用户名: 密码: 验证码:
矮牵牛花型突变体的形态结构及其分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,通过对模式植物拟南芥、金鱼草和矮牵牛等花发育突变体的不断研究,科学家们对花发育提出了不同的模型。然而,对花发育的认识因为突变体的数量及类型有限而受到限制,对有关花瓣数目增多以及花瓣花药化的研究还很不深入。对矮牵牛的研究,到目前为止,发现的花器官自然突变体不多,局限于dol、blind、gb与phoenix等,而且在后来的研究中一直被人们用其来研究基因的互作。人们对矮牵牛的部分花发育相关的MADS-BOX基因克隆并通过转基因方法获得一些人工花器官突变体的研究,丰富了花发育的理论。另外,人们虽然对矮牵牛的B类基因研究较多,但很少涉及到花瓣增多的研究。矮牵牛既是一种研究花发育的模式植物,又是一种在园林中广泛应用的花卉植物,对其花器官突变体的研究以及通过转基因获得变异植株,无论对植物花器官发育研究还是对植物育种均有重要意义。本研究以重瓣矮牵牛、新发现的blind-like矮牵牛花器官突变体为切入点做了部分研究,获得了以下主要结果:
     1.通过对许多矮牵牛种质资源进行连续的自交,从一自交系中发现了blind-like突变体植株,并对该植株进行组培及扦插繁殖,确认该突变体性状保持稳定,主要表现为花数增多,花冠退化,花瓣顶端出现花药状结构。通过体细胞突变体诱导和染色体加倍等方法,得到了大量的与重瓣性相关的变异植株,重瓣矮牵牛具有无限增殖的雄蕊与增多的花瓣,并且对重瓣矮牵牛叶片诱导的愈伤组织进行长期离体培养获得了大量遗传变异植株。
     2.对单瓣、blind-like突变体和重瓣矮牵牛解剖结构及扫描电镜的比较观察分析表明,它们的雄蕊与花瓣之间相互具有对方的组织器官,重瓣起源与别的物种存在差异,发现重瓣矮牵牛的内层部分花瓣明显具有雄蕊特征。blind-like突变体的花瓣上的花药化结构在雄蕊原基的形成时就已经出现.
     3.构建了重瓣矮牵牛花发育各个时期的均一化cDNA文库,通过克隆与初步分析了PHCYP51基因与及其它基因检测了文库质量。构建了单重瓣花发育的cDNA差减文库,完成了初步筛选并得到了一批差异cDNA片段。利用文库与合成第一链cDNA,重复的通过PCR克隆了10多个重瓣矮牵牛MADS-BOX基因的读码框,并进行了与单瓣的比较分析,表明了单重瓣之间的部分MADS-BOX基因内读码框碱基存在非同义突变。
     4.对blind-like突变体和重瓣矮牵牛进行了初步的遗传分析,blind-like突变体可能是由转座子插入引起突变,而矮牵牛的单瓣为隐性形状。利用RT-PCR对矮牵牛多个MADS-BOX基因在单瓣、重瓣与blind-like突变体矮牵牛各个花器官上的表达特性的研究结果表明,部分基因在单瓣、重瓣与blind-like突变体矮牵牛各个花器官上的表达模式在花器官之间存在差异。以PHAP2A与PMADS3为探针对花器官组织原位杂交表明,PHAP2A在重瓣的表达模式跟单瓣之间没差异,PMADS3仅在重瓣矮牵牛的内轮花瓣、雄蕊及心皮中表达,而在blind-like突变体上其表达则扩展到每一轮花器官。
     5.对由cDNA文库与差减文库克隆到的cDNA大片段和部分MADS-BOX基因进行了正义与RNAi的植物表达载体构建,部分已经转化到矮牵牛、烟草植株中,并在某些转化体上改变了花型。其中花瓣增多的烟草转基因植株是由S3基因的cDNA片段以RNAi的形式单转化的引起的,在一些转化植株中,有的花药形状发生变化,有的雄蕊完全瓣化,看到的均为花瓣,而且对烟草植株的结实具有比较明显的影响。对这些转基因植株的分子分析正在进行中
     根据以上实验结果,按照blind-like突变体与重瓣矮牵牛表型与基因表达的相似性,我们初步推测出以下结论,blind-like突变体的形成是矮牵牛C类基因在第二轮花器官异位表达所致;鉴于从矮牵牛上分离的基因以RNAi作用的形式导入烟草得到大部分转基因烟草植株雄蕊瓣化、花瓣增多等表型的现象,结合对重瓣矮牵牛的解剖与MADS-BOX的表达分析,重瓣矮牵牛的形成有两方面原因:一方面某类基因的表达或失活使得雄蕊增多,另一方面部分基因功能的缺失,使雄蕊发生瓣化。
In the past decades, genetic studies in several floral organ mutants of Arabidopsis, Antirrhinum and Petunia have led to many models established for the determination of floral organ respectively, such as ABC, ABCD and ABCDE. The understanding of human beings to flower development, floral organs formation was restrained to some extents due to the limited flower or floral mutants, furthermore very few were known to the antheroid petal and multi-floral organs. Up to date, only dol, blind, gb and phoenix floral organ spontaneous mutants were discovered in petunia and they were usually used to investigate the interaction of those floral organ identification genes. The theory of flower development was improved by the studies in petunia, in which some man-made floral mutants were constructed through isolating many MADS-BOX genes transferring to the wild type or spontaneous mutant or insert mutagenesis. Though much more studies were concentrated on the class B genes, there were quite few literatures about petal number to be referred. Petunia hybrida, either as a model plant for plant molecular biology research or as a widely used garden flower, plays an important role in scientists' studies and people's life. Using blind-like floral mutant and the double flower petunia plants constructed by us, the structural and molecular analysis were conducted and the main results were as follow:
     1. The blind-like mutant was discovered among the inbred lines and followed by propagation of cutting and in vitro micro-propagation, the traits were found to be stable. The main varied morphological characteristic of blind-like mutant is multi-flower and exhibiting antheroid structure on the top of petals. Lots of double flower petunia plants were obtained by in vitro macro-propagation and in vitro culture, chromosome doubling. Numerous stamens and many petals can be seen in double petunia flower. There was dramatic genetic variation among somatic variants regenerated from callus of double petunia after long-term subculture.
