetic diversity among 54 wild accessions of E. sibiricus collected from Qinghai-Tibetan plateau. A total of 42 bands were detected in all accessions, of which 92.86% were polymorphic. The average number of Shannon index to four electrophoretic zones (α,β,γ,ω) was 0.4627. The Nei-Li genetic similarity coefficient of the tested accessions ranged from 0.2424 to 0.9767, and the average was 0.5822. These results suggested that there was a rich genetic polymorphism among the tested wild resources of E. sibirucus. 54 wild accessions can be clustered into 4 groups at GS = 0.562 level on dendrogram. The principal coordinates (PCA) reflected almost the same relationships among the studied materials as showed in cluster analysis. Moreover, the accessions from the same origin frequently clustered into one group. Genetic differentiation of between and within five eco-geographical groups of E. sibiricus is estimated by Shannon's diversity index, which shown that 68.17% genetic variance existed within group, and 31.83% genetic variance was among groups. The unweighted pairwise groups method using arithmetic average (UPGMA) cluster analysis based on Nei's unbiased measures of genetic identity was assayed for five geographical groups of E. sibiricus, which indicated that there was a significantly positive correlation between genetic differentiation and geographical habits among the five groups.
     4. Sequence-related amplified polymorphism (SRAP) molecular markers were used to detect the genetic diversity of 52 wild accessions of Elymus sibiricus L. collected from Qinghai-Tibetan plateau. A total of 318 fragments were identified with 16 SRAP primers sets, of which 86.48% were polymorphic. For each primer set, there were 14-27 fragments were detected, with an average of 19.88, the polymorphism information content (PIC) was 0.122-0.326, with an average of 0.24, and the marker index (MI) of SRAP was 4.26. The genetic similarity (GS) coefficient of the tested accessions ranged from 0.5064 to 0.9586, with an average of 0.7921. The Nei's index of diversity (He) at the species level was 0.2270, and the Shannon's index (Ho) was 0.3472. These results suggested that there was rich genetic diversity among the tested wild resources of E. sibiricus. The results demonstrated a strong geographic effect on molecular variation of the local E. sibiricus as indicated by unweighted pairwise groups method using arithmetic average (UPGMA), and 52 wild accessions were clustered into five group at GS=0.80 level on dendrogram. Genetic differentiation between and within five eco-geographical groups of E. sibiricus was estimated by Shannon's diversity index, which showed that 65.29% genetic variance existed within group, and 34.71% genetic variance was among groups. Based on Nei's unbiased measures of genetic identity, UPGMA cluster analysis measures of five eco-geographical groups of E. sibiricus, indicated that there was a correlation between genetic differentiation and eco-geographical habits among the groups.
     5. The genetic diversity of 52 E. sibiricus accessions were evaluated by SSR markers A total of 318 fragments were identified with 18 SSR primers sets, of which 204 (86.48%) were polymorphic, and each primer generated 13.1 fragments, the polymorphism information content (PIC) per primer was 0.267-0.471, with an average of 0.35, and the marker index (MI) of SSR was 3.98. The genetic similarity (GS) coefficient of the tested accessions ranged from 0.622 to 0.895, with an average of 0.766. The Nei's index of diversity (He) of the 52 accessions was 0.3286, and the Shannon's index (Ho) was 0.4851. These results suggested that there was rich genetic diversity among the tested wild resources of E. sibiricus. 52 accessions could be divided into five main groups by cluster and principal component analysis, the accessions from the same region or with the same habitat type tends to were classified into the same group, indicating the geographical distribution of genetic diversity of E. sibiricus.
     6. The variation in 15 ear characters of 13 populations of Elymus sibiricus L. were researched in the present study. Results from the Shannon-weaver index analysis showed that there was an abundant genetic diversity (H'=1.7937) among these populations in ear characters, the genetic variation within populations (69.31%) was greater than that among populations (30.69%). Cluster analysis showed that 13 populations could be categorized into 3 groups. Principlal component analysis results indicated that 7 of the characters measured: Ear length, Ear width, Weight of single ear, Spikelet length, Palea length, Lemma length and Spikelet per rachis were the main sources of ear characters variation of 13 E.sibiricus populations. Results from the correlation analysis showed that altitude, latitude, longtitude and precipitation have remarkable influence on the ear characters variation of E. sibiricus, but mean annual temperature has little influence on it. Based on the genetic information available for E. sibiricus , some conservation strategies were proposed.
     7. In present study, the genetic diversity and population structure in eight natural populations of E. sibiricus from Qinghai-Tibetan Plateau of China was analyzed by means of sequence-related amplified polymorphism (SRAP) and Microcatellite markers (SSR). A total of 384 fragments were identified with 16 SRAP primers sets, of which 86.98% were polymorphic. Meanwhile, a total of 221 alleles were detected at 16 loci, with 192 (86.88%) being polymorphic, indicating considerable genetic variation at the species level. The mean gene diversity (He) was estimated to be 0.1092 and 0.1296 within populations detected by SRAP and SSR markers respectively, and 0.2434 and 0.3732 at the species level. A high level of genetic differentiation among populations was detected based on Nei's genetic diversity analysis both in SRAP (Gst=0.5525) and SSR (Gst=0.5158) markers, and an indirect estimate of the number of migrants per generation (0.4050 by SRAP markers, 0.4694 by SSR markers) showed that gene flow was low among populations. Shannon's index analysis and AMOVA analysis displayed the same result that mainly genetic variation of Elymus sibiricus existed among the populations. In addition, a geographical pattern of population differentiation, where the populations from south, north and middle area of sampling sites were clearly separated from each other, was revealed by cluster analysis. Based on the genetic information available for the native E. sibiricus, we proposed that it should be advisable to collect and preserve the native Elymus sibiricus germplasm pool in a larger extent.
