用户名: 密码: 验证码:
连香树干旱胁迫过程中的生理变化与基因差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是主要的环境胁迫因子之一,它严重影响着植物生长和产量。在干旱条件下,许多基因参与了植物对干旱胁迫的响应,然而,目前只有为数不多的基因的详尽功能得到了阐明,并且这方面的大部分工作是在一年生草本模式植物如拟南芥、烟草及水稻上完成的,对林木相关的研究较少。为了研究植物的抗旱机理,发掘抗旱基因,本研究以木本植物连香树为材料,通过抑制消减杂交(SSH)的方法,对连香树在干旱条件下的特异转录组进行研究,结合连香树在干旱条件下种子和二年生幼苗的生理生化变化,对连香树的抗旱机理进行了分析探讨;同时利用抑制消减文库中的差异表达基因片段,采用荧光实时定量PCR(qRT-PCR)方法,对8个差异表达基因片段的表达情况进行分析,验证SSH技术的可靠性。主要研究结果如下:
     ①以连香树种子为试验材料,研究了不同浓度聚乙二醇6000(PEG 6000)对种子萌发的影响。结果表明:适宜浓度(140~301 g·L~(-1))的PEG预先引发处理连香树种子,能促进种子萌发和芽苗生长,增加渗透调节物质如可溶性蛋白、可溶性糖和脯氨酸的含量,提高保护性酶如超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,降低丙二醛(MDA)含量,修复膜系统损伤,提高其抗旱性。此外,种子干旱胁迫试验也表明,在干旱胁迫下,伴随PEG浓度的增加,连香树种子萌发和幼苗生长受到抑制,可溶性蛋白含量先升高后降低,可溶性糖、脯氨酸和MDA含量升高,保护性酶SOD和CAT的活性升高及POD活性下降。连香树对干旱胁迫较为敏感,PEG浓度≥95 g·L~(-1)会对种子萌发、芽苗胚轴和胚根生长产生抑制作用。
     ②通过采用PEG 6000在室内模拟干旱条件,对二年生连香树实生苗进行干旱胁迫,以研究胁迫对其生理特性的影响。结果表明:随着胁迫浓度的增加和时间的延长,叶片中总叶绿素含量明显降低;在轻度胁迫下(PEG浓度为50~150 g·L~(-1))可溶性蛋白含量上升,而重度胁迫下(200 g·L~(-1))可溶性蛋白含量先升高后降低。伴随PEG浓度的增加,可溶性糖、脯氨酸和MDA含量升高,保护性酶POD活性升高、CAT活性下降,SOD活性先增强后减弱。由此说明,连香树在干旱胁迫下通过增加渗透调节物质含量,降低水势,加强保水力来提高其抗旱能力:并通过增强抗氧化酶活性,提高抗氧化能力,来减轻干旱胁迫伤害。
     ③以干旱胁迫处理的连香树芽苗SB_4和未处理的芽苗SB_0,进行抑制消减杂交,构建了共包含768个阳性克隆的正、反向cDNA文库。利用斑点杂交技术进行阳性克隆筛选,共获得差异克隆309个。对309个阳性克隆进行测序,共获得241条uniESTs序列。通过进行BlastX和BlastN分析,有199条ESTs序列与己知功能的基因序列相似,其余的109条与未知功能的基因序列相似。
     ④对文库进行Gene Ontology(GO)分类,使我们从不同角度理解199个uniESTs序列在细胞组件、分子功能和生物学途径中的作用。根据这些ESTs所代表的基因的生理生化作用,按功能将其分为13类。其中有103个基因与干旱胁迫关系密切,并对它们进行了分析讨论。连香树的抗旱胁迫过程涉及信号转导与基因的表达调控、渗透胁迫物质的合成、防御反应、转运作用与离子平衡、活性氧清除、救援和防御蛋白合成、修复和保护光合系统等多种途径的综合作用。
     ⑤文库提供了大量有关抗旱胁迫基因的相关信息,如海藻糖-6-磷酸合酶(trehalose-6-phosphate phosphatase)、S-腺苷蛋氨酸脱羧酶(S-adenosylmethioninedecarboxylase)、G蛋白类(G protein)、钙调蛋白(calmodulin)、钙结合EF家族蛋白(calcium-binding EF hand family protein)、ADP糖基化因子(ADP ribosylation factor)、bZip转录因子(bZip transcription factor)、丝氨酸/苏氨酸蛋白磷酸酶(serine/threonine phosphataseprotein)、脂质转运蛋白(lipid transfer protein)、H~+-ATP酶(H~+-transporting two-sector ATPase)、水通道蛋白(aquaporin)、ABC转运蛋白家族(ABC transporter protein)、过氧化氢酶(catalase)、抗坏血酸过氧化物酶(ascorbate peroxidase)、硫氧还蛋白(thioredoxin)、类金属硫蛋白(metallothionein-like protein)、谷胱甘肽硫转移酶(glutathione S-transferase)、核酮糖1,5-二磷酸羧化加氧酶(Rubisco)、OEE蛋白(oxygen-evolving enhancer protein)、叶绿素a/b结合蛋白复合物(chlorophyll a/b binding protein)、类萌芽素蛋白(germin-like protein)、扩张蛋白(expansin)、胚胎发育后期丰富蛋白(late embryogenesis abundant protein)、茉莉酮酸酯诱导蛋白(iasmonate-induced protein)、细胞色素P450(cytochrome P450)和硒结合蛋白(seleniumbinding protein)等,这些ESTs序列的获得,为克隆与分析抗性相关基因奠定了良好的基础。
     ⑥选取8个差异表达基因片段,采用SYBR GreenⅠ嵌合荧光法进行荧光实时定量PCR分析,对SSH结果进验证,结果与抑制消减杂交实验基本一致,表明SSH结果能够正确真实反映被检测基因的表达变化规律,其结果准确可靠。
Drought is one of the major abiotic stresses that adversely affect plant growth and yield worldwide. Lots of genes are thought to be involved in responses to abiotic stress.However,only a few genes have been known precisely until recently and moreover most of the studied genes originated from a few annual herbaceous plants like Arabidopsis,tobacco and rice.Information on drought-resistant genes of perennial trees is scare,even though drought stress constitutes a major challenge to forestry development in the future.To understand the molecular mechanism of water stress and the role of differential gene expression in drought tolerance of the trees,using Cercidiphyllum japonicum as material,we studied its transcriptome during drought stress by suppression subtractive hybridization (SSH) method.Based physiological and biochemical change of the seeds and seedlings,we analyzed the mechanism of drought tolerance of C.japonicum.At the same time,we used qRT-PCR to verify eight differentially expressed genes in the SSH data,and to confirm the SSH technique is accurate and reproducible.Main results as follows:
     (ⅰ) The morphological,physiological and biochemical indexes associated with seed germination and seedling growth of C.japonicum were measured under seven different polyethylene glycol 6000 (PEG 6000) concentrations from 95 to 345 g·L~(-1).The results showed that the suitable PEG concentration was range from 140 to 301 g·L~(-1).In this range,the membrane-repair capacity and the drought resistance of seed were improved,accompanied with the changes of the following indicators. The contents of three osmoregulation substances(soluble protein,sugar and proline) and the activities of three protective enzymes(superoxide dismutase(SOD),peroxidase(POD) and catalase (CAT)) were increased,while,in contrast,the content of a final product of lipid peroxidation, malondialdehyde(MDA) was decreased.In addition,seed germination and seedling growth were inhibited in higher PEG concentrations under water stress.With the increment of PEG concentrations,the contents of soluble sugar,proline and MDA,and the activities of two enzymes (SOD and CAT),were continuously elevated,in contrast,the enzyme activities of POD was strongly decreased.In particular,the content of soluble protein was increased first and then decreased during this process.These results also indicated that the seed germination and seedling growth were inhibited under the high PEG concentration(≥95 g·L~(-1)).A tentatively conclusion is that C. japonicum seed is sensitive to water stress.
     (ⅱ) The two years old seedlings of C.japonicum were treated with PEG 6000 at different concentration under water stress,which were used to study the physiological effects of drought stress on leaves.The results showed that the content of chlorophyll in leaves were strongly decreased with the increase of the concentration of PEG.The content of the soluble protein exhibited dismiliar change trend in different water stress,which increased under the low PEG concentration(50~150 g·L~(-1)),and increased first and then decreased under the high PEG concentration(200 g·L~(-1)). Accmpoany with the increase of water stress,we found the contents of soluble sugar,proline and MDA and the activity of POD were increased,in contrast,the activity of CAT was decreased. Stringly,the activity of SOD was firstly increased and then decreased.These findings suggest that the C.japonicum could adjust the contents of osmotic substance for the adaption of the water stress, and improve the activity of protective enzymes to enhance the ability of antioxygenic.