     2. Paraffin section microscopy and Scanning electron microscopy analysis indicated that there are antheroild structure in the petal of blind-like mutant and the inner petals of double petunia. There are difference in the formation between double petunia and Prunus mume, some of the excessive inner petals have the clinandrium-like structure. The antheroid structure on the top of petal of blind-like mutants was formed as soon as the stamen initiating.
     3. A normalization cDNA library was constructed using RNA extracted from flower during different developmental stages of double petunia. The cDNA library quality was tested by isolation and analysis of a novel gene PHCYP51. A subtractive library between single and double petunia was constructed, and some candidate cDNA fragments were obtained through anti-northern blot. Utilizing the cDNA library and the first strain cDNA, we isolated ten MADS-BOX genes' coding sequence and compared with that of the single petunia, which indicated some of them exhibit sense mutant and nonsense mutant between them.
     5. The primary genetic analysis of the blind-like mutant and double petunia indicated that the blind-like mutant maybe resulted from transposon insert mutagenesis and the recessive allele is responsible for the single-flower phenotype. RT-PCR analysis according to the ten MADS-BOX genes among the floral organs from single, double and blind-like petunia indicated that the expression pattern of some of them is different. Through tissue in situ hybridization analysis, we discovered that there was no difference in PHAP2A expression pattern among wild type, double and blind-like petunia from the flower meristem to the floral organ formation, on the other hand, PMADS3 was differentially expressed in all the floral organs of blind-like mutant, in stamen and pistil of wild type and in the inner petals, stamen and pistil of double petunia.
     6. The sense and RNAi vectors of the genes that isolated from cDNA library combined with RACE method according to subtractive cDNA and some MADS-BOX genes were constructed. Some of them have been transferred to petunia and tobacco plants. Through investigating the phenotype of those transgenic plants, we discovered that double flower transgenic tobacco plants, which carded RNAi structure of S3 fragments. Further investigation demonstrated that the excessive petals were transformed from stamen. Comparing with wild type plants, the transgenic plants showed various shapes in anther and some of the transgenic plants with excessive petal in one solitary flower, moreover, the plants in which all the stamen transformed into petals were complete male sterile.
     Aaccording to the similarity between antheroid structure of blind-like mutant, inner petal anatomical observation and MADS-BOX genes expression pattern of double flower petunia, we proposed that the blind-like mutant was resulted from ecotopic expression of class C genes in petal. Since the formation of double flower tobacco attribute to the RNAi function of gene isolated from petunia, and the transgenic plants with severe phenotypes have much more excessive petal, which is same as to double flower petunia, we think that the possible formation of double flower petunia resulted from (1) the numerous proliferation of stamen number and (2) the loss of function of petal identified genes in the part of stamen and those stamen transformed into petals.
