用户名: 密码: 验证码:
贵州特色药用兰科植物杜鹃兰和独蒜兰共生真菌研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州道地中药材杜鹃兰、独蒜兰和云南独蒜组培技术已成熟,但组培苗移栽成活率低,生长缓慢,这阻碍其产业化,根据菌根真菌与兰科植物共生形成茵根的特点,本研究对三种兰科植物菌根真菌的动态变化特点、菌根真菌生理生化特性、菌根真菌的应用及分类鉴定进行了较为系统的研究。通过研究力图揭示兰科植物生长发育与菌根真菌的关系,建立科学合理的菌根真菌应用方法,为杜鹃兰和独蒜兰产业化奠定基础。主要研究结果及结论如下:
     1、建立了较为准确高效的兰科植物菌根真菌单菌丝团分离方法。
     该方法的建立解决了兰科植物菌根真菌分离中的一些关键问题,该方法使定量研究兰科植物菌根真菌的种类和数量的变化成为可能。
     2、揭示了菌根真菌动态变化特征及其与植物生长发育的关系
     利用新建立的单菌丝团分离方法,对三种兰科植物不同生长期、根中菌根真菌的纵向和横向变化的研究,发现植物根形成早期的优势菌生长快、气生菌丝发达,后期优势菌生长慢、气生菌丝不发达。根中菌根真菌由根尖向基部及由根表皮向内,生长快、气生菌丝发达的菌根真菌比例下降,生长较慢、气生菌丝不发达的菌根真菌比例增加。
     3、揭示了菌根真菌生理生化特征及其与植物生长发育的关系
     通过对三种兰科植物菌根真菌对不同碳源、氮源的利用能力,产B族维生素和赤霉素的能力、是否具有纤维素酶和多酚氧化酶酶活的研究,发现营养生长阶段的优势菌根真菌纤维素酶活较弱,多酚氧化酶活阳性或弱阳性,形成的B族维生素的量较高,淀粉、蔗糖、麦芽糖和无机氮的利用能力较强。生殖生长期优势菌纤维素酶活较强,多酚氧化酶活弱或无,形成的B族维生素的量低,对纤维素、淀粉和有机氮的利用能力强。
     4、从菌根营养的角度揭示了菌根真菌提高组培苗移栽成活率的内在原因,提出了“三个营养库”的假说和杜鹃兰组培苗移栽成功的“三个策略”
     通过对三种兰科植物菌根真菌与杜鹃兰各生长期的组培苗共培养,发现杜鹃兰各生长阶段的促生菌是此阶段的优势菌,同时发现不同生长期的组培苗移栽成活率不同,已分化根状茎、带根状茎的幼苗、带球茎的幼苗成活率高,而无根状茎或球茎的幼苗移栽成活率低,同时发现菌根真菌在组培苗移栽过程中主要起保护根及提高根的活力的作用。
     据于此提出了杜鹃兰组培苗移栽成活密切相关的“三个营养库”的假说,即根状茎、叶片和球茎,组培苗移栽成功就在于成功实现“根状茎营养库”到“叶片光合营养库”,再到“球茎营养库”的转变;并以此为指导,总结出杜鹃兰组培苗移栽成功的“三个策略”,即选择根状茎、带根状茎的分化苗或带球茎的分化苗,进行菌根化育苗,利用菌根真菌的保根作用、根状茎和球茎的营养库作用,使组培苗成功实现向“光合营养库”的转变,并最终建立可顺利渡过休眠期的“球茎营养库”。
     5、建立了菌根真菌应用于组培苗移栽的模型
     通过总结兰科植物菌根真菌动态变化特点、菌根真菌生理生化特性、兰科植物本身特性等的研究结果,形成了兰科植物菌根真菌应用于组培苗移栽的模型:选择带有营养贮存器官的兰科植物组培苗与根形成早期的优势菌根真菌,进行菌根化培养,促进生根及提供菌根营养;待共生关系形成并建立了稳定的光合作用后,施用营养生长期优势菌,促进兰科植物光合产物转化贮存和保持根的高活力,实现兰科植物组培苗的成功栽培。
     6、完成三种兰科植物菌根真菌的分类鉴定
     采用形态鉴定、酶活特性测定和ITS序列系统发育分析方法,完成三种兰科植物菌根真菌的分类鉴定,较为系统地提出了兰科植物共生丝核菌的分类鉴定方法及相关属种的分类检索表,并发现Epulorhiza属中的第三个种群,即未定名的新属Newgenus,该属的最大特点是生长很慢、菌落边缘不整齐、不形成或形成形状不规则的念珠状细胞,淀粉利用能力强,是兰科植物光合产物贮存、转化及利用相关的重要菌根真菌之一。
     研究中提出的“三个营养库”的假说,将丰富兰科植物菌植共生理论;提出的兰科植物共生丝核菌的分类方法、相关属种检索表、提出的新属,将丰富兰科植物共生丝核菌的分类鉴定体系。本研究建立的单菌丝团分离方法、提出的杜鹃兰组培苗移栽的“三个策略”及建立菌根真菌应用于组培苗移栽的模型,为实现杜鹃兰、独蒜兰和云南独蒜兰组培苗的成功移栽,实现其产业化提供理论和技术支撑。
The tissue culture technique of Cremastra appendiculata, Pleione bulbocodioides, Pleione yunnanensis has been sophisticated, but their industrialization is hampered by low survival rate and slow growing of transplanted seedlings. According to the fact that Orchidaceae symbiosed with mycorrhizal fungi, the study on dynamic changes, physiological and biochemical characteristics, application, classification and identification of mycorrhizal fungal from these Orchidaceae were carried out. The growth and development relationship between mycorrhizal fungi and these orchids should be revealed to establish scientific and reasonable application of mycorrhizal fungi and improve the survival rate of transplanted seedlings.The aim of this study is to realize the industrialization of this type of Chinese herbal medicines. Major findings and conclusions were as follows:
     1、An accurate and efficient technique to isolate orchid mycorrhizal fungi from a single peloton was set up.