     (ⅲ) Using mixed cDNAs prepared from drought treated seedling(SB_4) and unstressed seedling (SB_0).A forward and reversal subtractive cDNA libraries were constructed,from which 768 recombinant clones were picked amd amplified.Through differential screening of the subtractive cDNA library by dot blot,three hundred and nine positive colonies were picked and sequenced,and Two hundred and forty one effective sequences were obtained.BlastX and BlastN alignment results revealed that 199 fragments showed significant similarity to the function-known sequences in NCBI database,and 109 fragments were similar to function-unknown genes.
     (ⅳ) All the sequences in the forward and reversal subtractive cDNA libraries were subjected to Gene Ontology(GO) annotation for understanding their roles in cell component,molecular function and biological process.According to their physiological function,they can be subdivided into 13 categories among them,103 genes were drought stress-related genes,and their function including signal transduction and gene expression regulation,osmotic substances synthesis,defense,transport facilitation and ions balancing,active oxygen elimination,cell rescue and defensive protein synthesis, photosynthesis repair and protection system and many other physiological and biochemical pathway.
     (ⅴ) We get many drought resistant related gene fragments including trehalose-6-phosphate phosphatase,S-adenosylmethionine decarboxylase,G protein,calmodulin,calcium-binding EF hand family protein,ADP ribosylation factor,bZip transcription factor,serine/threonine phosphatase protein,lipid transfer protein,H~+-transporting two-sector ATPase,aquaporin,ABC transporter protein,catalase,ascorbate peroxidase,thioredoxin,metallothionein-like protein,glutathione S-transferase,Rubisco,oxygen-evolving enhancer protein,chlorophyll a/b binding protein, germin-like protein,expansin,late embryogenesis abundant protein,jasmonate-induced protein, cytochrome P450,selenium binding protein,and many other crucial genetic information.
     (ⅵ) qRT-PCR was used to verify eight differentially expressed genes in the SSH data.The results of qRT-PCR were consistent with the SSH.The SSH technique used in this study is accurate and reproducible.
引文
[1]余叔文,汤章城主编.植物生理与分子生物学[M].北京:科学出版社,1999,476-492.
    [2]Denby K,Gehring C.Engineering drought and salinity tolerance in plants:lessons from genome-wide expression profiling in Arabidopsis[J].Trends Biotechnol,2005,23(11):547-552.
    [3]Mahajan S,Tuteja N.Cold,salinity and drought stresses:An overview[J].Arch Biochem Biophys,2005,444(2):139-158.
    [4]陈仲平.连香树及其育苗技术[J].林业实用技术,1998,4:32.
    [5]Bob Gibbons.Tree of Britian and Europe[M].London:Chancer press,1995:43.
    [6]Curty Christophe,Engel Norbert.Detection,isolation and structure elucidation of a chlorophyll alpha catabolite from autumnal senescent leaves of Cercidiphyllum japonicum[J].Phytochemistry,1996,42(6):1531-1536.
    [7]傅立国.中国植物红皮书——稀有濒危植物(第一册)[M].北京:科学出版社,1991.
    [8]Swamy BGL,Bailey IW.The morphology and relationships of Cercidiphyllum japonicum[J].Hortscience,1949,30:187-210.
    [9]Erdtman G.Pollen Morphology and Plant Taxonomy Agiosperms[M].New York and London:Hafner Publishing Co.1996.
    [10]Davis GL.Systematic Embryology of Angiosperms[M].New York:John Wiley and Sons.1996.
    [11]Dosmann Michael S,Iles Jeffery K.Effects of drought and post-drought recovery in katsura tree[J].Hortscience,1998,33(3):539.
    [12]Dosmann Michael S,lies Jeffery K,Graves William R.Drought avoidance in katsura by drought-induced leaf abscission and rapid refoliation[J].Hortscience,1999,34(5):871-874.
    [13]Masako Kubo,Hitoshi Sakio,Koji Shimano,et al.Age structure and dynamics of Cercidiphyllum japonicum sprouts based on growth ring analysis[J].Forest Ecol Manag,2005,(213):253-260.
    [14]万猛,樊巍,王立安,等.太行山南麓连香树的生长过程分析[J].河南林业科技,2006,12(4):9-11.
    [15]Yan XL,Ren Y,Tian XH,et al.Morphogenesis of pistillate flowers of Cercidiphyllum japonicum(Cercidiphyllaceae)[J].J Integr Plant Biol,2007,49(9):1400-1408.
    [16]王东,高淑贞.连香树属、水青树属和领春木属的过氧化物随同工酶分析[J].陕西师大学报(自然科学版),1990,18(4):40-45.
    [17]俸宇星,汪小全,潘开玉,等.rbcL基因序列分析对连香树科和交让木科系统位置的重新评价——兼论低等金缕梅类的关系[J].植物分类学报,1998,36(5):411-422.
    [18]俸宇星.低等金缕梅类的系统学:分子和发育学证据[D].北京:中国科学院植物研究所,博士学位论文,1999.
    [19]章群,聂湘平,施苏华,等.连香树科及其近缘植物matK序列分析和系统学意义[J].生态科学,2003,22(2):113-115.
    [20]王煜,刘胜祥.湖北省连香树自然种群分布研究[J].华中师范大学学报(自然科学版),2002,36(1):93-95.
    [21]潘开文,刘照光.用关联度和聚类分析法研究连香树人工群落与环境的关系[J].应用生态学报,2001,12(2):161-167.
    [22]万涛,张建民,潘开文.10年生连香树人工群落平均个体生长规律研究[J].四川林业科技,2002,23(3):34-38.
    [23]曹基武,唐文东,朱喜云.连香树的森林群落调查及栽培技术[J].林业科技开发,2002,16(6):30-32.
    [24]刘光华,操国兴,张望,等.濒危植物连香树种群结构与动态研究[J].生物学杂志,2008,25(5):24-27.
    [25]宋朝枢,徐荣章,张清华.中国濒危植物保护[M].北京:中国林业出版社,1989:27.
    [26]陶金川,黄致远,宗世贤.珍稀植物幼苗形态初步研究(一)[J].江西林业科技,1992,(5):5-7.
    [27]Althur MA,Fahey JJ.Biomass and nutrients in an engelmann spruoes subalpine fir forest in north central Colorado:pool,annual production,and internal cycling[J].Can J For Res,1992,22:315-325.
    [28]Dosmann MS,Michael SI,Jeffery K.Cold stratification improves germination of Katsura tree[J].Hortscience,1997,32(3):447-448.
    [29]汪传佳,方腾编著.珍稀濒危树种繁育技术[M].北京:中国农业出版社,2001,142-144.
    [30]汪树人.珍稀树种——连香树及栽培技术[J].林业科技开发,2004,18(4):71.
    [31]Kubo Masako,Sakio Hitoshi,Shimano Koji,et al.Factors influencing seedling emergence and survival in Cercidiphyllum japonicum[J].Folia Geobot.,2004,39(3):225-234.
    [32]黄绍辉.几种珍稀树种的引种繁育及生态学研究[D].南京:南京林业大学,硕士学位论文,2004.
    [33]熊丹,陈发菊,梁宏伟,等.珍稀濒危植物连香树种子萌发的研究[J].福建林业科技,2007,34(1):36-39.
    [34]Isagi Y,Kudo M,Osumi K,et al.Polymorphic microsatellite DNA markers for a relictual angiosperm Cercidipkyllum japonicum Sieb.et Zucc.and their utility for Cercidiphyllum magnificum[J].Mol Ecol Notes,2005,5:596-598.
    [35]T Sato,Y Isagi,H Sakio,et al.Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis[J].Heredity,2006,96:79-84.
    [36]黄绍辉.珍稀濒危植物连香树的物种生物学研究[D].南京:南京林业大学,博士学位论文.2007:97-123.
    [37]Metealfe CG,Chalk L.Anatomy of the Dicotyledons[M].Oxford:Oxford University Press,1957,30-31.