引文
1.代色平.矮牵牛种质资源的提纯和花药培养初步研究[硕士学位论文].武汉:华中农业大学图书馆,2002
    2.薛金国,高丙振,田景瑜.辣椒染色体加倍技术研究.北方园艺,2003,4:58-59
    3.施雪波.矮牵牛育种.见:程金水主编.园林植物遗传育种学.北京,中国林业出版社,2000,234-239
    4. Adams M D, Kelley J M, Gocayne J D et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    5. Alvarez J, Guli C L, Yu X H et al. Terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J, 1992, 2: 103-116
    6. Alvarez-Buylla E R, Pelaz S et al. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA, 2000, 97: 5328-5333
    7. Amasino R M. Control of flowering in plant. Curr Opin Genet Dev, 1996, 6: 480-487
    8. Amkit and KamdeY. Flowering in darkness in Arabidopsis thaliana. Plant J, 1993, 4: 801-811
    9. Anderson M D, Cornish E L, Man S L et al. Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature, 1986, 321: 38-44
    10. Angenent G C, Busseher M, Franken J et al. Functional interaction between the homeotic genes fbpl and pMADSl during petunia floral organogenesis. Plant Cell, 1995, 7: 507-516
    11. Angenent G C, Franken J, Busscher M et al. A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell, 1995, 7: 1569-1582
    12. Angenent G C, Franken J, Busscher M et al. Petal and stamen formation in petunia is regulated by the homeotic gene fbpl. Plant J, 1993, 4: 101-112
    13. Anneke S, Rijpkema, Royaert S et al. Analysis of the petunia TM6 MADS-box genes reveals functional divergence within the DEF/AP3 lineage. Plant Cell, 2006, 18: 1819-1832
    14. Arondel V, Lemieux B, Hwang I et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science, 1992, 258: 1353-1355
    15. Aubert D, Chen L, Moon Y H et al. EMFl, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell, 2001, 13: 1865-1875
    16. Bartel B and Bartel D P. Micro-RNAs: At the Root of Plant Development? Plant Physiol. 2003,132:709-717
    17. Blazquez M A, Green R, Nilsson O et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant cell, 1998,10: 791-800
    18. Blazquez M A. Flower development pathways. J Cell Sci, 2000, 113: 3547-3548
    19. Bohlenius H, Huang T, Charbonnel-Campaa L et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312: 1040-1043
    20. Bosher J M, Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol, 2000,2: E3-E36
    21. Bowman J L, Alvarez J, Weigel D et al. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993, 119: 721-743
    22. Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specfic cell types late in flower development. Plant Cell, 1991, 3: 749-758
    23. Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development in Arabidopsis. Plant Cell, 1989,1: 37-52
    24. Bowman J L, Smyth D R, Meyerowitz E M. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 1991,112: 1-20.
    25. Bradley D, Carpenter R, Copsey L et al. Control of inflorescence architecture in Antirrhinum.Nature, 1996, 379: 791 -797
    26. Bradley D, Carpenter R, Sommer H et al. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell, 1993, 72: 85-95
    27. Burn J E, Smyth D R, Peacock W J et al. Genes conferring late flowering in Arabidopsis thaliana. Genetics, 1993,90: 147-155
    28. Chandler J, Wilson A, Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J, 1996,11: 627-644
    29. Charles P S, Oliveira M, Philip M et al. Morphological and molecular analysis of a double-flowered mutant of the dioecious plant white campion showing both meristic and homeotic effects. Developmental genetics, 1999,25: 267-279
    30. Cho S, Jang S, Chae S et al. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol, 1999, 40: 419-429
    31. Chuang C F and Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Pro Nat Acad Sci USA. 2000, 97: 4985-4990
    32. Cnudde F and Moretti C. Transcript frofiling on developing Petunia hybrida floral organs. Sex Plant Reprod, 2003, 16: 77-85
    33. Coen E S and Meyerowitz E M. The war of the whorls: genetic interactions controlling bower development. Nature, 1991, 353: 31-37
    34. Coimbra S, Torrao L, Abreu I. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol Bioch, 2004, 42: 537-541