     Some key problems of isolating orchid mycorrhizal fungi were resolved by this technique. This made it possible to study changes of orchid mycorrhizal fungi species and quantities quantitatively.
     2、The relationship between dynamic changes in the characteristics of mycorrhizal fungi and the growth and development of orchid was revealed.
     The mycorrhizal fungi changes in different growth phase and the vertical and horizontal changes were studied in the research. The fungi in early new root grew quickly and developed more aerial hyphae. But those in old roots grew slowly and little aerial mycelium developed. From root tip to the base and from the root epidermis to inward, the fast growing mycorrhizal fungi with more aerial hyphae declined and those growing slowly and developing little aerial hyphae increased.
     3、Physiological and biochemical characteristics of mycorrhizal fungi and their influence on orchid growth and development were studied
     Physiological and biochemical characteristics of mycorrhizal fungi from three Orchidaceae, such as utilization capacity of carbon and nitrogen sources, producing capacity of B vitamins and GA, cellulase and polyphenol oxidase activity were studied. Those fungi in vegetative growth stage had weak cellulase activity, positive or weakly positive polyphenol oxidase activity; the formation of B vitamins and the ability to use starch, sucrose, maltose and inorganic nitrogen were high. But in Reproductive growth stage, Cellulase activity of them was high and polyphenol oxidase activity was weak; the formation of B vitamins was low and the ability to use cellulose, starch and organic nitrogen was high.
     4、How to improve the survival rate of transplanted tissue cultures was revealed from the perspective of mycorrhizal fungi Nutrition. Hypothesis of "Three nutrition library" and "three strategies" to increase survival rate of transplanted tissue cultures was brought forward.
     Mycorrhizal fungi of three Orchidaceae were co-cultured with tissue cultures in different stages. From the results, we found it was the predominant fungi in the special stage to promote the growth the seedlings. The survival rate of rhizomes and seedlings with rhizomes or bulbs was higher than seedlings without rhizomes or bulbs. The mycorrhizal fungi played a key role in protecting and keeping the activity of the root.
     According to these results, "three nutrition library" hypothesis was given. They were rhizome, leaves and bulbs. The success of transplanting tissue cultures relied on changing from "rhizome nutrient library" to " leave photosynthetic nutrition library ", and then to " bulbs nutrition library " successfully. " three strategies " to increase survival rate of tissue cultures were summed up. That is chooseing rhizome, seedlings with rhizome or seedlings with bulbs and then symbiosed with mycorrhizal fungi. The seedling changing into " leave photosynthetic nutrition library " and through dormancy to "bulbs nutrition library" were promoted by the protection of fungi and the nutrition library role of rhizomes or bulbs.
     5、The model of mycorrhizal fungi being used in transplanting tissue culture seedlings
     According to the dynamic characteristics of mycorrhizal fungi in orchid plant, physiological and biochemical characteristics of mycorrhizal fungi and characteristics of, a model of transplanting orchid seedlings were summed up: Seedlings with a storage organ were selected out and were symbiotic cultured with the predominant fungi in early new roots to meet the nutrition requirement and formation of new roots. When the symbiosed relationship formed and a stable photosynthesis established, followed by application of dominant fungi in the vegetative growth stage to transfore Orchidaceae photosynthate into storage and to maintain high root vigor, so as to improve survival rate.
     6、Classification and identification of mycorrhizal fungi
     Mycorrhizal fungi of three Orchidaceae had been classificated and identificated by using morphology and enzyme activity characteristics, phylogenetic analysis of ITS sequence. The method to classificate and identificate Orchidaceae Rhizoctonia was given and the keys of some genera and species were brought forward. A third Epulorhiza population, New genus, was found, which was not named. The most important characteristics of species in this population were growing very slowly, without monilioid cells or with irregular monilioid cells and with high ability to use starch. They are important in promoting storeage, conversion and utilization of photosynthate in Orchidaceae.
     The "three nutrition library" hypothesis in the study will enrich the symbiotic theory of orchid with their mycorrhizal fungi. The classification and identification method proposed and keys for relevant genera and species will enrich the classification and identification system of orchid Rhizoctonias. In this study, the establishment of isolating orchid mycorrhizal fungi from a single peloton, "three strategies" to increase survival rate of transplanted tissue cultures and model of transplanting tissue cultures with fungi, will achieve industry of Cremastra appendiculata, Pleione bulbocodioides, Pleione yunnanensis to provide theoretical and technical support.
引文
1.丁晖,韩紊芬,王光萍,黄敏仁,冯莹.卡特兰与丝核菌共培养体系的建立及卡特兰菌根显微结构的研究.菌物系统,2002,21:425-429
    2.李明,张灼.杏黄兜兰菌根研究与应用.生物学杂志,2001,18:17-18
    3.范黎,郭顺星.兰科植物菌根真菌的研究进展.微生物学通报,1998a,25:227-230
    4.范黎,郭顺星,徐景堂.我国部分兰科植物菌根的内生真菌种类研究.山西大学学报(自然科学版),1998b,21:69-177
    5.范黎,郭顺星,肖培根.墨兰的菌根结构及酸性磷酸酶的定位研究.云南植物研究,1999,21:197-201
    6.范黎,郭顺星,肖培根.密花右斛等穴种兰科植物菌根的显微结构研究[J].植物学通报.2000,17(1):73-79.