    [38]周正,陈喜军,薛茂贤主编.世界主要用材树种概论[M].北京:中国林业出版社,1997,3:25.
    [39]Wang JR,Duan JA,Zhou RH.Chemical constituents from the bark of Cercidiphyllum japonicum[J].Acta Bot Sin,1999,41(2):209-212.
    [40]Towatari Keisuke,Yoshida Kiyo,Mori Nobuhiro,et al.Polyphenols from the heartwood of Cercidiphyllum japonicum and their effects on proliferation of mouse hair epithelial cells[J].Planta Medica,2002,68(11):995-998.
    [41]李晶.金缕梅类植物的木材解剖和系统发育研究[D].天津:南开大学,硕士学位论文,2003.
    [42]Ohtani,Tadashi,Kamasaki,et al.Effect of counterface material for abrasive wear of Cercidiphyllum japonicum wood on three-body abrasion[J].Precis Eng,2004,28(1):3.
    [43]Kiyokazu Takaishi.Isolation of maltol from Cercidiphyllum japonicum[J].Phytochemistry,1971,10(12):3302.
    [44]Masahiro Tada and Kohji Sakurai.Antimicrobial compound from Cercidiphyllum japonicum [J].Phytochemistry,1991,30(4):1119-1120.
    [45]Curty Christophe,Engel Norbert.Detection,isolation and structure elucidation of a chlorophyll alpha catabolite from autumnal senescent leaves of Cercidiphyllum japonicum[J].Phytochemistry,1996,42(6):1531-1536.
    [46]Sarker Satyajit D,Whiting Pensri,Lafont Rene,et al.Cucurbitacin D from Cercidiphyllum japonicum[J].Biochem Syst Ecol,1997,25(1):79-80.
    [47]Anne-Catherine Fitchette,Marion Cabanes-Macheteau,Laure Marvin,et al.Biosynthesis and immunolocalization of lewis a-containing N-glycans in the plant cell[J].Plant Physiol,1999,121(10):333-343.
    [48]王静蓉,段金廒,周荣汉.连香树树皮化学成分的研究[J].植物学报,1999,41(2):209-212.
    [49]Jun Kasuga,Kaoru Mizuno,Keita Arakawa,et al.Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells[J].Cryobiology,2007,55:305-314.
    [50]刘胜祥,黎维平,杨福生,等.神农架国家级自然保护区连香树资源现状及其保护[J].植物资源与环境,1999,8(1):33-37.
    [51]夏尚光.古老珍稀树种连香树的资源培育和保护性利用对策[J].现代农业科技,2005,1:54,57.
    [52]唐先兵,赵恢武,林忠平.植物耐旱基因工程研究进展[J].首都师范大学学报(自然科学版),2002,23(3):47-52.
    [1]Hsiao TC.Plant responses to drught stress[J].Annu Rev Plant Phys,1973,24:519-570.
    [2]Boher HJ,Jensen RG.Strategies for engineering drought stress tolerance in plant[J].Trends Biotechnol,1996,14:89-97.
    [3]Hsiao TC,Henderson DW.Marze leaf elongation:contionus measurement and close dependence on plant water stress[J].Science,1970,24:519-525.
    [4]Hsiao TC,Aceredo E,Fereres E,et al.Water stress,growth and osmotic adjustment[J].Phil Trans R Soc Land,1976,273:497-500.
    [5]王玉国.水分胁迫下高梁叶片的渗透调节与延伸生长的关系[J].植物生理学报,1991,17(1):37-43.
    [6]Michael R,Mark AH,David D,et al.Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits[J].New Forest,2003,26:187-200.
    [7]Auge RM,Schekel KA,Wample RL.Osmotic adjustment in leaves of VA mycorrhizal and nonmycorrhizal rose plants in response to drought stress[J].Plant Physiol,1986,82(3):765-770.
    [8]Girma FS,Krieg DR.Osmotic adjustment in Sorghum:mechanisms of diurnal osmotic potential changes[J].Plant Physiol,1992,99(2):577-582.
    [9]Tumer NC,Jones MM.Adatation of plants to water and high temperature stress[M].New York:John Wiley and Sons,1980,87-103.
    [10]史玉炜.刚毛柽柳抗旱的生理生化特性暨干旱诱导蛋白的研究[D].乌鲁木齐:新疆农业大学,硕士学位论文,2007.
    [11]余叔文,汤章城主编.植物生理与分子生物学[M].北京:科学出版社,1999,476-492.
    [12]Andersson I,Knight S,Schneider G,et al.Crystal structure of the active site of Ribulose Bisphosphate Carboxylase[J].Nature,1989,337(19):229-234.
    [13]李予霞,崔百明,董新平,等.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系[J].果树学报,2004,21(2):170-172.
    [14]Gygi SP,Rist B,Gerber SA,et al.Quantitative analysis of complex protein mixtures using isotopecoded affinity tags[J].Nat Biotechnol,1999,17(10):994-999.
    [15]Kiyosue T,Yoshiba Y,Yamaguch-shinozaki K,et al.A nuclear gene encoding mitochondrial proline dehydrogenase,an enzyme invo led in praline metabolism,is up regulated by proline but down regulated by dehydration in Arabidopsis[J].Plant Cell,1996,8:1323-1325.
    [16]燕平梅,章良山.水分胁迫下脯氨酸的累积及其可能的意义[J].太原师范专科学校学报,2000,(4):27-28.
    [17]Dure Ⅲ.A repeating 11-mer amino acid motif and plant desiccation[J].Plant J,1993:363-369.
    [18]高秀萍.水分胁迫下梨、枣和葡萄叶片中甜菜碱含量的变化[J].园艺学报,2002,29(3):363-369.
    [19]梁峥,骆爱玲,赵原,等.干旱和盐胁迫诱导甜菜碱叶中甜菜碱醛脱氢酶的积累[J].植物生理学报,1996,22(2):161-164.
    [20]于同泉,谷建田.逆境中植物体内甜菜碱的积累及其生物学意义[J].北京农学院学报,1994,9(2):161-167.
    [21]Sakanloto A,Murata N.The role of glycine belaine in the protection of plants from stress:clues from transgenic plants[J].Plant Cell Environ,2002,25:163-171.
    [22]梁峥.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,31(2):1-8.
    [23]梁峥.植物对渗透胁迫的响应和适应.吴向钰.植物生理补充教材——纪念56年教学研讨会40周年[C].中国植物生理学会,1996.
    [24]曹慧.果树水分胁迫研究进展[J].果树学报,2001,18(2):110-114.
    [25]吴强盛.果树对水分胁迫反应研究进展(综述)[J].亚热带植物科学,2003,32(2):72-76.
    [26]于同泉,秦岭,王有年.渗透胁迫板栗苗可溶性糖的积累及组分变化的研究[J].北京农学院学报,1996,12(6):47-51.
    [27]Alsk G,Huss-Danell K.Super oxide dismutase,calalase and nitrogenase activates of symbiotic Frankin in response to different oxygen tension[J].Plant Physiol,1997,99:286-292.
    [28]王中英.果树抗旱生理(第一版)[M].北京:中国农业出版社,1993,45-50.
    [29]郭新红,姜孝成,潘晓玲.旱生植物梭梭幼苗信使核糖核酸(mRNA)的分离与纯化[J].湖南师范大学学报(自然科学版),2001,24(2):70-72.
    [30]杨永青.胡杨抗旱耐盐碱生态生理及分子基础研究[D].北京:北京林业大学,博士学位论文.2006.
    [31]Chowdhuty RS.Hydrogen peroxide metabolism as an index of waters tress tolerance injute[J].Plant Physiol,1985,65:476-480.
    [32]Goyal A.Effect of water stress on glycolate metabolism in the leaves of rice seedling[J].Plant Physiol,1987,69:289-294.
    [33]王以柔.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响[J].植物生理学报,1988,12(3):244-251.
    [34]蒋明义.渗透胁迫下水稻苗中叶绿素降解的活性氧伤害[J].植物学报,1994,36(4):289-295.
    [35]冯有胜,王康.VitC保护稻叶细胞膜机理的研究[J].西南农业大学学报,1998,10(1):104-111.
    [36]上官周平,陈培元.土壤干旱对小麦叶片渗透调节的光合作用的影响[J].华北农学报,1989,4(3):49-55.
    [37]沈秀瑛.干旱对玉米叶片SOD,CAT及酸性磷酸酶活性的影响[J].植物生理学通讯,1995,31(3):183-186.