    35. Coles J P, Phillips A L, Croker S J et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J, 1999, 17: 547-556
    36. Colombo L, Franken J, Koetje E et al. The Petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 1995, 7: 1859-1868
    37. Covington M F, Panda S, Liu X L et al. ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell, 2001, 13: 1305-1315
    38. Curtis I S, Caiping H, Scott R et al. Genomic male sterility in lettuce, a baseline for the production of F_1 hybrids. Plant science, 1996, 113: 113-119
    39. Devlin P F and Kay S A. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell, 2000, 12: 2499-2510
    40. Diatchenko L, Chris Lau Y F, Campbell A P et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes. Proc Natl Acad Sci USA, 1996, 93: 6025-6030
    41. Dill A and Sun T P. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics, 2001, 159: 777-785
    42. Ditta G, Pinyopich A, Robles P et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol, 2004, 14: 1935-1940
    43. Dostie J, Mourelatos Z, Yang M et al. Numerous micro-RNPs in neuronal cells containing novel micro-RNAs. RNA, 2003, 9:180-186
    44. Drews G N, Bowman J L, Meyerowitz E M. Negative regulation of the Arabidopsis homeotic gene AOAMOUS by the APETALA2 product. Cell, 1991, 65: 991-1002
    45. Eckardt N A. MADS monsters: controlling floral organ identity, plant cell, 2003, 15: 803-805
    46. Eiji N. Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant Journal, 2003, 36: 522-531
    47. Fan H Y, Hu Y, Tudor M et al. Specific interactions between K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J, 1997, 12: 999-1010
    48. Favaro R, Pinyopich A, Battaglia R et al. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15: 2603-2611
    49. Feedstuff N S, Wessler M, Shure. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 1983, 35: 235-242
    50. Ferrandiz C, Gu Q, Martienssen R et al. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000, 27: 725-734
    51. Ferrario S, Immink R G, Shchennikova A et al. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003, 15: 914-925
    52. Ferrario S, Immink R. G H, Angenent G C. Conservation and diversity in flower land. Curr Opin Plant Biol, 2004, 7:84-91
    53. Fire A, Xu S, Montgomery M K. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegan. Nature, 1998, 391: 806-811
    54. Flanagan C A and Ma H. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol, 1994, 26: 581-595
    55. Fower S, Lee K, Onouchi, H et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J, 1999, 18: 4679-4688
    56. Gavinlertvatana P., Read P.E., Wilkins H.F. Control of ethylene synthesis and action by silver nitrate and rhizobitoxine in petunia leaf section cultured in vitro. J.Amer.Soc.Hort.Sci., 1980, 105:304-307
    57. Gendal A R, Levy Y Y, Wilson A et al. The VERNALIZATION 2 gene mediates the epigenetie regulation of vernalization in Arabidopsis. Cell, 2001, 107: 525-535
    58. Gierl A and Saedler H. Plant transposable elements and gene tagging. Pl Mol Biol, 1992, 19: 39-49
    59. Giraudat J, Hange B M, Valon C et al. Isolation of Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4: 1251-1261
    60. Goodrich J, Puangsomlee P, Martin M et al. Coupland G:A Polycomb-group gene regulates homeotic gene expression in Arabidupsis. Nature, 1997, 86: 44-51
    61. Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic gene Pistillata. Genes Devel, 1994, 8: 1548-1560
    62. Gura T. A silence that speaks volumes. Nature, 2000,404: 804-808
    63. Hammond S M, Bern S I, Beachad. A.RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000,404: 293-296
    64. Hartmann U, Hohmann S, Nettesheim K et al. Molecular clonging of SVP: a negative regulator of floral transition in Arabidopsis. Plant J 2000,21:351-360
    65. Hatey F, Tosser-Klopp G, Clouscard-martinato C et al. Expressed sequenced tags for genes: a review. Genet Sel Evol, 1998, 30: 521-541