引文
[1]徐柱.中国牧草手册.北京:化学工业出版社,2004,42.
    [2]张新全,张锦华,杨春华等.四川省牧草种质资源现状及育种利用.四川草原,2002,1:6-9.
    [3]钟声,奎嘉祥,薛世民.滇西滇南牧草种质资源考察与搜集.作物品种资源,1999,04:40-42.
    [4]唐成斌,刘世凡,莫本田等.贵州主要优良野生禾草种质资源考察与收集.中国草地,1994,03:31-35.
    [5]孟广震.定好“九五”科研规划,迎接世纪最后一役.生物工程进展,1995,15(2):2-5.
    [6]蔡化.河北省野生牧草现状及利用.湖北畜牧兽医,2004,05:50-53.
    [7]王志锋,徐安凯,于洪柱.牧草种质资源保护意义及其方法.吉林畜牧兽医,2004,8:18-20.
    [8]李守德,卢欣石,熊同栓.美国牧草资源的研究与利用.兰州,兰州大学出版社,1992.
    [9]苏加楷,张文淑.我国国外牧草种质资源引种的回顾和展望.中国草学会牧草遗传资源分会第二届研讨会会议论文,呼和浩特,中国草地,2003.
    [10]苏加楷.牧草种质资源国外研究概况及我国研究现状.牧草与饲料,1991,4:1-6.
    [11]中华人民共和国农业部畜牧兽医司,全国畜牧兽医总站.中国草地资源.北京,中国科学技术出版社,1996.
    [12]呼天明,刘崇林,杨培志,等.略论中国草业科技的发展.草地学报,2004,12(1):75-78.
    [13]李晓芳.全国牧草资源保护与利用构想冲国草地,2000,5:74-75.
    [14]徐柱,王照兰.中国牧草种质资源评价与利用.中国草地,2000,1:73-76.
    [15]马缘生.我国作物种质资源保存技术研究进展.作物品种资源,1991,8:1-3.
    [16]师尚礼,李阳春.天祝草原区鹅观草种质资源考察与收集.草业科学,2000,4:61-64.
    [17]钟声,奎嘉祥,薛世明.滇西滇南牧草种质资源的考察与收集.作物品种资源,1999,4:40-42.
    [18]贺学礼,赵丽勤.陕西禾本科牧草资源的区系特征.草业科学,1996,5:9-11.
    [19]林家栋,朱邦长.贵州草坪植物种质资源的开发利用.草业科学,1999,8(4):42-49.
    [20]罗富成.云南野生牧草驯化研究.四川草原,1999,2:55-57.
    [21]乌云其木格,布仁吉雄,陈海云等.胡枝子属牧草种子同工酶分析.内蒙古农业大学学报,1998,1:13-17.
    [22]乌云其木格,易津,门中华等.不同类型苏丹草同工酶多样性分析_内蒙古草业,1999,5:20-27.
    [23]张新全,杜逸.鸭茅染色体核型分析.中国草地,1994,3:55-57.
    [24]帅素容,张新全.二倍体和四倍体野生鸭茅遗传特性比较研究.草地学报,1997,5(4):261-268.
    [25]师尚礼,李温.西北地区羊茅属牧草和草坪草的综合评价.甘肃农业大学学报,2000,35(2):127-131.
    [26]杨瑞武,周永红,郑有良.小麦族披碱草属、鹅观草属和猬草属模式种的C带研究.云南南植物研究,2003,25(1):71-77.
    [27]宝音贺希格,王忠武,阿拉塔.我国牧草育种研究进展.饲草研究,2008,1:6-9.
    [28]王伯荪,彭少磷.植被生态学—群落与生态系统.北京:中国环境科学出版社,1997,7.
    [29]葛颂.遗传多样性及其检测方法—生物多样性原理与方法.北京:中国科技出版社,1994,38-43.
    [30]陈灵芝.中国的生物多样性.北京:科学出版社,1993:99-113.
    [31]张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展.生物多样性,1999,7(1):31-37.
    [32]张春晓,李悦,沈熙环.林木同工酶遗传多样性研究进展.北京林业大学学报,1998,20(3):58-66.
    [33]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10.
    [34]吴舒致,黎裕.谷子种质资源的主成分分析和图论主成分分类.西北农业学报,1997,6(2):46-50.
    [35]胡延吉,赵檀力.小麦农艺性状主成分分析与种质资源评价的研究.作物研究,1994,8(2):31-34.
    [36]王述明,曹永生,Redden R.J,等.我国小豆种质资源形态多样性的鉴定和分类研究.作物学报,2000,28(6):729-733
    [37]Metin T,Kulvinder S,Kenneth P.Karyotype and C-banding pattems of mitotic chromosomes in diploid bromegrass(Bromus riparius Rehm).Crop Sci,2001,41:831-834.