    [38]张立军,胡文玉.渗透胁迫下玉米幼苗离体叶片膜透性变化机理的研究[J].沈阳农业大学学报,1996,27(3):207-210.
    [39]Bowler C,Alliotte T,de Loose M,et al.The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia[J].EMBO J,1989,8:31-38.
    [40]Allen RD.Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiol,1995,107:1049-1054.
    [41]Mckersie BD,Chen Y,Beus M,et al.Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago saliva L.)[J].Plant Physiol,1993,103:1155-1163.
    [42]Gupta AS,Heinen JL,Holaday AS,et al.Increased resistance to oxidative stress in transgentic plants that over express chloroplastic Cu/Zn superoxide dimutase[J].Proc Nail Acad Sci USA,1993,90:1629-1633.
    [43]Bowler C,Slooten L,Vandenbranden S,et al.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transaenic plants[J].EMBO J,1991,10:1723-1732.
    [44]Camp W,Willekens H,Bowler C,et al.Elevated levels of superoxide dismutase protects transgenic plants against ozone damage[J].Biotechnol,1996,12:165-168.
    [45]Breusegem FV,Slooten L,Stassart JM,et al.Effects of over exproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress[J].J Exp Bot,1999,50(330):71-78.
    [46]McKersie BD,Bowley SR,Harjanto E,et al.Water-deticit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase[J].Plant Physiol,1996,111(4):1177-1181.
    [47]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003.
    [48]Alpert P.Constraints of tolerance:why are desiccation-tolerant organisms so small or rare[J].J Exp Biol,2006,209(9):1575-1584.
    [49]张立军.玉米、小麦抗旱生理机制及调控措施的研究[D].沈阳:沈阳农业大学,博士学位论文,1996,80-86.
    [50]晏斌.涝渍逆境下玉米叶片中谷胱甘肽的含量变化及其作用[J].植物生理学通讯,1993,29(6):416-419.
    [51]王金胜.水分胁迫对玉米幼苗抗坏血酸的变化及其与品种抗旱性的关系[J].作物品种资源,1993,(3):9-11.
    [52]洪仁远.不同剂量~(co)C,射线对玉米幼苗生长和POD同工酶的影响[J].华北农学报,1989,4(2):21-25.
    [53]裴英杰.用于玉米品种抗旱性鉴定的生理生化指标[J].华北农学报,1992,7(1):31-35.
    [54]李德全.土壤干旱条件下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报,1982,18(1):37-44.
    [55]汤章城.植物对水分胁迫的反应和适应性Ⅱ、植物对干旱的反应和适应性[J].植物生理学通讯,1983,3(4):1-7.
    [56]Riccardi F,Gazeau P,Vienne D,et al.Protein changes in response to progressive water deficit in Maize[J].Plant Physiol,1998,117:1253-1263.
    [57]Holtom J,Winter K.Activity of enzymes of carbon metabolism during the induction of crassulacean acid metabelism in Mesembryanthemum crystallinum[J].Planta,1982,155:8-16.
    [58]Schrmitt JM,Piepenbrock M.Regulation of phosphoenolpyruvate carboxylase and crassulacean acidmetabolism induction in Mesembryanthemum crystallinum by cytokinin[J].Plant Physiol,1992,99:1664-1669.
    [59]侯爱菊,徐德吕.植物高光效基因工程育种[J].中国生物工程杂志,2005,25(9):19-23.
    [60]Osamu Ueno,Muneahi Samejima,Shoshi Muto,et al.Photosynthetic characteristics of an amphibious plant Eleocharis vivipara:expression of C_4 and C_3 Modes in contrasting environments[J].Proc Natl Acad Sci USA,1988,85:6733-6737.
    [61]Sakae Aearie,Motoshi Kai,Hiroshi Takatsuji,et al.Expression of C_3 and C_4 photosynthetic characteristics in the amphibious plant Eleoclmrzs vivipcrrn:structure and analysis of the expression of isogenes for pyruvate,orthophosphate dikinase[J].Plant Mol Biol,1997,34(2):363-369.
    [62]李卫华,郝乃斌,戈巧英,等.C_3植物中C_4途径的研究进展[J].植物学通报,1999,16(2):97-106.
    [63]Kovtun Y,Chiu WL,Tena G.Functioal analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants[J].Proc Natl Acad Sci USA,2000,79:2490-2495.
    [64]Bohnert HJ and Cushman JC.Plants and environmental stress adaptation strategies.In:Oksman-Caldentey KM&Barz W,Plant Biotechnology and Transgenic Planst[M].New York:Marcel Dekker Press,2002.
    [65]Bohnert HJ,Nelson DE,Jensen RG.Adaptation to environmental stresses[J].Plant Cell,1995,7:1099-1111.
    [66]Bachem CWB,Oomen RJ,Visser RGF.Transcript imaging with cDNA-AFLP:A step-by-step protocol[J].Plant Mol Biol Rep,1998,16:157-173.
    [67]Kuhn E.From Library screening to microarray technology:strategies to determine gene expression porfiles and to identify differentially regulated genes in plants[J].Ann Bot London,2001,87:139-155.
    [68]Kasuga M,Lin Q,Miura S,et al.Improving plant dorught,salt and freezing tolerance by gene transfer of a single strees-inducible transcription factor[J].Nat Biotechnol,1999,17:287-292.
    [69]Shinozaki K and Yamaguchi-Shinozaki K.Gene expresion and signal transduction in water-stress response[J].Plant Physiol,1997,115:327-334.
    [70]Ludwig AA,Romeis T,Jones JDG.CDPK-mediated signalling pathways:specificity and corss-talk[J].J Exp Biol,2004,55(395):181-198.
    [71]Luan S,Kudla J,Rodriguez-Concepcion M,et al.Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants[J].Plant Cell,2002,14:5389-5400.
    [72]Sanders D,Pelloux J,Brownlee C,et al.Calcium at the crosroads of signalling[J].Plant Cell,2002,14:5401-5417.
    [73]Urao T,Katagiri T,Mizoguchi T,el al.Two genes that encode Ca~(2+)-dependent protein-kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J].Mol Genet Genomics,1994,24:331-340.
    [74]Botella JR,Arteca JM,Somodevilla M,et al.Calcium-dependent protein kinase gene expressiosn in response to physical and chemical stimuli in mungbean(Vigna radiata)[J].Plant Mol Biol,1996,30:1129-1137.
    [75]Pathark OR and Cushman JC.A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinumum phosphorylaets at two-component pseudo-response regulator[J].Plant Cell,2000,24:679-691.
    [76]Cao X,Springer NM,Muszynskii MQ,et al.Conserved plant genes with similarity to manmalian de novo DNA methyltransferases[J].Proc Natl Acad Sci USA,2000,97(9):4979-4984.
    [77]Rabinowicz PD,Crek R,Budiman MA,et al.Differential methylation of genes and repeats in land plants[J].Genome Res,2005,15(10):1431-1440.
    [78]Papa CM,Springer NM,Muszynski MQ,et al.Maize chromomethylase zea methyltransferase2is required for CpNpG methylation[J].Plant Cell,2001,13(8):1919-1928.
    [79]Bjorklund S,Almouzni G,Davidosn I,et al.Glboal transcription regulators of eukaryotes[J].Cell,1999,96:759-762.
    [80]Berger SL.Histone modification in transcriptional regulation[J].Curr Opin Genet Dev.,2002,12:142-148.
    [81]Pandey R,Muller A,Napoli CA,et al.Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggest functional diversification of chromatin modification among multicellular eukaryotes[J].Nucleic Acids Res,2002,30:5036-5055.
    [82]Tian L and Chen ZJ.Blocking histone deacetylation in Arabidopsis thaliana induces pleiotropic effects on plant gene regulation and development[J].Proc Natl Acad Sci USA,2001,98:200-205.
    [83]Sridha S and Wu K.Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsi[J].Plant J,2006,46(1):124-133.
    [84]Fianagan JF and Peterson CL.A role for the yeast SWI/SNF complex in DNA replication[J].Nucleic Acids Res,1999,27(9):2022-2028.
    [85]Machida Y,Murai K,Miyake K,et al.Expression of chromatin remodeling factors during neural differentiation[J].J Biochem,2001,129:43-49.
    [86]Aratani S,Fujii F,Oishi T,et al.Dual roles of RNA helicase A in CREB-dependent transcription[J].Mol Cell Biol.,2001,21(14):4460-4469.