    7.郭顺星,徐锦堂.真菌在罗河石斛和铁皮石斛种子萌发中的作用.中国医学科学院学报,1991,13:46-49
    8.桂阳,刘作易.春兰菌根结构的研究.贵州农业科学,2006,34:18-19
    9.胡忠,杨增明,王钧.天麻球茎中一种抗真菌蛋白的分离和部分特性.云南植物研究,1988,10:373-380
    10.潘瑞炽,王小菁,李娘辉.植物生理学(第四版).北京:高等教育出版社,2001
    11.孙烨.袖珍实用色谱.上海:上海科学普及出版社,2005
    12.吴静萍,钱吉,郑师章.兰花菌根菌分泌物成分的初步分析.应用生态学报,2002,13:845-848
    13.徐锦堂,郭顺星.供给天府种子的萌发营养的真菌—紫萁小菇.真菌学报,1989,8:21-226.
    14.徐锦堂,牟春.天麻原球茎生长发育与紫萁小菇及蜜环菌的关系产.植物学报,1990,32:26-31
    15.Abadie JC,Puttsepp U,Gebauer G;Faccio A,Bonfante P,Selosse MA..Cephalanthera longifolia(Neottieae,Orchidaceae) is mixotrophic:a comparative study between green and nonphotosynthetic individuals.Canadian journal of Botany-Revue Canadienne de botanique,2006,84:1462-1477
    16. Alexander C, Hadley G. Carbon movement between host and mycorrhizal endophyte during the endophyte during the development of the orchid Goodyera repens Br. New Phytol, 1985,101: 401-411
    17. Andersen TF. A comparative taxonomic study of Rhizoctonia. sensu lato employing morphological, ultrastructural and molecular methods. Mycol Res, 1996, 100: 1117-1128.
    18. Arditti J, Flick BH, Ehmann A, Fisch MH., Orchid Phytoalexins II, isolation and characterization of possible sterol companions. Amer. J. Bot, 1975, 62: 738-742
    19. Barroso J, Neves H C and Pais M S S. Production of free sterols by infected tubers of Ophrys lutea Cav.: identification by gas chromatography-mass spectrometry. New Phytol. 1987, 106: 147-152
    20. Batty AL, Dixon KW, Brundrett MC, Sivasithamparam K. Orchid conservation and mycorrhizal associations. In: Microorganisms in Plant Conservation and Biodiversity (Sivasithamparam K, Dixon KW, Barrett RL, eds). Kluwer Academic Publishers, 2002,195-226
    21. Batty A L, Brundrett M C, Dixon K W, Sivasithamparam K. In situ symbiotic seed germination and propagation of terrestrial orchid seedlings for establishment at field sites. Australian Journal of Botany, 2006a, 54:375 - 381
    22. Batty A L, Brundrett M C, Dixon K W, Sivasithamparam K. New methods to improve symbiotic propagation of temperate terrestrial orchid seedlings from axenic culture to soil. Austrlian Journal of Botany, 2006b, 54: 367-374.
    23. Bayman P, Gonzalez EJ, Fumero JJ, Tremblay RL. Are fungi necessary? How fungicides affect growth and survival of the orchid Lepanthes rupestris in the field. Journal of ecology, 2002,90:1002-1008
    24. Beardmore J, Pegg G F. A technique for the establishment of mycorrhizal infection in orchid tissue grown in aseptic culture. New Phytol.,1981, 87: 527 - 535
    25. Beyrle H F, Smith S E. The effect of carbohydrate on the development of a Cattleya hybrid in association with its mycorrhizal fungus. Mycorrhiza, 1993, 3: 57-62
    26. Beyrle HF, Smith SE, Peterson RL, Franco CMM. Colonization of Orchis morio protocorms by a mycorrhizal fungus - effects of nitrogen nutrition and Glyphosate modifying the responses. Can. J. Bot., 1995, 73: 1128-1140
    27. Bidartondo MI, Burghardt B, Gebauer G, Bruns T D, David J R. Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc Biol Sci, 2004, 271: 1799-1806
    28. Blakeman JP, Mokahel MA, Hadley G. Effect of mycorrhizal infection on respiration and activity of some oxidase enzymes of orchid protocorms. New Phytol, 1976, 77: 697-704
    29. Bougoure JJ, Bougoure DS, Cairney WG, Dearnaley DW. ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycological Research , 2005,109: 452-460
    30. Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol, 2002,134: 275-304
    31. Brundertt MC, Scade A, Batty A L, Dixon K W. Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol. Res., 2003, 107: 1210-1220
    32. Burgeff H. Saprophytism und Symbiose. Gustav Fischer, Jena.Campbell EO. The mycorrhiza of Gastrodia cunninghamii Hook Trans R Soc N Z, 1932,1: 289-296
    33. Burges N A.. The defensive mechanism in orchid mycorrhiza. New Phytol, 1939, 38: 272-283
    34. Burgef H F. Mycorrhiza of orchids. In The orchids, a scientific survey. C. L. Withner. New York: The Ronald Press Co., 1959, 361-395
    35. Cameron DD, Leake JR., Read DJ. Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol, 2006,171: 405-416
    36. Calling DE, Rothrock CS, MacNish GC, Sweetingham MW, Brainard KA, Winters SW, Characterization of anastomosis group 11(AG-11) of Rhizoctonia solani,1994, 84: 1387-1393
    37. Carling DE. Grouping in Rhizoctonia solani by the anastomosis reaction. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht, 1996, 37-47