    [38]Meeeell D J,黄瑞复等译.生态遗传学.北京:科学出版社,1991.
    [39]沈永宝,施季森.植物种或品种鉴定的展望.江苏林业科技.2004,31(5):41-45.
    [40]陈佩度.作物育种生物技术.北京:中国农业出版社,2001:124-125.
    [41]胡守荣,扩夏铬,郭长英等.林木遗传多样性研究方法概况.东北林业大学学报,2001,29(3):72-75.
    [42]Fang D Q,Roose M L.Identification of closely related citrus with inter-simple sequence repeat makers.Theor Appl Genet,1997,95:408-417.
    [43]郎萍,黄宏文.栗属中国特有居群的遗传多样性及地域差异.植物学报,1999,41(6):651-657.
    [44]王述民,谭富娟,胡家蓬.小豆种质资源同工酶遗传多样性的分析与评价.中国农业科学,2002,35(1):1311-1318.
    [45]Santalla M,Rodino A P,Deron A M.Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean.Theor Appl Genet,2002,104:934-944.
    [46]Brown J.Fraction of wheat gliadin and gluten subunits by two dimensional electrophoresis and role of group 6 and group 2 chromosome in gliadin synthesis.Theor Appl Genet,1989,59:349-359.
    [47]Payne P L,Jacksoon E A,Holt L M,et al.Genetic linkage between storage protein genes on each of the short arms of chromosome 1A and IB of wheat.Theor Appl Genet,1984,67:235-243.
    [48]张玉良,张晓芳,舒卫国.小麦醇溶蛋白电泳技术及应用.作物品种资源,1994,(1):33-34.
    [49]张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学, 1995,28(4):25-32.
    [50]Draper S R.ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986.Seed Sci & Technol,1987,15:431-434.
    [51]Zillman R R,Bushuk W.Wheat cultivar identification by gliadin electrophoregrams.Ⅱ.Effects of environmental and experimental factors on the gliadin electrophoregrams.Can J Plant Sci,1979,59:281-286.
    [52]王学路,钱曼懋,宋春华等.改良ISTA醇溶蛋白电泳方法及其应用.作物品种资源,1994,(2):32-34.
    [53]傅宾孝,于光华,王乐凯等.小麦醇溶蛋白电泳分析的新方法.作物学报,1993,9(2):15-187.
    [54]鲍晓明,黄百渠.小麦-冰草异附加系种子醇溶蛋白基因表达的分析.作物学报,1993,19(3):233-238.
    [55]湛小燕,俞志隆,黄培忠.我国大麦醇溶蛋白多肽的多态性研究.遗传学报,1991,18(3):252-262.
    [56]唐慧慧,丁毅,胡耀军.中国近缘野生大麦醇溶蛋白的遗传多态性研究.武汉植物学研究,2002,20(4):251-257.
    [57]杨瑞武,周永红,郑有良.披碱草属的醇溶蛋白研究.四川农业大学学报,2000,18(1):11-14.
    [58]杨瑞武,魏秀华,周永红,等.赖草属植物醇溶蛋白的遗传多态性.云南植物研究,2004,26(1):103-110.
    [59]Beckmann J S,Soller M.Restriction fragment length polymorphisms in plant genetic improvement.Oxford Surveys of Plant Molecular and Cell Biology,1986,3,196-205.
    [60]郭本兆主编.中国植物志(第九卷第三分册).北京:科学出版社,1987,9(3):7-104.
    [61]贾慎修,史德宽.中国饲用植物志.北京:中国农业出版社,1997,6:91-97.
    [62]耿以礼.中国主要植物图说-禾本科.北京:科学出版社,1959.
    [63]陈功,货兰芳.高寒地区两种老芒麦生态适应性和生产性能评价.草业科学,2004,21(9):39.
    [64]李才旺,柏正强.适合川西北牧区推广种植的优良牧草新品种川草一号二号老芒麦.四川草原,1998,4:24,51.
    [65]贺晓,李青丰,陆海平.老芒麦、诺丹冰草结实特性的研究.草业科学,2004,21(7):37-39.
    [66]何文兴,徐莺,陈放.川草2号老芒麦(Elymus sibiricus L.)atpA基因的克隆及其调控表达.生物化学与生物物理进展,2005,32(1):67-74.
    [67]L(o|¨)ve A.Conspectus of the Triticeae.Feddes Report,1984,95:425-521.
    [68]Dewey D R.The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae.In:Gustafson J P(ed.).Gene manipulation in plant improvement.New York:Plenum Press,1984,209-280.
    [69]刘玉红.我国11种披碱草的核型分析.武汉植物学研究,1985,3(4):24-28.
    [70]Jensen K B,Match S K,Wipff J K.Cytology and morphology of Peseadoroegneria deweyi (Tritic-Eaa,Poaceae) a new spicies from the foothills of the Caucasus Mountains(Russia).Can J Bot,1992,70:900-909.
    [71]Lu B R.Cytological studies of E.hybrids and a haploid from the inter specific cross E.anthosac-hnoides×E.abolinlic(Triticeaa,Poaceae).Hereditas,1993,118:7-14.