    [87]Shaywitz AJ,Dove SL,Kornhauser JM,et al.Magnitude of the CREB-dependent transcriptional response is determined by the strength of the interaction between the kinase-inducible domain of CREB and the KIX domain of CREB-binding protein[J].Mol Cell Biol,2000,20:9409-9422.
    [88]Plasterk RHA and Ketting RF.The silence of the genes[J].Curr Opin Genet Dev,2000,10:562-567.
    [89]Dalmay T,Horsefield R,Braunstein TH,et al.SDE3 encodes an RNA helicase required for post-transcirptional gene silencing in Arabidopsis[J].EMBO J,2001,20(8):2069-2078.
    [90]Cook HA,Koppetsch BS,Wu J,et al.The drosophila SDE3 homolog armitage is required for oskar mRNA silencing and embryonic axis specification[J].Cell,2004,116(6):817-829.
    [91]Jakoby M,Weisshaar B,Droge LW,et al.bZIP transcirption factors in Arabidopsis[J].Trends Plant Sci,2002,7(3):106-111.
    [92]Kang J,Choi H,lm M,et al.Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J].Plant Cell,2002,14(2):343-357.
    [93]Yamaguchi SK,Shinoazki K.A novel cis-acting element in an Anarabidopsis gene is involved in responsiveness to drought,Iow-temperatrue,or high-salt stress[J].Plant Cell,1994,6:251-264.
    [94]Abe H,Urao T,Ito T,et al.Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcirptional activators in abscisic acid signaling[J].Plant Cell,2003,15:63-78.
    [95]Finkelstein RR,Gampala SSL,Rock CD.ABA signaling in seeds and seedlings[J].Plant Cell,2002,13:515-545.
    [96]Uno Y,Furihata T,Abe H,et al.Arabidopsis basic lecuine zipper transcription factors invloved in an abseisei acid-dependent signal transduction pathway under drought and high-salinity conditons[J].Proc Natl Acad Sci USA,2000,79:11632-11637.
    [97]Siberi Y,Doireau P,Gantet P.Plant bZIP G-box binding factors modular structure and activation mechanisms[J].Eur J Biochem,2001,268:5655-5666.
    [98]Abe H,Yamaguchi-Shinozaki K,Urao T,et al.Role of Arabidopsis MYC and MYB homoiogs in drought-and abscisic acid-regulated gene expression[J].Plant Cell,1997,9:1859-1868.
    [99]Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature responsive gene expression,respectively,in Arabidopsis[J].Plant Cell,1998,10:1391-1406.
    [100]Jia WS,Yu X,Lu C,et al.Signal transduction from water perception to ABA accumulaiton[J].Acta Botanica Sinica,2002,4(10):1135-1141.
    [101]Yamaguehi SK,Shinoazki K.A novel cis-acting element in an Anarabidopsis gene is involved in responsiveness to drought,low-temperatrue,or high-salt stress[J].Plant Cell,1994,6:251-264.
    [102]Satoh R,Nakashiam K,Seki M,et al.ACTCAT,a novel cis-acting element for proline and hypoosmolarity-repsonsive experssion of the ProDH gene encoding proline dehydrogenase in Arabidopsis[J].Plant Physiol,2002,130:709-719.
    [103]Johansson I,Karlsson M,Shukla VK,et al.Water transport activity of the plasma membrane aquapodn PM28A is regulated by phosphorylation[J].Plant Cell,1998,10:451-460.
    [104]Chaumont F,Barrieu F,Wojcik E,et al.Aquaporins constitute a large and highly divergent protein family in maizen[J].Plant Physiol,2001,125:1206-1215.
    [105]Chaumont F,Barrieu F,Herman EM,et al.Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation[J].Plant Physiol,1998,117:1143-1152.
    [106]Barieu F,Chaumont F,Chrispeels M.High expression of the tonoplast aquaporin zmTIP1 in epidermal and conducting tissues of maize[J].Plant Physiol,1998,17:1153-1163.
    [107]Aharon R,Shahak Y,Wininger S,et al.Overexpression of a plasma membrane aquaporin in transegenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress[J].Plant Cell,2003,154:39-44.
    [108]Whitsitt MS,Collins RG,Mullet JE.Modulation of dehydration tolerance in soybean seedlings (dehydrin Matl is inducde by dehydration but not by abscisic acid)[J].Plant Pbysiol,1997,114:917-925.
    [109]Soulages JL,Kim K,Arrese EL,et al.Conformation of a group 2 late embryogenesis abundant protein from soybean.Evidence of poly(L-proline) -type Ⅱ structure[J].Plant Physiol,2003,131:963-975.
    [110]Zegzouti H,Jones B,Marry C,et al.ER5,a tomato cDNA encoding an ethylene-responsive LAE-like protein:characterization and expression in response to drought,ABA and wounding[J].Plant Mol Biol,1997,35:847-854.
    [111]Wang XJ,Loh CS,Yeoh HH,et al.Drying rate and dehydrin synthesis associated with abscisic acid-induced dehydration tolerance in Spathoglottis plicata orchidaceae protocorms[J].J Exp Bot,2002,53:551-558.
    [112]Welin BV,Olson A,Nylander M,et al.Characterization and differential expression of dhn/lea/ral-like genes during cold acclimation and drought stress in Aarbidopsis thaliana[J].Plant Mol Biol,1994,26:131-144.
    [113]Campbell SA,Crone DE,Ceccardi TL,et al.An 40kDa maize(zea mays L.) embryo dehydrin is encoded by the Dhn2 locus on chromosoe 9[J].Plant Mol Biol,1998,38:417-423.
    [114]Cellier F,Conejero G,Breitler JC,et al.Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower accumulation of dehydrin transcirpts correlates with tolertance[J].Plant Physiol,1998,116:319-328.
    [115]Alsheikh MK,Heyen BJ,Randall SK.Ion binding properties of the debydrin ERD14 are dependent upon phosphorylation[J].J Biol Chem,2003,278(42):40882-40889.
    [116]Danyluk J,Perron A,Houde ML,et al.Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J].Plant Cell,1998,10:623-638.
    [117]Wang S,Wan C,Wang Y,et al.The characteristics of Na~+,K~+and free proline distribution in several drought-resistant plants of the Alxa Desert,China[J].J Arid Environ,2004,(56):525-539.
    [118]Roberts SK and Snowman BN.The effects of ABA on channel-mediated K~+ transport across higher plant roots[J].J Exp Bot,2000,51(350):1585-1594.
    [119]Su H,Golldack D,Kastuhara M,et al.Expression and stress-dependent dnduction of potassium channel transcripts in the common ice plant[J].Plant Physiol,2001,(125):604-614.
    [120]Su H,Golladck D,Zhao C,et al.The expression of HAK-Type K transporters ie regulated in ersponse to salinity stress in common ice plant[J].Plant Physiol,2002,129:1482-1493.
    [121]McCue KE and Hanson AD.Salt-inducible betaine aldehyde dehydrogenase from sugar beet:cDNA cloning and expression[J].Plant Mol Biol,1992,18:1-11.
    [122]Grallath S,Weimar T,Meyer A,et al.The AtProT family compatible solute transporters with similar substrate specificity but differential expression patterns[J].Plant Physiol,2005,137:117-126.
    [123]Schwacke R,Grallath S,Breitkreuz KE,et al.LeProT1,a transporter for proline,glycine betaine,and γ-amino butyric acid in tomato[J].Plant Cell,1999,11:377-392.
    [124]Leyman B,Geelen D,Quintero FJ,et al.A tobacco syntaxin with a role in hormonal control of guard cell ion channels[J].Scicene,1999,283:537-540.
    [125]Pei ZM,Ghassemian M,Kwak CM,et al.Role of farnesyitraneferase in ABA regulation of guard cell anion channels and plant water loss[J].Science,1998,282(9):287-290.
    [126]Li J,Wang XQ,Watson MB,et al.Regulation of abscisic acid-induced stomatal cisure and anion channels by guard cell AAPK kinase[J].Science,2000,287(14):300-303.
    [127]Mustilli AC,Merlot S,Vavasseur A,et al.Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J].Plant Cell,14:3089-3099.
    [128]Paulsen IT,Beness AM,Saier MHJ.Computer-based analyses of the protein constitoents of transport systems catalyaing export of complex carbohydrates in bacteria[J].Microbiol Mol Biol Rev,1997,143:2685-2699.