    38. Carling D E, Pope E J ,Brainard K A, Carter D A. Characterization of mycorrhizal isolates of Rhizoctonia solani from an orchid, including AG-12, a new anastomosis group. Pathology, 1999, 89: 942 - 946
    39. Carling DE, Baird RE, Gitaitis RD, Brainard K A, Kuninaga S. Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology, 2002, 92:893-899
    40. Cha JY, Igarishi T. Armillaria jezoensis, a new symbiont of Galeola septentrionalis (Orchidaceae) in Hokkaido.Mycoscience, 1996, 37: 21-24
    41. Campbell EO. The fungal association in a colony of Gastrodia sesamoides R. Br Trans R Soc N Z, 1964,2: 237-246
    42. Campbell EO..The fungal association of Yoania australis.Trans R Soc N Z Biol Scil, 1970,2:5-12
    43. Cappelletti C. Ricerche fisiologische sulla simbiosi nelle orchidee. Lav. Bot, 1947, 8: 57-76
    44. Cenis J L. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Reseach, 1992,20:2380
    45. Cocharane V W. The Physiology of Fungi. New York: Wiley, 1958
    46. Constantin J, Dufo L. Sur la biologie du Goodyera repen Revue General de Botanique, 1920, 32: 529-533
    47. Correia MJ, De Sousa Pereira Junior J.A., Dos Santos J.C., De Queiroz Cavalcanti MA.. Use of remazol blue dyed avicel for the determination of cellulolytic activity in Basidiomycetes. Revista de microbiologia, 1998,29: 286-288
    48. Currah RS, Sigler L, Hambleton S. New records and taxa of fungi from the mycorrhizae of terrestrial orchids of Alberta. Can J Bot, 1987, 65: 2473-2482
    49. Currah R S Thanatephorus pennatus sp. nov. isolated from the mycorrhizal roots of Calypso bulbosa (Orchidaceae) from Alberta. Canadian Journal of Botany, 1987, 65: 1957-1960
    50. Currah RS, Hambleton S, Smreciu A. Mycorrhizae and mycorrhizal fungi of Calypso bulbosa. Amer. J. Bot, 1988, 75: 739-752
    51. Currah R S, Smreciu E A, Hambleton S. Mycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). CanJBot, 1990, 68: 1171-1181
    52. Currah R S, Sherburne R. Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycological Research, 1992, 96: 583-587
    53. Currah RS, Zelmer CD. A key and notes for the genera of fungi with orchids and a new species in the genus Epulorhiza. Rep. Tottori Mycol. Inst., 1992, 30: 43-59
    54. Currah R S, Zettler L W, McInnis T M. Epulorhiza inquilina sp.nov. from Platanthera (Orchidaceae) and a key to Epulorhiza species. Mycotaxon, 1997, 61: 338-342
    55. CUTIS J T. The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Amer JBot, 193.9, 26: 390-399
    56. Dearnaley JDW, McGee PA. An intact microtubule cytoskeleton is not necessary for interfacial matrix formation in orchid mycorrhizas. Mycorrhiza,1996, 6: 175-180
    57. Dearnaley, J D W. ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycological Research , 2005, 109: 452-460.
    58. Demirci E. Rhizoctonia species and anastomosis groups isolated from barley and wheat in Erzurum, Turkey. Plant pathol., 1998,47: 10-15
    59. Dijk E, Eck N, Eck. Effects of mycorrhizal fungi on in vitro nitrogen response of some Dutch indigenous orchid species. Can. J. Bot., 1994,73: 1203-1211
    60. Dijk E, Eck N. Axenic in vitro nitrogen and phosphorus responses of some Dutch marsh orchids New phvtol, 1995,131: 353-359
    61. Dijk E, Willems J H, van Andel J. Nutrient responses as a key factor to the ecology of orchid species. Acta Bot. Neerlandica,1997, 46: 339-363
    62. Downie D G. Corticium solani—an orchid endophyte. Nature, 1959,179: 160
    63. Fan L, Guo S X, Cao W Q, Xiao P G, Xu J T. Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidiumsinense (Orchidaceae). Acta Mycol. Sin., 1996,15:251 -255
    64. Fast G. European terrestrial orchids (symbiotic and asyntbiolic melhods). In Orchid Biology. Reyiews attd Perspectives II (ed. J. Arditti). Cornell University Press. Ithaca.,1982, 309-326
    65. Fish M H, Brigitta H F, Arditti J. Structure and antifungal activity of hircinol, loroglossol and orchinol. Phytochemistry, 1973,12: 437-441
    66. Frey-Klett P, Garbaye J, Tarkka M. Tansley review The mycorrhiza helper bacteria revisited. New Phytologist, 2007,176: 22-36
    67. Gaumann M E, Nuiisc H J., Rimpau R H. Uber die Wurzelpilze von Loroglossum hircinum L. Phytopathologische Zeischrift, 1961,41: 89-96
    68. Gautheret RJ. Culture du tissues cambial. C. R. Acad. Sci. (Paris) , 1934, 198: 2195-2196
    69. Gebauer G, Meyer M. ~(15)N and ~(13)C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist, 2003,160: 209-223
    70. Guo SX, Fan L. Mycena anoectochila sp.nov.isolated from Mycorrhizal roots of Anoectochilus roxbughii from Xishuangbanna. China Mycologia ,1997, 89: 952-954.