    66. Haughn G W and Somerville C R. Genetic control of morphogenesis in Arabidopsis. Dev Genet, 1988,9:73-79.
    67. He Z H, Zhu Q, Dabi T et al. Transformation of rice with the Arabidopsis floral regulator LEAFY causes early heading. Transgenic Research, 2000, 9: 223-227
    68. Honma T and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001,409: 525 -529
    69. Hutvagner G, Zamore P D. A micro-RNA in a multiple-turnover RNAi enzyme complex. Science, 2002,297: 2056-2060
    70. Immink R G H, Hannapel D J, Ferrario S et al. A petunia MADS-box gene involved in the transition from vegetative toreproductive development. Development, 1999, 126:5117-5126
    71. Immink R G, Ferrario S, Busscher-Lange et al. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics, 2003, 268: 598-606
    72. Immink R G, Gadella T W, Ferrario S et al. Analysis of MADS box protein-protein in Arabidopsis flower development. Science, 2002,303: 2022-2025
    73. Irish V F and Sussex I M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 1990,2: 741-753
    74. Jack T, Brockman L L, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992,68: 683-697
    75. Jack T, Fox G L, Meyerowitz E M. Arabidopsis homeotic gene APETALA3 ectopic expression:transcriptional and post-transcriptional regulation determine floralorgan identity. Cell, 1994, 76: 703-716
    76. Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004, 16: S16-S17
    77. Jack T. Relearning our ABCs: new twists on an old model. Trends Plant Sci, 2001, 6: 310-316
    78. Jacobsen S E and Olszewski N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 1993, 5: 887-896
    79. Jang S, Lee B, Kim C et al. The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol, 2003, 53: 357-369
    80. Jiang L, Qian Q, Mao L et al. Characterization of the rice floral organ number mutant fon3. Journal of Integrative Plant Biology, 2005, 47: 100-106
    81. Jing Y U, Guo J, Li F et al. Cloning of the homeotic gene fbp2 from petunia hybrida and its effects in tobacco flower. Acta Botanica Sinica, 1999, 41: 45-50
    82. Johanson U, West J, Lister C et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 2000, 290: 344-347
    83. Kanazin V, Marek L F, Shoemaker R. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci, 1996, 93: 11746-11750
    84. Kardailsky I, Vipula K S, Ahn J H et al. Activation tagging of the floral inducer FT. Science, 1999, 286: 1960-1962
    85. Kempin S A, Savidge B, Yanofsky M F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science, 1995, 267: 522-526
    86. Kermani M J, Sarasan V A, Roberts V et al. Oryzalin induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet, 2003, 107: 1195-1200
    87. Kinoshita T, Harada J J, Goldberg R B et al. Polycomb repression of flowering during early plant development. Proc Natl Acad Sci USA, 2001, 98: 14156-14161
    88. Koornneef M, Hanhart C J, van der Veen J H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet, 1991, 229: 57-66
    89. Lagos-Quintana M, Rauhut R, Meyer J et al. New micro-RNAs from mouse and human. RNA, 2003, 9:175-179
    90. Lamb R S and Irish V F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA 2003, 100: 6558-6563
    91. Larsson A S, Landbery K, Meeks-Wagner D R. The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transtion and meristem identity in Arabidopsis thaliana. Genetics, 1998, 149: 597-605
    92. Larsson A S, Landbery K, Meeks-Wagner D R. The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transtion and meristem identity in Arabidopsis thaliana. Genetics, 1998, 149: 597-605
    93. Lau N C, Lim L P, Weinstein E G et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858-862
    94. Lee I and Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet, 1993, 237: 171-176
    95. Lee I, Aukerman M J, Gore S L et al. Isolation of LUMINIDEPENDENS: A gene involved in the control of flowering time in Arabidopsis. Plant Cell, 1994, 6: 75-83
    96. Lee R C, Feinbaum R L, Ambros V. The C.elegans heterochronic gene lin-4 encoded small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843-854
    97. Lee Y, Jeon K, Lee J T et al. Micro-RNA maturation: stepwise processing and subcellular localization. EMBO, 2002, 21: 4663-4670
    98. Levin J Z and Meyerowitz E M. UFO: an Arabidopsis gene involved in both floral meristem identity and floral organ development. Plant Cell, 1995, 7: 529-548
    99. Levy Y Y and Dean C. The transition to flowering. Plant Cell, 1998, 10: 1973-1989
    100. Levy Y Y. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science, 2002, 297: 243-246
    101. Liljegren S J, Ditta S, Eshed Y et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 2000, 404: 766-770
    102. Liu Z, Myerowitz E M. LEUNIG regulates AGAMDUS expression in Arabidopsis flowers. Development, 1995, 121: 975-991
    103. Llave C, Xie Z X, Kasschau K D et al. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002, 297: 2053-2056