    [129]Pao SS,Paulsen IT,Saier MH.The major facilitator superfamily[J].Microbiol Mol Biol Rev.,1998,62:1-32.
    [130]Crouzet J,Trombik T,Fraysse AS,et al.Organization and function of the plant pleiotropic drug resistance ABC transporter family[J].FEBS Lett,2006,580(4):123-130.
    [131]Smart CC and Fleming AJ.Hormonal and environmental regulation of a plant PDR5-like ABC transporter[J].J Biol Chem.,1996,271(32):19351-19357.
    [132]Kralli A,Bohen SP,Yamamoto KR.LEM1,an ATP-Binding-Cassette transporter,selectively modulates the biological potency of steroid hormones[J].Proc Natl Acad Sci USA,1995,29:4701-4705.
    [133]Lee EK,Kwon M,Ko J,et al.Binding of sulfonylurea by AtMRP5,an Arabidopsis multidrug resistance-relatde protein that functions in salt tolerance[J].Plant Phsyiol,2004,134:528-538.
    [134]Klein M,Perfus BL,Frelet A,et al.The plant multidrug resistance ABC transporter AtMRP5is involved in guard cell hormonal signaling and water use[J].Plant J,2003,33:119-129.
    [135]Becq F,Hamon Y,Bajetto A,et al.ABC1,an ATP binding cassette transporter required for phagocytosis of apoptotic cells,generates a regulation anion flux after expression in xenopus laevis oocytes[J].J Biol Chem,1979,272(5):2695-2699.
    [136]Reddy ST,Hama S,Ng C,et al.ATP-Binding Cassette transporter 1 participaets in LDL oxidation by artery wall cells.Arterioscler[J].Thtomb Vasc Biol,2002,22(11):1877-1883.
    [137]Su YH,Frommer WB,Ludewig U.Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J].Plant Phsyiol,2004,136(2):3104-3113.
    [138]Reizer J,Finley K,Kakuda D,et al.Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast,fungi,and eubacteria[J].Protein Sci,1993,2:20-30.
    [139]Gupta AK and Kaur N.Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants[J].J Biosci,2005,30(5):101-126.
    [140]Chiou TJ and Bush DR.Molecular cloning,immunochemical localization to the vacuole,and expression in transgenic yeast and tobacco of a putative sugart transporter form sugar beet[J].Plant Physiol,1996,110:511-520.
    [141]Hwang DY and Ismail BF.Stimulation of GLUT-1 glucose transporter expression in response to hyperosmolarity[J].Am J Physiol Cell Phyiosl,2001,28(4):1365-1372.
    [142]Gavidia L,Perez-Bermudez P,Seitz HU.Cloning and expression of two novel aldo-keto reductases form Digitalis purpurea leaves[J].Eur J Biochem,2002,269:2842-2850.
    [143]Oha IS,Parkb AR,Baeb MS,et al.Secretoem analsyis reveals an Aarbidopsis lipase involved in defense against Alternaria brassicicola[J].Plant Cell,2005,17:2832-2847.
    [144]Bock KW and Kohle C.UDP-glucuronosyltransferase 1A6:structural,functional,and regulaotry aspects[J].Annu Rev Plant Phyisol,2005,400:57-75.
    [145]Li Y,Baldauf S,Lim E,et al.Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana[J].J Biol Chem,2001,276(6):4338-4343.
    [146]Lim EK and Bowles DJ.A claas of plant glycosyltransferases involved in cellular homeostasis.EMBO J,2004,23:2915-2922.
    [147]Poppenberger B,Fujioka S,Soeno K,et al.The UG7T3C5 of Arabidopsis thaliana glucosylates brassinosteroids[J].Proc Natl Acad Sci USA,2005,102(42):15253-15258.
    [148]Kushiro T,Okamoto M,Nakabayashi K,et al.The Arabidopsis thaliana cytochrome P450CYP707A encodes ABA 8'-hydroxylases:key enzymes in ABA catabolims[J].EMBO J,2004,23:1467-1656.
    [149]Chapple C.Molecular genetics of analysis of plant cytochrome P450-dependent monooxygenases[J].Plant Mol Biol,1998,49:311-343.
    [150]Zhu Y,Nomura T,Xu Y,et al.Elongated uppermost internode encodes a cytochrome P450monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice[J].Plant Cell,2006,18:42-56.
    [151]Narusaka Y,Narusaka M,Seki M,et al.Corsstalk in the responses to abiotic and biotic stresses in Arabidopsis:analysis of geen expression in cytochrome P450 gene superfamily by cDNA microarray[J].Plant Mol Biol,2004,55(3):327-342.
    [152]Garcia PA,Martin B,Murphy HR,et al.Molecular cloning of cDNA coding for kidney aldose reductase regulation of specific mRNA accumulation by NaCl-mediated osmotic stress[J].J Biol Chem,1989,246(28):16815-16821.
    [153]Riner TL,Lin HK,Peehl DM,et al.Human tyep 3'3-hydroxysteroid dehydrogenase(aldo-keto reductase 1C2) and androgen metabolism in prostate cells[J].Endocrinology,2003,144(7):2922-2932.
    [154]Bartels D,Engelhardt K,Roncarati R,et al.An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein[J].EMBO J,1991,10(5):103-104.
    [155]Roncarati K,Salamha F,Bartels D.An aldose reductase homologous gene from barley:regulation and function[J].Plant J,1995,7(5):809-822.
    [156]Mundree SQ,Whittaker A,Thomson JA,et al.An aldose reductase homolog from the resurrection plant Xerophyta viscosa Baker[J].Planta,2000,211:693-700.
    [157]Buchanan WV.The molecular biology of leaf senescence[J].J Exp Bot.,1997,48:181-199.
    [158]Lee R,Wang C,Huang L,et al.Leaf senescence in rice plants:cloning and characteirzation of senescence up-regulated genes[J].J Exp Bot,2001,52(358):1117-1121.
    [159]Gepstein S,Sabehi Q,Carp M,et al.Large-scale identification of leaf senescence-associated genes[J].Plant J,2003,36(5):629-642.
    [160]Piper R,Jones Q,Bringloe D,et al.The shortened replicative lief span of prohibitin mutants of yeast appears ot be due to defective mitochondrial segregation in old mother cells[J].Aging Cell,2002,(1):149-157.
    [161]Chen J,Jiang C,Reid MS.Silencing a porhibitin alters plant development and senescence[J].Plant J,2005,4:16-24.
    [162]Vander HM,Choy J,Vander Weele D,et al.Bcl-(L) complements saccharomyces cerevisiae genes that faciliatet the switch from glycolytic to oxidative metabolism[J].J Biol Chem,2002, 277:44870-44876.
    [163]Hayashi Y,Yamada K,Shimada T,et al.A proteinase-storing body that prepares for cell death or stress in the epidermal cells of Aarbidopsis[J].Plant Cell Physiol,2001,24(9):894-899.
    [164]Beers EP,Woffenden BJ,Zhao C.Plant proteolytic enzymes:posible roles during programmed cell death[J].Plant Mol Biol,2000,44(3):399-415.
    [165]Renier AL,Van der H,Leeuwenburgh MA,et al.Activity profiling of papain-like cysteine proteases in plant[J].Plant Physiol,2004,135:1170-1178.
    [166]Coupe SA,Sinclair BK,Watson LM,et al.ldentifcation of dehydration-responsive cysteine proteases druing post-harvest senescence of broccoli Florets[J].J Exp Bot,2003,54(384):1045-1056.
    [167]Eason JR,Ryan D,Pinkney TT,et al.Programmed cell death during flower senescence:ioslation and characterization of eysteine proteinases from Sandersonia aurantiaca[J].Funct Plant Biol,2002,29:1055-1064.
    [168]Coffeen WC and Wolpert TJ.Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in arena sativa[J].Plant Cell,2004,16(4):857-873.
    [169]Hunt MC,Yamada J,Maltais LJ,et al.A revised nomenclature form mammalian acyl-CoA thioesterases/hydrolases[J].J Lipid Res,2005,46:2029-2032.
    [170]Hunt MC,Solaas K,Kase BF,et al.Characterization of an aeyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism[J].J Biol chem,2002,277(2):1128-1138.
    [171]Alan JW,Yerma R,Kim M,et al.Depletion of UDP-D-apiose/UDP-D-xyloes synthases results in rhamnogalacturonan-Ⅱ deficiceny,cell wall thickening,and cell death in higher plants[J].J Biol Chera,2006(online).