    [72]Lu B R.Genomic relationships within the Elymus Parriglumis group(Triticeaa,Poaceae).Syst Evol 1993,187:191-221.
    [73]Lu B.R.Biosystematic investigations of Asiatic wheatgrasses Elymus.L.(Triticeaa,Poaceae).The Swedish University of Agricultural Sciences,Alnarp,Sweden.1993.
    [74]Baum B R,Yang L J,Yen C.Taxonomic Seperation of Kengyilia(Poaceae:Triticeae)in relation to nearest related Roegeria,Elymus and Agropyron,based on some morphological characters.Plant Systematics and Euslusion,1995,194:133-132.
    [75]袁庆华,张吉宇,张文淑等.披碱草和老芒麦野生居群生物多样性研究.草业学报,2003,12(5):44-49.
    [76]严学兵,周禾,郭玉霞等.披碱草属植物形态多样性及其主成分分析.草地学报,2005,13(2):111-116.
    [77]Agafonova,O.V.Genetic analysis of short-awned Siberian wildrye.Doklady,Biological Sciences,1997.353(5):175-176.
    [78]Bowden W M.Cytotaxonomy of the species and inter specific hybrid of the genus Elymus in Canada and neighboring areas.Can J Bot,1964,42:547-601.
    [79]Dewey D R.Cytogenetics of Elymus sibiricus and its hybrids with Agropyron tauri,Elymus canadensis,and Agropyron caninum.Bot Gaz,1974.135(1):80-87.
    [80]Sakamoto S.Cytogenetical studies on artificial hybrids among Elymus sibiricus,E.dahuricus and Agropyron tsukushiense in the tribe Triticeae,Gramineae.Bot Maga,1982.95:375-383.
    [81]Salomon B;Lu B R.Genomic relationships between species of the Elymus semicostatus group and Elymus sensulato(Poaceae).Plant Syst Evol,1994,191(31):199-211.
    [82]云锦凤,王照兰,杜建才等.加拿大披碱草与老芒麦种间杂交及F1代细胞学分析.中国草地,1997.1:32-35.
    [83]李造哲,马青枝,云锦风等.加拿大披碱草和老芒麦及其杂种F1同工酶分析.中国草地,2000,5:28-31.
    [84]严学兵,郭玉霞,周禾,等.青藏高原垂穗披碱草遗传变异的地理因素分析.西北植物学报,2007,27(2):0328-0333.
    [85]马啸.老芒麦野生种质资源的遗传多样性及群体遗传结构研究[学位论文].四川雅安,四川农业大学,2008.
    [86]严学兵,郭玉霞,周禾,等.影响披碱草属植物遗传分化和亲缘关系的地理因素分析.植物资源与环境学报,2006,15(4):17-24
    [87]李永祥,李斯深,李立会等.披碱草属12个物种遗传多样性的ISSR和SSR比较分析.中国农业科学,2005,38(8):1522-1527.
    [88]Ma X,Zhang X Q,Zhou Y H,et al.Assessing genetic diversity of Elymus sibiricus(Poaceae: Triticeae) populations from Qinghai-Tibet Plateau by ISSR markers.Biochem Syst Ecol,2008,36(3):514-522.
    [89]McMillan E,Sun G L.Genetic relationships of tetraploid Elymus species and their genomic donor species inferred from polymerase chain reaction restriction length polymorphism analysis of chloroplast gene regions.Theo Appl Gene,2004,108(3):535-542.
    [90]Motsny I I;Simonenko V K.The influence of Elymus sibiricus L.genome on the diploid ization system of wheat.Euphytica,1996,91(2):189-193.
    [91]Simonenko V K,Motsnyi I I,Sechnyak A L.The use of wheat-alien and Aegilopsrye amphiploids for introgression of genetic material to wheat.Wheat:prospects for global improvement.Proceedings of the 5th International Wheat Conference,Ankara,Turkey,10-14 June 1996.Kluwer Academic Publishers,Dordrecht,Netherlands:1997.391-399.
    [92]解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000,6:51-59.
    [93]Wu Y Q,Taliaferro C M,Martin D L,et al.Genetic variability and relationships for adaptive,morphological,and biomass traits in Chinese bermudagrass accessions.Crop Sci,2007,1985-1994.
    [94]贾美清,高玉葆,刘海英,等.内蒙古中东部草原不同生境克氏针茅(Stipa krylovii Roshev.)种群的形态差异分析.植物研究,2008,28(5):608-613.
    [95]陈默君,贾慎修.中国饲用植物.北京:中国农业出版社,2002:121-122.
    [96]杨继.植物种内形态变异的机制及其研究方法.武汉植物学研究,1991,20(4):429-434.
    [97]王金龙,高玉葆,赵念席,等.内蒙古中东部草原克氏针茅形态特征和RAPD遗传分化的相关性研究.植物研究,2006,26(6):709-714.
    [98]杨允菲,李建东.东北羊草草原种群单穗数量性状的生态可塑性.生态学报,2001,21(5):753-758.
    [99]Lu B R,Salomon B,Bothmer R von.Cytogenetic studies of progenies from the intergeneric crosses Elymus×Hordeum and Elymus×Secale.Genome,1990,33:425-43.