    104. Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev. 1991, 5: 484-495
    105. Macknight R, Bancroft I, Page T et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell, 1997, 89: 737-745
    106. Maes T and Van de Steene N. Petunis ap2-1ike genes and their role in flower and seed development. Plant Cell, 2001, 13: 229-244
    107. Malgorzata D. Gaj. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh Plant Growth Regulation, 2004, 43: 27-47
    108. Mandel M A and Yanofsky M F. A gene triggering flower formation in Arabidopsis. Nature, 1995, 377: 522-524
    109. Mandel M A and Yanofsky M F. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod, 1998, 1:22-28
    110. Mandel M A, Gustafson-Bromn C, Savidge B et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALAI. Nature, 1992, 360: 273-277
    111. Mandel M A. Bowman J L, Kempin S A. Manipulation of flower structure in transgenic tobacco. Cell, 1992, 71: 133-143
    112. Marksm D, Feldmann K A. Trichome development in Arabidopsis thalianaT-DNA tagging of the GLABROUS1 gene. Plant Cell, 1989, 1: 104-105
    113. Martinez-Zapater J M and Somerville C R. Effect of light quality and vernalization on late-flowering mutants of Arabidopsis thaliana. Plant Physiol, 1990, 92: 770-776
    114. Marx J. Interference with gene expression. Science, 2000, 288: 1370-1372
    115. Michaels S D and Amasino R M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999, 11: 949-956
    116. Michaels S D and Amasino R M. Loss of FLOWERING LOCUS C activity eliminate the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell, 2001, 13: 935-941
    117. Micheels S D and Amasino R M. Locus of FLOWERING LOCUS C activity eliminate the late-flowering phenotype of FRIGIDA and autonomous pathways mutations but not responsiveness to vernalization. Plant Cell, 2001, 8: 832-845
    118. Miguel A and Blazquez. Flower development pathways, J Cell Sci, 2000, 113: 3547-3548
    119. Millar A J, Carre I A, Strayer C. A et al. Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science, 1995, 267: 1161-1163
    120. Mizukami Y and Hong M. Separation of AG function in floral meristem determinacy rom that in reproduction organ identity by expressing antisense AG RNA. Plant Mol Biol, 1995, 28: 767-784
    121. Mizukami Y and Hong Ma. Ectopie expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell. 1992, 71: 119-131
    122. Mizukami Y and Ma H. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell, 1997, 9: 393-408
    123. Mizukami Y and Ma H. Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Molecular Biology, 1993, 28: 767-784
    124. Moon Y H, Chen L, Pan R L et al. EMF genes maintain vegetative development by repressing the flower program in Arabidopsis. Plant Cell, 2003, 15: 681-693
    125. Nagasawa N, Miyoshi M, Kitano H et al. Mutations associated with floral organ number in rice. Planta, 1996, 627-633
    126. Nilsson O, Lee I, Blazquez M A et al. Flowering-time genes modulate the response to LEAFY activity. Genetics, 1998, 150: 403-410
    127. Nitasaka E. Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J, 2003, 36: 522-531
    128. Norman C. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-Fos serum response element. Cell, 1988, 55: 989-1003
    129. Ohshima S, Murata M, Sakamoto W et al. Cloning and analysis of the Arabidopsis gene TERMINAL FLOWER 1. Mol Gen Genet, 1997, 254: 186-194
    130. Okamuro J K, Caster B, Villarroel R et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7076-7081
    131. Pasquinelli A E, Reinhart B J, Slack F et al. Conservative of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408: 86-89
    132. Passmore S, Maine G T, Elble R et al. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATA cells, J Mol Biol, 1988, 204: 593-606
    133. Pelaz S, Ditta G S, Baumann E et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203
    134. Pelaz S, Gustafson-Brown C, Kohalmi S E et al. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J, 2001, 26: 385-394
    135. Peng J, Carol P, Donald E et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997, 11: 3194-3205
    136. Peschke VM , Phillipsand RL, Gengenbach BG. Discovery of transposable element activity among progeny of tissue culture derived maize plants. Science, 1987, 238: 804~807
    137. Pinyopich A, Ditta G S, Savidge B et al. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003, 424: 85-88
    138. Plader W., Malepszy S., Burza W. & Z. Rusinowski. The relationship between the regeneration system and genetic variability in the cucumber (Cucumis sativus L.) Euphytica, 1998, 103: 9-15
    139. Power J B and sink K C. Somatic and sexual hybrids of petunia hybrida and petunia parodii. The journal of heredity, 1978, 69: 373-376