    [172]Molhoj M,Verma R,Reiter WD.The biosynthesis of the brancbed-ehain sugar d-apiose in plants:functional cloning and characteerization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis[J].Plant J,2003,35(6):693-699.
    [173]Bewley JD,Burton RA,Morohashi Y,et al.Molecular cloning of a eDNA encoding a(1-4)-β-marman endohydrolase from the seeds of germinated tomato(Lycopersicon esculentum)[J].Planta,1997,203:454-459.
    [174]Dhingra A,Portis AR,Daniell H.Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants[J].Proc Natl Acad Sci USA,2004,101(16):6315-6320.
    [175]Houtza RL and Portis AR.The life of ribulose 1,5-bisphosphate carboxylase/oxygena-post translation factsc and mysteries[J].Arch Biochem Biophys,2003,414(2):150-158.
    [176]Bartholomew DM,Bartley GE,Scolnik PA.Abscisic acid control of rbeS and cab transcirption in tomato leaves[J].Plant Physiol,1991,96:291-296.
    [177]Hajela RK,Horvath DP,Gilmour SJ,et al.Molecular cloning and expression of cor (cold-regulaetd) genes in Aarbidopsis thaliana[J].Plant Physiol,1990,93:1246-1252.
    [178]Chinnusamy V,Schumaker K,Zhu JK.Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants[J].J Exp Bot,2004,55:25-36.
    [1]刘永庆.PEG高渗预处理对番茄种子活力的影响[J].湖南农学院学报,1994,20(1):42-46.
    [2]Couper A,Eley D.Surface tension of polyethylene glycol solutions[J].J Polymer Sci,1948,3:354-349.
    [3]McClendom JH,Blinks LR.Use of high molecular weight solutes in the study of isolated in tracellular structure[J].Nature,1952,170:577-578.
    [4]Termaat CR,Hanson AD.Use of concentrated macronutrient solution to separate osmotic from NaCl-specific effects on plant growth[J].Aust J Plant Physiol,1988,13:509-522.
    [5]Thill DC,Schirman RD,Appleby AP.Osmotic stability of mannitol and polyethylene glycol 2000 solution used as seed germination media[J].Agron J,1979,71:105-108.
    [6]郑郁善,王舒凤,陈礼光,等.衬质处理提高超干贮藏林木种子活力研究[J].福建林学院学报,2002,22(2):97-100.
    [7]郑光华.种子生理研究[M].北京:科学出版社,2004,405-414.
    [8]顾龚平,吴国荣,陆长梅,等.PEG处理对大豆幼苗活力及活性氧代谢的影响[J].中国油料作物学报,2000,22(2):26-30.
    [9]曹帮华.刺槐抗旱抗盐特性研究[D].北京:北京林业大学,博士学位论文,2005.
    [10]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,2:248-254.
    [11]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003,127-128.
    [12]张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,(4):62-65.
    [13]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [14]Dhindsa RS,Plumb DP.Leaf senescence:Correlated with increased leaves of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase[J].J Exp Bot,1981,32:93-101.
    [15]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.164.
    [16]叶功富,陈如凯,张水松,等.水分胁迫对木麻黄细胞膜稳定性和细胞保护酶影响的研究[J].福建林业科技,1999,26(增刊):6-8.
    [17]李合生,孟庆伟,夏凯.现代植物生理学[M].北京:高等教育出版社,2002,402.
    [18]刘奕清,陈泽雄,杨婉晴.高温和干旱胁迫对尾巨桉幼苗生理特性的影响[J].园艺学报,2008,35(5):761-76.
    [19]骆建霞,史燕山,曹鸿斌,等.水分胁迫对蔓生紫薇和亮叶忍冬生长及生理特性的影响[J].园艺学报,2006,33(3):657-659.
    [20]喻晓丽,邸雪颖,宋丽萍.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学,2007,43(11):57-61.
    [21]Stewert RC,Bewley JD.Lipid peroxidation associated with accelerated aging of soybean axes [J].Plant Physiol,1980,65:245-248.
    [22]宋丽华,刘雯雯,陈淑芬.PEG处理对臭椿种子萌发的影响[J].农业科学研究,2005,26(4):25-29.
    [23]程嘉翎,段建丽,王娜,等.聚乙二醇模拟水分胁迫对桑树种子萌发和生理的影响[J].安徽农业科学,2006,34(24):6420-6422.
    [24]王慧超,何士敏,李昌满.PEG渗调处理对植物种子的影响[J].安徽农业科学,2008,36(6):2224-2226.
    [25]孙国荣,彭永臻,阎秀峰,等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165-167.
    [26]马武昌,王雁,彭镇华.车前和紫花地丁对水分胁迫的生理反应[J].林业科学研究,2006,19(5):633-637.
    [27]柯世省,杨敏文.水分胁迫对云锦杜鹃抗氧化系统和脂类过氧化的影响[J].园艺学报,2007,4(5):1217-1222.
    [28]柯世省,金则新.干旱胁迫对夏腊梅叶片脂质过氧化及抗氧化系统的影响[J].林业科学,2007,43(10):28-33.
    [29]时忠杰,杜阿朋,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响[J].林业科学研究,2007,20(5):683-687.
    [30]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅰ)[J].亚热带植物科学,2004,33(2):77-80.
    [1]李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究[J].生态学报,2000,20(3):417-422.
    [2]曹帮华.刺槐抗旱抗盐特性研究[D].北京:北京林业大学,博士学位论文,2005.
    [3]袁小凤,施积炎,丁贵杰.不同种源马尾松幼苗对水分胁迫的生理响应[J].浙江林学院学报,2008,25(1):42-47.
    [4]李合生,孟庆伟,夏凯.现代植物生理学[M].北京:高等教育出版社,2002,402.
    [5]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,2:248-254.
    [6]张志良.植物生理学实验指导[M].北京:高等教育出版社,2003,127-128.
    [7]张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学通讯,1990,(4):62-65.
    [8]赵世杰,许长成,邹琦,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210.
    [9]Dhindsa RS,Plumb-Dhindsa P.Leaf senescence:Correlated with increased leaves of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase[J].J Exp Bot,1981,32:93-101.
    [10]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.164.
    [11]叶功富,陈如凯,张水松,等.水分胁迫对木麻黄细胞膜稳定性和细胞保护酶影响的研究[J].福建林业科技,1999,26(增刊):6-8.
    [12]武勇,陈存及,刘宝,等.干旱胁迫下柚木叶片生理指标的变化[J].福建林学院学报,2006,26(2):103-106.
    [13]刘奕清,陈泽雄,杨婉晴.高温和干旱胁迫对尾巨桉幼苗生理特性的影响[J].园艺学报,2008,35(5):761-76.
    [14]贾利强.金沙江干热河谷造林树种抗旱特性的研究[D].北京:北京林业大学,硕士学位论文,2003.
    [15]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西北植物学报,2002,22(2):285-290.
    [16]Sanchez-Blanco MJ,Ruiz-Sanchez MC,Planes J,et al.Water relations of two almond cultivars under anomalous rainfall in non-irrigated culture[J].J Hortic Sci Biotech,1991,66(4):403-408.
    [17]Lehniniger Albert L.Principles of biochemistry[M].New York:Worth Publiciers,1993.
    [18]Mukherjee SP,Choudhuri MA.Implication of hydrogen peroxide-ascorbate system on membrane permeability of water stressed Vigna seedlings[J].New Phytol,1985,99:355-360.
    [19]喻晓丽,邸雪颖,宋丽萍.水分胁迫对火炬树幼苗生长和生理特性的影响[J].林业科学,2007,43(11):57-61.
    [20]许丽颖,赫玉苹,王刚,等.水分胁迫对紫叶李叶片色素含量与PAL活性的影响[J].吉林农业大学学报,2007,29(2):168-172.
    [21]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅰ)[J].亚热带植物科学,2004,33(2):77-80.
    [22]吴志华,曾富华,马生健,等.水分胁迫下植物活性氧代谢研究进展(综述Ⅱ)[J].亚热带植物科学,2004,33(3):77-80.
    [23]时忠杰,杜阿朋,胡哲森,等.水分胁迫对板栗幼苗叶片活性氧代谢的影响[J].林业科学研究,2007,20(5):683-687.