    71. Guo SX, Fan L, Cao WQ, Chen XM. Mycena dendrobii, A new mycorrhizal fungus. Mycosystema., 1999,18: 141-144
    72. Hadley G. Cellulose as a carbon source for orchid mycorrhiza. New phytologist, 1969, 68: 933-939
    73. HARLEY J L. The Biology of Mycorrhiza. Plant Science Monographs, London. Leonard Hill. Limited Eden Street, N.W.I., 1959, 141-171
    74. Hadley G, Perombelon M. Production of Pectic Enzymes by Rhizoctonia solani and Orchid Endophytes. Nature,1963,200:1337
    75. Hadley G. Cellulose as a carbon source for orchid mycorrhizas. New Phytol, 1969, 68: 933-939
    76. Hadley G, Ong SH. Nutritional requirements of orchid endophytes. New Phytol, 1978, 81:561-569
    77. Harley J L, Harley E L. A check-list of mycorrhiza in the British flora. New Phytologist, 1987,105:1-102
    78. Hadley G, Williamson B. Analysis of the post-infection growth stimulus in orchid mycorrhiza. New Phytol., 1971,70: 445-455
    79. Hadley, G.European terrestrial orchids. In Orchid Biologv.Reviews and Perspectives //(ed. J. Arditti). Cornell University Press. Ithaea., 1982, 326-329
    80. Harley JL,.Smith SE. Mycorrhizal Symbiosis. Aeademie Press.London,1983, 268-295
    81. Hamada M. Studien über die Mykorrhiza von Galeola septentrionalis Reichb. f. neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Jpn J Bot , 1939,10:151-211
    82. Harvais G, Hadley G.The relation between host and endophyte in orchid mycorrhiza. New Phytol, 1967a, 66: 205-215
    83. Harvais G, Hadley G. The development of Orchis purpurella in asymbiotie and inoculated cultures. New Phytologist, 1967b, 66:217-230
    84. Harvais G, Pekkala D. Vitamin production by a fungus symbiotic with orchids. Can. J.Bot. ,1975,53:156-163
    85. Hijner JA., Arditti J. Orchid mycorrhiza:Vitamin production and requirements by the symbionts. Amer. J. Bot, 1973, 60: 829-835
    86. Huynh TT, Mclean CB, Coates F, Lawrite AC. Effect of developmental stage and peloton morphology on success in isolation of mycorrhizal fungi in Caladenia Formosa. Australian Journal of Botany, 2004, 52: 231-241
    87. Hyakumachi M, Ui T. Non self anastomosing isolates of Rhizoctonia solani obtained from fields of sugar beet monoculture. Trans Br Mycol Soc,1987, 89: 155-159
    88. Jonsson BL, Nylund J E. Favolaschia dybowskyana (Singer) Singer (Aphyllophorales), A new orchid mycorrhizal fungus from tropical Africa. New Phytol., 1979, 83:121-128
    89. Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist, 2005, 166: 639-653
    90. Knudson L. Physiological Study of the Symbiotic Germination of Orchid Seeds. Botanical Gazette, 1925,79: 345-379
    91. Kristiansen KA, KJ(?)ller R, Rasmussen H N, Rosendahl S. Identification of orchid mycorrhizal fungi from Dactylorhiza majalis(Orchidaceae) basd on PCR, SSCP and sequencing of mitochondrialribosomal LsDNA from single pelotons. Molecular Ecol., 2001,10: 2089-2093
    92. Lan J, Xu J T, Li J S. Study on symbiotic relation between Gastrodia elata and Armillariella mellea by autoradiography. Acta Mycol. Sin. ,1994,13: 219-222
    93. Lan J, Xu J, Li J. Study on the infecting process of Mycena osmundicola on Gastrodia elataby autoradiography. Acta Mycol. Sin.,1996,15:197-200
    94. Leake JR. The biology of myco-heterotrophic ('saprophytic') plants. Tansley review no 69. New Phytol, 1994,127:171-216
    95. Mead JW, Buiard C. Effects of vitamins and nitrogen sources on asymbiotic germination and development of Orchis laxiflora and Ophrys sphegodes. New Phytologist, 1975,74: 33-40
    96. Mead JW, Bulard C. Vitamin and nitrogen requirements of Orchis loxijiora Lamk. New Phytologist, 1979, 83: 129-136
    97. Nakamura SJ. Nutritional conditions required for the non-symbiotic culture of an achlorophyllus orchid Galeola septentrionalis. New Phytol, 1982, 90: 701-715