    140. Purugganan M D, Rounsley S D, Schmidt R J et al. Molecular evolution of flower development: Diversification of the plant MADS-box Regulatory gene family. Genetics, 1995,140: 345-356
    141.Putterill J, Robson F, Lee K et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995, 80: 847-857
    142.Puzio P S and Lausen J. Isolation of a gene from Arabidopsis thaliana related to nematode feeding structure. Gene, 1999,239: 163-172
    143.Ratcliffe O J, Amaya I, Vincent C A et al. A common mechanism controls the life cycle and architecture of plants. Development, 1998,125: 1609-1615
    144.Reinhart B J, Slack F J, Basson M et al. The 21-nucleotide let-7 RNA regulates developmental timing in caenorhabditis elegans. Nature, 2000,24: 901-905
    145.Reinhart B J, Weinstein E G, Rhoades M W et al. Micro-RNAs in plants. Genes Dev, 2002, 16: 1616-1626
    
    146.Ribeiro RC, Jekkel Z, Mulligan BJ, Cocking EC, Power JB, Davey MR &Lynch PT.Regeneration of fertile plants from cryopreserved cell suspensions of Arabidopsis thaliana (L.). Heynh. Plant Science. 1996,115:115-121
    
    147.Riechmann J L and Meyerowitz E M. The AP2/EBEBP family of plant transcription factors. Biol Chem, 1998,379: 633-646
    148.Riechmann J, Meyerowitz E. MADS domain proteins in plant development. Biol Chem, 1997,378: 1079-1101
    149.Roldan M, Gomez-Mena C, Ruiz-Carcia L et al. Different roles of flowering-time genes in the activation of floral initiation genes in Arabisopsis. Plant Cell, 1999, 9: 1921-1934
    150.Roldan M, Gomez-Mena C, Ruiz-Carcia L et al. Effect of darkness and sugar availability to the apex on morphogenesis and flowering time of Arabidopsis. Flowering Newt, 1997,24:18-24
    151.Rosellini D, Pezzotti M, Veronesil F. Characterization of transgenic male sterility in alfalfa. Euphytica, 2001,118: 313-319
    152.Ruvkun G. Molecular biology: glimpses of a tiny RNA world. Science, 2001, 294: 797-799
    153.Samach A, Onouchi H, Scott E et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288:1613-1616
    154.Savidge B, Rounsley S D, Yanofsky M F. Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 1995,7:721-733
    155.Schaffer R, Ramsay N, Samach A et al. The late elongated hypocotyls mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998, 93: 1219-1229
    156. Schomburg F M, Patton D A, Meinke D W et al. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell, 2001, 13: 1427-1436
    157. Schultz E A and Haughn G W. Genetic analysis of the floral initiation process in Arabidopsis. Development, 1993, 119: 745-765
    158. Schultz E A and Haughn G W. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell, 1993, 5: 639-655
    159. Schultz E A and Haughn G W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 1991, 3: 771-781
    160. Schultz T F, Kiyosue T, Yanovsky M et al. A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell, 2001, 13: 2659-2670
    161. Scutt C P, Oliveri M, Philip M et al. Morphological and molecular analysis of a double-flowered mutant of the dioecious plant white campion showing both meristic and homeotic effects. Developmental Genetics, 1999, 25: 267-279
    162. Seah S, Sivasithamparam K, Karakousis A et al. Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937-945
    163. Shannon S and Meeks-Wagner D R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell, 1991, 3: 877-892
    164. Sheldon C C, Burn J E, Perez P P et al. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell, 1999, 11: 445-458
    165. Shore P and Sharrocks A. The MADS-box family of transcription factors. Eur J Biochem 1995, 229: 1-13
    166. Shovel G., Ben-Meir H, Ovadis M et al. RAPD and RFLP markers tightly linked to the locus controlling carnation(Dianthus caryophyllus) flower type. Theoretical and Applied Genetics, 1998, 96: 117-122
    167. Simpeon G G and Dean C. Arabidopsis, the meetta stone of flowering time. Science, 2002, 296: 285-289
    168. Simpson G G, Dijkwel P P, Quesada V et al. FT is an RNA 39 end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell, 2003, 113: 777-787
    169. Soares M B, Bonaldo M F, Jelene P et al. Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA, 1994, 91: 9228-9232
    170. Sommer H, Beltran J P, Huijser P et al. DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J, 1990, 9: 605-613
    171. Springer P S. Gene traps: tools for plant development and genomics. Plant Cell, 2000, 12: 1007-1020
    172. Suarez-Lopez P, Wheatley K, Robson F et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410: 1116-1120
    173. Tada Y. PCR-amplified resistance gene analogs link to resistance loci in rice. Breeding Science, 1999, 49: 267-273
    174. Theiben G and Saedler H. Plant biology. Floral quartets. Nature, 2001, 409: 469-471
    175. Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol, 2001, 4: 75-85