    [100]李荣平,周广胜,张慧玲等.植物物候研究进展.应用生态学报,2006,17(3):27-36.
    [101]Totland O.Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris.Oecologia,1992,120:242-251.
    [102]Magda D,Jarry M.Prediction of mowing effects on a population of Chaerophyllurn aureumna demographic approach.Journal of Vegetation Science,2000,11:485-492.
    [103]Sparks T H,Jeffree E P,Jeffree C E.An examination of the relationship between flowering times and temperature at the national scale using long-term phonological records from the UK.International Journal of Biometerology,2000,44:82-87.
    [104]Hornetz B,Shisanya C A,Gilonga N M.Crop water relationships and thermal adaptation of kathika beans(Phaseolus vulgaris L) and green grams(Vignaradiate L.Wilczek) with special reference to temporal patterns of potential growth in the drylands of S E Kenya.Journal of Arid Environments,2001,48:591-601.
    [105]Wielgolaski F.Starting dates and basic temperatures in phonological observations of plants.International Journal of Biometerology,1999,42:158-168.
    [106]Blake T K,Ullrich S E,Nilan R A.Mapping of the Hor-3 locus encoding D hordein in barley.Theor App Genet,1982,63:367-371.
    [107]Shewry P R,Finch R A,Parmar S.Chromosomal location of Hor-3,a new locus governing storage proteins in barley.Heredity,1983,50:179-189.
    [108]Bietz J A.Genetic and biochemical studies of nonenzymatic endosperm proteins.Wheat and Wheat Improvement-Agronomy Monograph No.13(2nd Education).Wisconsin,USA:ASA-CSASSSA,1987.215-241.
    [109]马啸,周永红,于海清,等.野生垂穗披碱草种质的醇溶蛋白遗传多样性分析.遗传,2006,28:699-706.
    [110]Vaccino P,Metakovsky E V.RFLP patterns of gliadin alleles in Triticum aestivum L.implications for analysis of the organization and evolution of complex loci.Theor Appl Genet,1995,90:173-181.
    [111]Branlard G and Dardevet M.Diversity of grain proteins and bread wheat quality I.Correlation between gliadin bands and flour quality characteristics.Cereal Science,1986,25(3):329-343.
    [112]Gubareva N K and Gaydenkova N V.Varietal identification and registration of bread wheat gene fond by means of gliadin electrophoresis(D).In:Ⅲ International Symposium ISTA.Biochemical Identification of Varieties.Leningrad,USSR,1988.131-134.
    [113]冯宗云,李宏,张立立,张义正.西藏野生大麦醇溶蛋白的遗传多样性.四川大学学报,2004,41:440-445.
    [114]车永和,李立会,何蓓如.冰草属(Agropyron Gaertn.)植物遗传多样性取样策略基于醇溶蛋白的研究.植物遗传资源学报,2004,5:216-221.
    [115]Wachira F N,Waugh R,Hackett C A,et al.Detection of genetic diversity in tea(Camellia sinensis)using RAPD Markers.Genome,1995,38:201-210.
    [116]Persson K,Diaz O,von Bothmer R.Extent and patterns of RAPD variation in landraces and cultivars of rye(Secale cereale L.) from Northern Europe.Hereditas,2001,134:237-243.
    [117]Yeh,F C,and Boyle T J B.Popgene version 1.31.Microsoft window-based freeware for population analysis.University of Alberta and Centre for International Forestry Research,Edmonton,AB,1999.
    [118]Rohlf F J.NTSYS-pc numerical taxonomy and multivariate analysis system,version 2.1.User Guide.Exeter Software.Setauket,New York,2000.
    [119]Nei M.and Li W.Mathematical model for study the genetic variation in terms of restriction endonucleases.Proc Natl Acad Sci USA,1979,74:5267-5273.
    [120]赵汝植.西南区自然区划探讨.西南师范大学学报(自然科学版),1997,22(2):193-198.
    [121]Alvarez J B,Moral A,Martin L M.Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat(Triticum monococcum L.ssp.monococcum).Genet Resour Crop Evol,2006,53:1061-1067.
    [122]Ciaffi M,Lafiandra D,Porceddu E,et al.Storage-protein variation in wild emmer(Triticum turgidum ssp.dicoeeoides) If.Patterns of allele distribution.Theor Appl Genet,1993,86:518-525.
    [123]肖苏,张新全,马啸,等.野生鹅观草种质的醇溶蛋白遗传多样性分析.草业学报,2008,17(5):138-144.
    [124]Nybom H,Bartish I V.Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants.Perspect Plant Ecol Evol Syst,2000,3:93-114.
    [125]Godt M J W,Johnson B R,Hamrick J L.Genetic diversity and population size in four rare southern Appalachian plant species.Conserv Biol,1996,10:796-805.
    [126]Sun M.Effects of population size,mating system,and evolutionary origin on genetic diversity in Spiranthes sinensis and S.hongkongensis.Conserv Biol,1996,10:785-795.
    [127]Gaudett M,Salomon B,Sun G L.Molecular variation and population structure in Elymus trachycaulus and comparison with its morphologically similar E.alaskanus.Plant Syst Evol,2005,250:81-91.