    98. Ma M, Tan TK, Wong SM Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids.Mycol. Res, 2003, 107: 1041-1049.
    99. MacNish GC, Carling DE, Sweetingham MW, Ogoshi A, Brainard. KA Characterization of Anastomosis Group-10 (Ag-10) of Rhizoctonia Solani. Australasian Plant Pathology, 1995, 24: 252 -260
    100.Manning J C, Staden J V. The development and mobilisation of seed reserves in some African orchidsAustralian Journal oj Botany,1987, 35: 343-353
    101.Nagatani K,Shimura H,Matsuura M,Koda Y.Acclimation and potting of Micro-propagated Seedlings of Cypripedium macranthos var.rebunense obtained from aseptic culture and symbiotic germination,and Maintenance of the potted plants memoirs of the faculty of agriculture,Hokkaido University),2006,28(1):121-131
    102.Bidartond M I,Burghardt B,Gebauer G,Bruns TD,Read D J.Changing partners in the dark:isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees.Proc.R.Soc.Lond.B,2004,271:1799-1806
    103.Masuhara G,Kimura S,Katsuya K.Seasonal Changes in the Mycorrhizae of Bletilla-Striata Orchidaceae.Trans.Mycol.Soc.Japan,1988,29:25-31
    104.Masuhara G,Katsuya K.Mycorrhizal Differences between Genuine Roots and Tuberous Roots of Adult Plants of Spiranthes sinensis var.amoena(Orchidaceae)Bot.Maq.Tokyo,1992,105:453-460
    105.Masuhara G;Katsuya K.In situ and in vitro specificity between Rhizoctonia spp.and Spiranthes sinensis.New Phytol,1994,127:711-718
    106.McKendrick SL,Leake JR,Taylor DL,Read DJ.Symbiotic germination and development of myco-heterotrophic plants in nature:ontogeny of Corallorrhiza trifida and characterization of its mycorrhizal fungi.New Phytol.,2000a,145:523-537
    107.McKendrick SL,Leake JR,Read DJ.Symbiotic germination and development of myco-heterotrophic plants in nature:transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared connections.New Phytologist,2000b,145:539-548
    108.McKendrick SL,Leake JR,Taylor DL,Read DJ.Symbiotic germination and development of myco-heterotrophic plants in nature:ontogeny of Corrallorhiza trifida and characterization of its mycorrhizal fungi.New Phytologist,2000c,145:523-537
    109.McKendrick SL,Leake JR,Taylor DL,Read DJ.Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp.New Phytologist,2002,154:233-247
    110.McCormick MK,Whigham D F,Sloan D,O'Malley K,Hodkinson B.Orchid-fungus fidelity:a marriage meant to last.Ecology,2006,87:903-911
    111.Melin E.On the mycorrhizas of Pinus sylvestris L.and Picea abies Karst.A preliminary note.J.Ecol.,1922,9:254-257
    112.Mikola P U. Relationship between nitrogen fixation and mycorrhiza. Mircen Journal, 1986,2:275-282
    113.Moore RT. The genera of Rhizoctonia—like fungi: Ascorhizoctonia, Ceratorhiza gen.nov. ,Epulorhiza gen. nov. Moniliopsis and Rhizoctonia. Mycotaxon, 1987, 29: 91-99
    114.M00RE RT, The dolipore/parenthesome septum in modern taxonomy. In: Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control (Sneh B., Jabaji-Hare S., Neate S., Dijst, eds.). KluwerAcademic Publishers. Dordrecht, 1996,13-35
    115.Nobecourt P. Sur la perennite et làugmentation de volume des cultures de tissues vegetaux. Compt. Rendus Soc. Biol. Lyon, 1939,130: 1270-1271
    116.Otero J T, Ackerman DJ, Bayman P. Diversity and host specificity of endophytic Rhizoctonia-like. fungi from tropical orchids. American Journal of Botany, 2002, 89: 1852-1858.
    117.Otero JT, Ackerman JD, Bayman P. Differences in mycorrhizal preferences between two tropical orchids. Molecular Ecology, 2004,13: 2393-2404
    118.Pais M S, Barroso J. Localization of polyphenoloxidases during the establishment of ophrys lutea endomycorrhizas New Phytol, 1983,95: 219-222
    119.Perkins A.J, Masuhara G, McGee PA. Specificity of the associations between Microtis parviflora (Orchidaceae) and its mycorrhizal fungi. Australian Journal of Botany., 1995,43:85-91.
    120.Pereira OL, Rollemberg CL, Borges AC, Matsuoka K, Kasuya MCM. Epulorhiza epiphytica sp. nov. isolated from mycorrhizal roots of epiphytic orchids in Brazil. Mycoscience, 2003,44: 153-155
    121.Pereira OL, Kasuya MCM, Rollemberg CD, Chaer GM. Isolation and identification of Rhizoctonia-like mycorrhizal fungi associated with three species of neotropical epiphytic orchids in Brazil. Revista Brasileira de ciencia do solo, 2005a, 29: 191-197
    122.Pereira OL, Kasuya MCM, Borges AC, Araujo EF. Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can. J.Bot., 2005b, 83:54-65
    123 .Perkins A.J, McGee PA. Distribution of the orchid mycorrhizal fungus Rhizoctonia solani, in relation to its host Pterostylis acuminata. Aust. J. Bot., 1995,43: 565-575
    124.Perombelon M, Hadley G. Production of pectic enzymes by pathogenic and symbiotic Rhizoctonia strains..New Phytol.,1965,64:144-151
    125.Peterson RL,Currah KS.Synthesis of mycorrhizae between protocorms of Goodyera repens(Orchidaceae) and Ceratobasidium cereale.Can J Bot,1990,68:1117-1125
    126.Peterson RT,Trevathan LE Rhizoctonia solani AG-13 isolated from corn in Mississippi.Plant Disease.,2004,88:908