    176. Tinka Eneva, Olaf Tietz, Elisabeth Luley & Klaus Palme. Loss of AtPIN1 does not influence the in vitro morphogenic potential of Arabidopsis thaliana suspension cultures Plant Cell, Tissue and Organ Culture, 2004, 79: 181-188
    177. Tsuchimoto S, Krol A R, Chua N H. Ectopic expnession of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell, 1993, 5: 843-853
    178. Tsuchimoto S, Mayama T, Krol A R et al. The whorl-specific action of a petunia class B floral homeotic gene. Gene to Cell, 2000, 5: 89-99
    179. Tzeng T Yu, Hsing Y C, Yang C H. Ectopict expression of carpel-specific MADS box from lily and lisianthus causes similar homeotic conversion of sepal and petal on Arabidopsis. Plant physiology, 2002, 130: 1827-1836
    180. Vandenbussche M, Zethof J, Royaert S et al. The duplicated B-class heterodimer model: Whorl specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell, 2004, 16: 741-754
    181. Vandenbussche M, Zethof J, Souer E et al. Toward the analysis of the petunia MADS box gene family by reverseand forward transposition insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS-box genes in petunia. Plant Cell, 2003, 15: 2680-2693
    182. Vanderkrol A and Chua N H. Flower development in petunia. Plant Cell, 1993, 5: 1195-1203
    183. Vanderkrol A, Brunelle A, Tsuchimoto S et al. Functional analysis of petunia floral homeotic MADS box genepMADS1. Genes Dev, 1993, 7: 1214-1228
    184. Wang Z Y and Tobin E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998, 93: 1207-1217
    185. Weigel D and Meyerowitz E M. The ABC of flower homeotic gene. Cell, 1994, 7: 203-209
    186. Weigel D and Nilsson O A. Developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495-500
    187. Weigel D, Alvarez J, Smyth D R et al. LEAFY control floral meristem identity in Arabidopsis. Cell, 1992, 69: 843-859
    188. Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995, 7: 388-389
    189. Weigel D. The genetics of flower development: from floral induction to ovule morphogenesis. Annu Rev Genet, 1995, 29:19-39
    190. Welgel D, Alvaerz J, Smyth D R et al. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992, 69: 843-859
    191. Wen C K and Chang C. Arabidopsis RGL1 encodes a negative regulator of gibberell in responses. Plant Cell, 2002, 14: 87-100
    192. Wikinson M D and Haughn G. WUNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis. Plant cell, 1995, 7: 1485-1499
    193. Wilson R N, Heckman J W, Somerville C R. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol, 1992, 100: 403-408
    194. Xu B, Mu J H, Nevns D L et al. Cloning and sequencing of cDNAs encoding two self-incompatibility associated proteins in Solanum chacoense. Mol Gen Genet, 1990, 224: 341-346
    195. Xu J, Li H D, Chen L Q et al. A protein kinase, interacting with two calcineurin B-like proteins, Regulates K+transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347-1360
    196. Xu Y L, Gage D A, Zeevaart J A D. Gibberellins and stem growth in Arabidopsis thaliana-effects of photoperiod on expression of the GA4 and GA5 loci. Plant Physiol, 1997, 114: 1471-1476
    197. Xu Y L, Li L, Wu K Q et al. The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase-molecularcloning and functional expression. Proc Natl Acad Sci USA, 1995, 92: 6640-6644
    198. Yan L, Loukoianov A, Tranquilli G et al. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA. 2003, 100: 6263-6268
    199. Yang C H, Chen L J, Sung Z R. Genetic regulation of shoot development in Arabidopsis: Role of the EMF genes. Dev Biol, 1995, 169: 421-435
    200. Yang Y, Fanning L, Jack T. The K domain-mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J, 2003, 33: 47-59.
    201. Yanofsky M F, Ma H, Bowman J L et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 1990, 346: 35-39
    202. Yanovsky M J, Mazzella M A, Casal J J. A quadruple photoreceptor mutant still keeps track of time. Curr Biol, 2000, 10: 1013-1015
    203. Yashih H. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science, 1992, 258: 1350-1353
    204. Yesodi á S V. Izhar á H. HauschnerY. Tabib á N. FironHomologous recombination involving cox2is responsiblefor a mutation in the CMS-specific mitochondrial locus of Petunia Molecular General Genetic, 1997, 255:106-114
    205. Zainol R and Stimar D P. A monogenic recessive gene, fw, conditions flowers doubling in Nicotiana alata, Hort Sci, 2001, 36:128-130
    206. Zainol R, Stimart D P, Evert R F. Anatomical analysis of double flower morphogenesis in Nicotiana alata Link & Qttq. J Amer Soc Hort Sci, 1998, 123: 967-972
    207. Zamore P D, Schlt T U, Sharp P A et al. RNA i: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101: 25-33
    208. Zhang H and Forde B G. An Anabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407-409
    209. Zhulidov P A, Bogdanova E A, Shcheglov A S et al. Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Research, 2004, 32: 267-279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700