    [128]Melchinger A E,Lee M,Lamkey K R,et al.Genetic diversity for restriction fragment length polymorphism:Relation to estimated genetic effect in maize inbreds.Crop Sci,1990,30(1):1033-1040.
    [129]Li G,Quiros C F.Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,103(3):455-461.
    [130]Li G,Gao M,Yang B,et al.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping.TheorAppl Genet,2003,107(1):168-180.
    [131]易杨杰,张新全,黄琳凯,等.野生狗牙根种质遗传多样性的SRAP研究.遗传,2008,30(1):94-100.
    [132]杨平,刘仙俊,刘新春,等.利用SRAP标记研究四川高原青稞育成品种的遗传多样性.遗传,2008,30(1):115-122.
    [133]陈碧云,伍晓明,陆光远,等.甘蓝型油菜花瓣缺失基因的图谱定位.遗传,2006,28(6):707-712.
    [134]王刚,潘俊松,李效尊,等.黄瓜SRAP遗产连锁图的构建及侧枝基因定位.中国科学C辑(生命科学版),2004,34(6):510-516.
    [135]Riaz A,LI G,Quresh Z.Genetic diversity of oilseed Brassica napus inbred lines based on sequence related amplified polymorphism and its relation to hybrid performance.Plant Breeding,2001,120(5):411-415.
    [136]Doyle J J.DNA protocols for plants - CTAB total DNA isolation.In:Hewitt GM,Johnston A (ed.) Molecular Techniques in Taxonomy.Springer-Verlag,Berlin,Germany.1991,pp 283-293.
    [137]Ferriol M,Pico B,Nuez F.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers.Theor Appl Genet,2003,107(1):271-282
    [138]Budak H,Shearman R C,Parmaksiz I,et al.Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers.Theor Appl Genet,2004, 108(2): 328-334
    
    [139] Riaz A, Potter D, Stephen M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hort Sci, 2004, 129(3): 204-211.
    
    [140] 许绍斌,陶玉芬,杨昭庆,褚嘉祜.简单快速的DNA银染和胶保存方法.遗传,2002,24(3): 335-336.
    [141] Roldan-Ruiz I, Dendauw J, Van Bockstaele E, et al. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breeding, 2000, 6: 125-134.
    [142] Archak S, Gaikwad A B, Gautam D, et al. Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew {Anacardium occidentale L.) accessions of India. Genome, 2003,46:362-369.
    [143] Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) marker for germplasm analysis. Mol Breed, 1996, 2: 225-238.
    [144] Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet, 2004, 108:328-334.
    [145] Zeng B, Zhang X Q, Lan Y, et al. Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Can J Plant Sci, 2008, 88: 53-60.
    [146] Zhang X Q, Salomom B, von Bothmer R. Application of random amplified polymorphic DNA markers to evaluate intraspecific genetic variation in the Elymus alaskanus complex (Poaceae). Genet Resour Crop Evol, 2002, 49: 397-407.
    [147] Hamrick J L, Godt M J W. Conservation genetics of endemic plant species. In: Avise J C, Hamrick J L (ed.) Conservation Genetics, Case Histories from Nature. Chapman and Hall, New York. 1996. pp281-304.
    [148] Diaz O, Sun G L, Salomon B, et al. Levels and distribution of allozyme and RAPD variation in populations of Elymus fibrosis (Schrenk) Tzvel. (Poaceae). Genet Resour Crop Evol, 2000, 47: 11-24.
    [149] Hamrick J L, Godt M J W. Allozyme diversity in plant species. p. 43-63. In A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir. (ed.) Plant population genetics, breeding and genetic resources. Sinauer Associates, Inc, Sunderland, MA. 1989.
    [150] Nevo E, Apelbaum-Elkaher I, Garty J. Natural selection causes microscale allozyme diversity in wild barley and a lichen at 'Evolution Canyon', Mt. Cannel, Israel. Heredity, 1997, 78: 373-382
    [151] Bockelmarm AC, Reusch T B H, Bijsma R. Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol, 2003, 12: 505-515.
    [152] Litt M, Luty J A. Ahyper variable micro satellite revealed by invitro amplification of adinucleotide repeat with in the cardiac muscle actin. gene. Am J Hum Genet, 1989, 44: 397-401.
    [153] Tautz D, Trick M, Dover G A. Cryptic simplicity in DNA is a major source of genetic variation. Nature, 1986, 322: 652-656.
    [154]Wang Z,Weber J L,Zhong G,et al.Survey of plant short and DNA repeats.Theor Appl Genet,1994,88:1-6.
    [155]王一平,魏兴华,华蕾,等.不同地理来源旱稻种质资源的遗传多样性分析.作物学报,2007,33(12):2034-2040.
    [156]张金渝,张建华,杨晓洪,等.用SSR标记划分云南糯玉米地方品种资源遗传类群的研究.玉米科学,2007,15(1):53-58.
    [157]高秀琴,兰进好,林琪,等.部分旱地小麦品种(系)遗传多样性的SSR分析.麦类作物学报,2008,28(4):577-581.
    [158]秦君,李英慧,刘章雄,等.黑龙江省大豆种质遗传结构及遗传多样性分析.作物学报,2009,35(2):228-238.