    127.Athipunyakom P,Manoch L,Piluek C.Isolation and Identification of Mycorrhizal Fungi from Eleven Terrestrial Orchids.,Karsetsart J.(Nat.Sci)2004,38:216-228
    128.Pope EJ,Carter DA..Phylogenetic placement and host specificity of mycorrhizal isolates belonging to AG-6 and AG-12 in the Rhizoctonia solani species complex.Mycologia.,2001,93:712-719
    129.Purves S,Hadley G.The physiology of symbiosis in Goodyerea repens.New Phytol,1976,77:689-696
    130.Ramsay RR,Sivasithamparam K,Dixon KW.Anastomosis groups among Rhizoctonia-like endophytic fungi in Southwestern Australia Pterostylis species (Orchidaceae).Lindleyana,1987,2:161-166
    131.Rasmussen H,Andersen TF,Johansen B.Temperature sensitivity of in vitro germination and seedling development of actyiorhiza majaiis(Orchidaceae) with and without a mycorrhizal fungus.Plant,Cell and Environment,1990,13:171-177
    132.Rasmussen HN,Whigham D.Seed ecology of dust seeds in situ:a new technique and its application to terrestrial orchids.American Journal of Botany,1993,80:1374-1378
    133.Rasmussen,H.N.Terrestrial Orchids from Seed to Mycotrophic Plant.Cambridge University Press:Cambridge,UK.1995
    134.Rasmussen,H.N.Recent developments in the study of orchid mycorrhiza.Plant Soil,2002,244:149-163
    135.Rasmussen HN,Whigham DF.Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy.New Phytologist,2002,154:797-807
    136.Rayner M C.Mycorrhiza(continued).New Phytologist,1926,25:1-50
    137.Rice AV,Currah RS.Physiological and morphological variation in oidiodendro maius.Mycotaxon.,2001,79:383-396
    138.Roberts P.Thanatephorus ochraceus:a saprotrophic and orchid endomycorrhizal species.Sydowia,1998,50:252-256
    139.Roberts P.Rhizoctonia-forming fungi.A taxonomic guide.The Herbarium,Royal Botanic Gardens,Kew.ISBN 1900347695,1999
    140.Romell LG. The ecological problem of mycotrophy. Ecology,. 1939,20: 163-167
    141.Raghavan V, Torrey JG. Inorganic nitrogen nutrition of the embryos of the seedlings of the orchid Cattleya. American Journal of Botany, 1964, 51: 264-274
    142.Saksena HK, Vaartaja O. Description of new species of. Rhizoctonia. Can J Bot, 1960, 38:931-943
    143.Scabe A, Brundrett M C, Batty A L, Dixon K W, Sivasithamparam K. Survival of transplanted terrestrial orchid seedling in urban bushland habitats with high or low weed cover. Austrlian Journal of Botany,2006, 54:383-389.
    144.Selosse MA, Faccio A, Scappaticci G, Bonfante P. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology, 2004,47:416-426.
    145.Senthilkumar S, Britto S J, Krishnamurthy K V, Hariharan C. Biochemical analysis of mycorrhizal roots of Aerides maculosum. Phytomorphology, 2000,50: 273-279
    146.Shan X C , Liew E C Y , Weatherhead M A, Hodgkiss I J. Characterization and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia,2002,94: 230-239.
    147.Sharona J, Zettler L W, van Sambeek J W, Ellersieck, M.R. and Starbuck, C.J. Symbiotic seed germination and mycorrhizae of federally threatened Platanthera Praeclara (Orchidaceae). American Midland Naturalist, 2003,149:104-120
    148.Sharon M, Kuninaga S., Hyakumachi M., Sneh B. The advancing identification and classification of Rhizoctonia spp. Using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience , 2006, 47: 299-316
    149.Sharon M, Kuninaga S, Hyakumachi M, Sneh B. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience, 2008,49: 93-114
    150.Silvera K, Santiago LS, Winter K. Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Functional Plant Biology, 2005, 32: 397-407
    151.Silvera K, Santiago LS, Cushman JC, Winter K. Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae. Plant Physiology, 2009, 149: 1838-1847
    152.Smith SE. Physiology and ecology of orchid mycorrhizal fungi with reference to seedling nutrition. New Phytologist., 1966, 65: 488-499
    153.Smit SE. Carbohydrate translocation in orchid mycorrhiza. New Phytol. 1967, 66: 371-378
    154.Smith SE. Asymbiotic germination of orchid seeds on carbohydrates of fungal origin. New Phytol, 1973,72: 497-499
    155.Smith RE. Rapid tube test for detecting fungal cellulose production. Applied and Environment Microbiology., 1977, 33: 980-981
    156.Smith S E, Asymbiotic germination of orchid seeds on carbohydrates of fungal origin. New. Phytol.,1973,72: 497-499
    157.Smith SE, Read DJ. Mycorrhizal Symbiosis, 2nd edition.New York: Academic Press, 1997,347-375
    158.Sneh B, Burpee L, Ogoshi A. Identification of Rhizoctonia species. St Paul: APS Press, 1991,1-89
    159.Sen R, Hietala AM, Zelmer CD. Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytol. ,1999,14: 331-341
    160.Stewart S L,Zettler L W Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquatic Botany, 2002,72: 25-35
    161.Stewart S L, Kane M E. Symbiotic seed germination of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid.Plant cell, tissue and organ culture, 2006,86:159-167.
    162. Stewart S L, Kane M E. Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cellular and Developmental Biology Plant, 2007, 43: 178-186
    163.Suarez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycological research, 2006,110: 1257-1270
    164.Yagame T, Yamato M., Suzuki A, Iwase K. Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana. Mycorrhiza , 2008,18: 97-101
    165 .Taylor D L , Bruns T D. Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences,1997,94:4510-4515
    166.Taylor D L,Bruns T D.Population,habitat and genetic correlates of mycorrhizal specialization in the 'cheating' orchidsCorallorhiza maculata and C.mertensiana.Mol.Ecol.,1999,8:1719-1732
    167.Taylor DL,Bruns TD,Leake JR,Read DJ.Mycorrhizal specificity and function in myco-heterotrophic plants.Ecol.Studies,2002,157:375-413
    168.Tomita M.The causes of difference among orchid-fungus combinations in the suitability of carbon sources for the growth of symbiotic seedlings in vitro.Proceedings of Niocn Nagoya,Japan.,2003,11-14
    169.Tsutsui,K,Tomita M..Symbiotic germination of Spiranthes sinensis Ames associated with some orchid endophytes.J.Fac.Agric.Hokkaido Univ.,1986,62:440-452
    170.Uetake Y,Farquhar ML,Peterson RL.Changes in microtubule arrays in symbiotic orchid protocorms during fungal colonization and senescence.New Phytol.,1997,135:701-709
    171.Uetake Y,Peterson RL.Association between microtubules and symbiotic fungal hyphae in protocorm cells of the orchid species,Spiranthes sinensis.New Phytol.,1998,140:715-722
    172.Uetake Y,Ogoshi A.,Hayakawa S.Observation of teleomorphs of Rhizoctonias (Thanatephorus orchidicola and Tulasnella deliquescens) isolated from orchids.Memoirs of the Faculty of Agriculture,Hokkaido University,1999,22:121-125
    173.Umata H.Seed germination of Galeola altissima,an achlorophyllous orchid,with aphyllophorales fungi.Mycoscience,1995,36:369-372
    174.Wang CJK,Wilcox HE.New species of ectendomycorrhizal and pseudomycorrhizal fungi:Phialophora finlandia,Chloridium paucisporum,and Phialocephala fortinii.Mycologia,1985,77:951-958.
    175.Warcup JH,Talbot,PHB.Perfect state of Rhizoctonias.associated with orchids.New Phytologist.,1967,66:631-641
    176.Warcup J H,Talbot PHB.Perfect state of Rhizoctonias.associated with orchids Ⅱ.New Phytologist.,1971,70:35-40
    177.Waucup JH.Symbiotic germination of some Australian terrestrial orchids.New Phytol.,1972,72:387-392
    178.Warcup J H,Talbot P H B.Perfect state of Rhizoctonias.associated with orchids Ⅲ.New Phytologist,1980,86:267-272
    179.Warcup J H.Factors affection symbiotic germinaiton of orchid seed.In Endomycorrchizas.Eds.F E Sanders,B Mosse and P B Tinker.Academic Press,London.,1975,88-104
    180.Warcup J H.The Rhizoctonia endophytes of Rhizanthella(Orchidaceae).Mycol Res,1991,95:656-659
    181.Warcup JH.The mycorrhizal relationships of Australian orchids.New Phytologist,1981,87:371-381
    182.Warcup JH.Rhizanthella gardneri(orchidacese),its Rhizoctonia endophyte and close association with Melaleuca uncinata(Myrtaceae) in Western Australia.New Phytol,1985,99:273-280.
    183.Watldnson J I.Characterization of two genes,trehalose-6-phosphate synthase/phosphatase and nucleotide binding protein,shown to be differentially regulated in roots of Cypripedium parviflorum var.pubescens grown with a mycorrhizal fungus Thanatephorus pennatus.PhD.Virginia Polytechnic Institute and State University,2002
    184.White P R.Potentially Unlimited Growth of Excised Tomato Root.Tips in a Liquid Medium.Plant Physiol.,1934,9:585-600
    185.White TJ,Bruns T,Lee S,Taylor JW.Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.In:Innis M,Gelfand DH,Sninsky JJ,White TJ,eds.PCR protocols—a guide to methods and applications.San Diego,California:Academic Press.,1990,315-322.
    186.Wilkinson K G,Dixon K W,Sivasitharnparam K,Ghisalberti E L Effect of IAA on symbiotic germination of an Australian orchid and its production by orchid-associated bacteria.Plant Soil,1994,159:291-295
    187.Wynd F L.Sources of Carbohydrate for Germination and Growth of Orchid Seedlings.Annals of the Missouri Botanical Garden,1933,20:569-581
    188.Yamato M,Yagame T,Suzuki A,Iwase K.Isolation and identification of mycorrhizal fungi associating with an achlorophyUous plant,Epipogium roseum(Orchidaceae).Mycoscience,2005,46:73-77
    189.Yoder JA,Zettler LW,Stewart SL.Water requirements of terrestrial and epiphytic orchid seeds and seedlings,end evidence for water uptake by means of mycotrophy.PlantSci.,2000,156:145-150
    190.Zelmer CD.Interactions between northern terrestrial orchids and fungi in nature.MSc Thesis,University of Alberta,Edmonton,Alberta,Canada,1994
    191.Zelmer CD, Currah RS. Ceratorhiza pernacatena and Epulorhiza calendulina spp nov: Mycorrhizal fungi of terrestrial orchids. Canadian Journal of Botany-Revue Canadienne de Botanique, 1995, 73: 1981-1985
    192.Zelmer C D., Cuthbertson L., Currah RS. Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms Mycoscience, 1996,37:439-448
    193.ZelmerC.D. Root-associated Organisms of the Cypripedioideae (Orchidaceae). Ph.D. dissertation, University of Guelph, Ontario, Canada, 2001
    194.Zelmer CD, Currah RS. Evidence for a fungal liason between Corrallorhiza trifida (Orchidaceae) and Pinus contorta (Pinaceae). Canadian Journal of Botany, 1995, 73: 862-866
    195.Zelmer C D, Cuthbertson L, Currah RS. Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience, 1996, 37: 439—448
    196.Zettler L W. Terrestrial orchid conservation by symbiotic seed germination: techniques and perspectives. Selbyana, 1997,18: 188-194
    197.Zettler L W, Piskin K A, Stewart S L, Hartsock J J, Bowles M L and Bell T J. Protocorm mycobionts of the federally threatened eastern prairie fringed orchid, Platanthera leucophaea (Nutt.) Lindley, and a technique to prompt leaf elongation in seedlings. Studies in Mycology, 2005,53:163-171

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700