    [159]焦德丽,徐亮,姚艳梅,等.甘蓝型油菜DH系的SSR遗传多样性研究.西北农业学报,2009,18(1):106-111.
    [160]郭海林,刘建秀,周志芳,等.结缕草属植物种间关系和遗传多样性的SSR标记分析.草地学报,2008,16(6);552-558.
    [161]车永和,李洪杰,杨燕萍,等.沙生冰草遗传多样性的SSR分析.麦类作物学报,2008,28(1):35-40
    [162]Sun G L,Salomon B,Bothmer von R.Analysis of tetraploid Elymus species using wheat microsatellite makers and RAPD makers.Genome,1997,40:806-814.
    [163]Sun G L,Salomon B.Characterization of microsatellite loci from Elymus alaskanus and length polymorphism in several Elymus species(Triticeae:Poaceae).Genome,1998,41:455-463.
    [164]Sun G L,Salomon B.Genetic diversity in Elymus caninus as revealed by isozyme,RAPD,and microsatellite markers.Genome,1999,42:420-431.
    [165]Sun G L,Diaz O,Salomon B,et al.Genetic diversity and structure in a natural Elymus caninus population from Denmark based on microsatellite and isozyme analyses.Plant Syst Evol,2001,227:235-244.
    [166]MacRitchie D,Sun G L.Evaluating the potential of barley and wheat microsatiellite makers or genetic analysis of Elymus trachycaulus complex species.Theor Appl Genet,2004,108:720-724.
    [167]严学兵,王垄,周禾,等.不同来源SSR标记在我国披碱草属植物的通用性和效率评价.草业学报,2008,17(6):112-120.
    [168]Sun G L,Salomon B.Microsatellite variability and heterozygote deficiency in the arctic-alpine Alaskan wheatgrass(Elymus alaskanus) complex.Genome,2003,46:729-736.
    [169]R(o|¨)der M S,Plaschke J,Konig S,et al.Abundance,variability and chromosomal location of microsatellites in wheat.Mol Gen Genet,1995,246:327-333.
    [170]Asya R,Yujuni K.Family of crucifurous.Planta,1997,34:671-679.
    [171]周涵韬,郑文竹,周以廷,等.不同作物间共用SSR引物的初步研究.厦门大学学报(自然科学版)。2002,41(1):89-93.
    [172]郭海林,刘建秀,周志芳,等.结缕草属植物种间关系和遗传多样性的SSR标记分析.草地学报,2008,16(6):553-558.
    [173]Sun G L,Salomon B,Bothmer R V.Characterization and analysis of microsatellite loci in Elymus caninus(Triticeae:Poaceae).Theor Appl Genet,1998,96:676-682.
    [174]Bockelmann A C,Reusch T B H,Bijsma R,et al.Habitat differentiation vs.isolation-by-distance:The genetic population structure of Elymus athericus in European salt marshes.Mol Ecol,2003,12:505-515.
    [175]孙建萍,袁庆华.利用微卫星分子标记研究我国16份披碱草遗传多样性.草业科学,2006,23(8):40-44.
    [176]金燕,卢宝荣.遗传多样性的取样策略.生物多样性,2003,11(2):155-161.
    [177]四川省气象局.四川省地面气候资料累年值(1951-2000,).成都:四川省气象局行政处印刷所,2003:9-10,117-118,196-197,390.
    [178]Shannon C E,Weaver W.The mathematical theory of communication.The University of Illinois,Urbana,Chicago,USA,1949:3-24.
    [179]宋双俊,高洪文,王赞等.三种锦鸡儿属植物表型多样性分析.草业学报,2005,14(3):123-130.
    [180]Slatkin M.Gene flow and the geographic structure of natural populations.Science,1987,236:778-792.
    [181]Schaal B A,Hayworth D A,Olsen K M,et al.Phylogeographic studies in plants:problems and prospects.Mol Ecol,1998,7:465-474.
    [182]Bantock C R,Price D J.Marginal populations of Cepaea nemoralis(L.) on the Brenden Hills,England.I.Ecology and ecogenetics.Evolution,1975,29:267-277.
    [183]Shumaker K M,Babble G R.Patterns of allozymic similarity in ecologically central and marginal populations of Hordeum jubatum in Utah.Evolution,1980,34:110-116.
    [184]Sun G L,Salomon B,von Bothmer R.Microsatellite polymorphism and genetic differentiation in three Norwegian populations of Elymus alaskanus(Poaceae).Plant Syst Evol,2002,234:101-110.
    [185]徐炳声.植物种内的生态变异.见:陈家宽等.植物进化生物学.武汉:武汉大学出版社,1994:102-127.
    [186]解新明,云锦凤,卢小良等.蒙古冰草表型数量性状的变异与生境间的相关性.生态学杂志,2003,22(4):31-36.
    [187]王丽,杨娟,郭晶等.用RAPD检测华山新麦草自然居群的遗传结构和居群分化.生态学报,2005,25(4):720-726.
    [188]Lande R.Genetics and demography in biological conservation.Science,1988,241:1 455-1 460.
    [189]Stebbins G L.A brief summary of my idea on evolution.Amer J Bot,1999,86:1207-1208.
    [190]Mayr E.Understanding evolution.Trend Evol Ecol,1999,14:372-373.
    [191]Hedrick P W.Conservation genetics and molecular techniques:A perspective.Smith T B,Wayne R K,eds.Molecular Genetic Approaches in Conservation.Oxford:Oxford University Press,1996.459-477.
    [192]Nei M.Analysis of gene diversity in subdivided populations.Proc.Natl.Acad.Sci.USA.1973,70:3321-3323.
    [193]McDermott J M,and McDonald B A.Gene flow in plant pathosystems Ann.Rev.Phytopathol,1993,31:353-373
    [194]Excoffier L,Guillaume L,Schneider S.Arlequin Ver 3.01:An Integrated Software Package for Population Genetics Data Analysis.Computational and Molecular Population Genetic Lab,University of Berne.1996.
    [195]Excoffier L,Smouse P E,Quattro J M.Analysis of molecular variance inferred from metric distances among DNA haplotypes:applications to human mitochondrial DNA restriction data.Genetics,1992,131:479-491.
    [196]Hampl V,Pavlicek A,and Flegr J.Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program FreeTree:Application to trichomonad parasites.Int.J.Syst.Evol.Microbiol.2001,51:731-735.
    [197]Nybom H.Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants.Mol Ecol,2004,13:1143-1155.
    [198]钱韦,葛颂.居群遗传结构研究中显性标记数据分析方法初探.遗传学报,2001,28(3):244-255.
    [199]Huh M K.Genetic diversity and population structure of Korean alder(Alnusjaponica:Betulaceae).Can.J.For.Res,1999,29:1311-1316.
    [200]徐智明,周青平,刘云芬,等.平衡施肥对老龄多叶老芒麦种子产量的影响.甘肃农业大学学报,2004,6:639-643.
    [201]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001:16-17.
    [202]Loveless M D,Hamrick J L.Ecological determinants of genetic structure in plant populations.Ann Rev Ecol Syst,1984,15:65-95.
    [203]Sagnard F,Barberot C,Fady B.Structure of genetic diversity in Abies alba Mill.from southwestern Alps:multivariate analysis of adaptive and non-adaptive traits for conservation in France.Forest Ecol Manage,2002,157:175-189.
    [204]Schoen D J,Brown A H D.Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants.Proc Natl Acad Sci USA,1991,88:4494-4497.
    [205]Diaz O,Salomon B,von Bothmer R.Genetic variation and differentiation in Nordic populations of Elymus alaskanus(Skrib.ex Merr.) L(o|¨)ve(Poaceae).Theor Appl Genet,1999,99:210-217.
    [206]Larson S R,Jones T A,Jensen K B.Population structure in Pseudoroegneria spicata(Poaceae:Triticeae) modeled by Bayesian clustering of AFLP genotypes.Am J Botany,2004,91:1789-1801.126.
    [207]Hamrick J L.Gene flow and distrubution of genetic variation in plant populations.In:Urbanska, Ked,Differentiation patterns in higher plants.New York:Academic Press,1987.53-67.
    [208]Bussel J D.The distrubution of random amplified polymorphic DNA(RAPD) diversity amongst population of Isotoma patraea(Lobeliaceae).Mole Ecol,1999,8:775-789.
    [209]Zhang X Q,Salomom B,von Bothmer R,Diaz O.Patterns and levels of genetic differentiation in North American populations of the Alaskan wheatgrass complex.Hereditas,2000,133:123-132.
    [210]Diaz O,Salomon B,von Bothmer R.Genetic diversity and structure in populations of Elymus caninus(L.)(Poaceae).Hereditas,1999,131:63-74.
    [211]Knapp E E,Rice K J.Genetic structure and gene flow in Elymus glaucus(blue wild rye):implications for native grassland restoration.Restorat Ecol,1996,4:1-10.127.
    [212]Sun G L,Diaz O,Salomon B,von Bothmer R.Microsatellite variation and its comparison with allozyme and RAPD variation in Elymus fibrosis(Schrenk) Tzvel.(Poaceae).Hereditas,1998,129:275-282.
    [213]Hogbin P M,Peakall R.Evaluation of the conservation of genetic research to the management of endangered plant Zieria prostrata.Conser Biol,1999,13:514-522.
    [214]Barrett S C H,Kohn J R.Genetics and evolutionary consequences of small population size in plants:implications for conservation Ppfalk D A,Holsinger K E.Genetics and conservation of rare plants.New York:Oxford University Press,1991:3-30.
    [215]Ellstrand N C,Elamd R.Population genetics consequences of small population size:implications for plant conservation.Ann Rev Ecol Syst,1993,24:217-243.
    [216]Wright S.The genetical structure of populations.Genetics,1951,15:323-354.
    [217]李斌,顾万春,卢宝明.白皮松天然群体种实性状表型多样性研究.生物多样性,2002,10(2):181-188.
    [218]李文英.蒙古栎天然群体遗传多样性研究.博士学位论文.北京:北京林业大学.2003.
    [219]张淑萍.芦苇分子生态学.博士学位论文.哈尔滨:东北林业大学,2001.
    [220]王赞.柠条锦鸡儿遗传多样性研究.博士学位论文.北京:中国农业大学,2005.
    [221]肖海峻.鹅观草种质资源遗传多样性研究.博士学位论文.北京:中国农业科学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700