    [24]孙国荣,彭永臻,阎秀峰等.干旱胁迫对白桦实生苗保护酶活性及脂质过氧化作用的影响[J].林业科学,2003,39(1):165-167.
    [25]Liu XZ,Huang BR.Heat stress injury in relation to membrance lipid peroxidation in creeping bentgrass[J].Crop Sci,2000,40:503-510.
    [26]Sofa A,Dichio B,Xiloyannis C,et al.Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress[J].Plant Physiol,2004,12:58-65.
    [27]Shao HB,Liang ZS,Shao MA,et al.Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage[J].Colloid Surfaces B,2005,42:107-113.
    [28]马武昌,王雁,彭镇华.车前和紫花地丁对水分胁迫的生理反应[J].林业科学研究,2006,19(5):633-637.
    [29]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报,1999,14(2):7-11.
    [1]Lamar EE,Palmer E.Y-encoded,species-specific DNA in mice:evidence that the Y chromosome exists in two polymorphic forms in inbred strains[J].Cell,1984,37(1):171-177.
    [2]Liang P,Pardee AB.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science,1992,257(5072):967-971.
    [3]Liang P,Averboukh L,Keyomarsi K,et al.Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells[J].Cancer Res,1992,52(24):6966-6968.
    [4]Lisitsyn N,Wiglet M.Representational difference analysis in detection of genetic lesions in cancer[J].Methods Enzymol,1995,254:291-304.
    [5]Lisitsyn NA.Representational difference analysis:finding the differences between genomes[J].Trends Genet,1995,11(8):303-307.
    [6]Hubank M,Sehatz DG.Identifying differences in mRNA expression by representational difference analysis of eDNA[J].Nucleic Acids Res,1994,22(25):5640-5648.
    [7]Diatchenko L,Lau YF,Campbell AP,et al.Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J].Proc Natl Acad Sci,1996,93(12):6025-6030.
    [8]Diatchenko L,Lukyanov S,Lau YF,et al.Suppression subtractive hybridization:a versatile method for identifying differentially expressed genes[J].Methods Enzymol,1999,303:349-380.
    [9]Siebert PD,Chenchik A,Kellogg DE,et al.An improved PCR method for walking in uncloned genomic DNA[J].Nucleic Acids Res,1995,23(6):1087-1088.
    [10]Ouyang B,Yang T,Li H,et al.Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis[J].J Exp Bot,2007,58(3):507-520.
    [11]Masuda Y,Yamada T,Kuboyama T,et al.Identification and characterization of genes involved in hybrid lethality in hybrid tobacco cells(Nicotiana suaveolens×N.tabacum) using suppression subtractive hybridization[J].Plant Cell Rep,2007,26(9):1595-1604.
    [12]Xu BY,Su W,Liu JH,et al.Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray[J].Planta,2007,226(2):529-539.
    [13]Wang X,Li X.Use of suppression subtractive hybridization strategy for decreased tissue inhibitor of matrix metalloproteinase-lgene expression in brain ischemic tolerance.[J],J Cereb Blood Flow Metab,1998,18:1173-1177.
    [14]Ji W,Wright MB,Cai L,et al.Efficacy of SSH PCR in isolating differentially expressed genes[J].BMC Genotnics,2002,3(1):12.
    [15]陆秋恒,罗志勇.抑制消减杂交(SSH)技术及在克隆基因方面的最新进展[J].国外医学分子生物学分册,2001,33(6):380-383.
    [16]Von Stein OD,Thies WG,Hofmarm M.A high throughput screening for rarely transcribed differentially expressed genes[J].Nucleic Acids Res,1997,25(13):2598-2602.
    [17]Verica JA,Maximova SN,Strem MD,et al.Isolation of ESTs from cacao(Theobroma cacao L.)leaves treated with inducers of the defense response[J].Plant Cell Rep,2004,23(6):404-413.
    [18]Rishi AS,Munir S,Kapur V,et al.Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray[J].Planta,2004,220(2):296-306.
    [19]Zheng J,Zhao J,Tao Y,et al.Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray[J].Plant Mol Biol,2004,55(6):807-823.
    [20]Jiang XC,Guo XH,Pan XL,et al.Construction and differential screening of a cDNA library specific to osmotic stress of Haloxylon ammodendron seedlings[J].J Biochem Mol Biol,2004,37(5):527-532.
    [21]Bouton S,Viau L,Lelievre E,et al.A gene encoding a protein with a proline-rich domain (MtPPRD1),revealed by suppressive subtractive hybridization(SSH),is specifically expressed in the Medicago truncatula embryo axis during germination[J],J Exp Bot,2005,56(413):825-832.
    [22]Bassani M,Neumann PM,Gepstein S.Differential expression profiles of growth-related genes in the elongation zone of maize primary roots[J].Plant Mol Biol,2004,56(3):367-380.
    [23]Jang CS,Lee MS,Kim JY,et al.Molecular characterization of a cDNA encoding putative calcium binding protein,HvCaBP1,induced during kernel development in barley(Hordeum vulgare L.)[J].Plant Cell Rep,2003,22(1):64-70.
    [24]Han CU,Lee CH,Jang KS,et al.Identification of rice genes induced in a rice blast-resistant mutant[J].Mol Cells,2004,17(3):462-468.
    [25]Brechenmacher L,Weidmann S,Van Tuinen D,et al.Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions[J].Mycorrhiza,2004,14(4):253-262.
    [26]廖斌,邵冬梅,杨兵,等.鸭跖草Commelina communis中差异表达cDNA片段的克隆与分析[J].中山大学学报(自然科学版),2004,43(1):5-78.
    [27]骆蒙,孔秀英,霍纳新.基于抑制消减杂交方法的小麦抗白粉病相关基因表达谱[J].科学 通报,2002,47(16):1237-1241.
    [28]贺林.解码生命:人类基因组计划和后基因组计划[M].北京:科学出版社,2000.
    [29]Adams MD,Kelley JM,Gocayne JD,el al.Complementary DNA sequencing:expressed sequence tags and human genome project[J].Science,1991,252(5013):1651-1656.
    [30]Zhu JK.Salt and drought stress signal transduction in plants[J].Annu Rev Plant Biol,2002,53:247-273.
    [31]贾晋平.小麦苗期渗透胁迫cDNA抑制性差减杂交文库的构建及分析[D].太原:山西农业大学,硕士学位论文,2002.
    [32]汪文涛.硝酸盐对水稻幼苗硝酸还原酶活性的影响及受诱导的基因文库的构建[D].武汉:湖北大学,硕士学位论文,2005.
    [1]Harris MA.Developing an ontology[J].Methods Mol Biol,2008,452:111-124.
    [2]Takai T,Takagi T.Introduction to gene ontology[J].Tanpakushitsu Kakusan Koso.,2003,48(1):79-85.
    [3]Ware DH,Jaiswal P,Ni J,et al.Gramene,a tool for grass genomics[J].Plant Physiol,2002,130(4):1606-1613.
    [4]Thomas PD,Mi H,Lewis S.Ontology annotation:mapping genomie regions to biological function[J].Curr Opin Chem Biol,2007,11(1):4-11.
    [5]Newton JR.Linked gene ontology categories are novel and differ from associated gene ontology categories for the bipolar disorders[J].Psychiatr Genet,2007,17(1):29-34.
    [6]Lomax J.Get ready to GO! A biologist's guide to the Gene Ontology[J].Brief Bioinform,2005,6(3):298-304.
    [7]Fraser AG,Marcotte EM.A probabilistic view of gene function[J].Nat Genet,2004,36(6):559-564.
    [8]Ashburner M,Lewis S.On ontologies for biologists:the Gene Ontology-untangling the web[J].Novartis Found Symp,2002,247:66-90,244-252.
    [9]Puig M,Caceres M,Ruiz A.Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA[J].Proc Natl Acad Sci USA,2004,101(24):9013-9018.
    [10]Spradling A,Stern D,Kiss I,et al.gene disruptions using P transposable elements:an integral component of the DrosopPhila genome project[J].Proc Natl Acad Sci USA,1995,92(24):10824-10830.
    [11]Ryder E,Russell S.Transposable elements as tools for genomics and genetics in Dorsophila[J].Brief Funct Genomic Proteomic,2003,12(1):57-71.
    [12]Hendrickson EL,Lamont RJ,Hacker M.Tools for interpreting large-scale protein profiling in microbiology[J].J Dent Res,2008,87(11):1004-1015.
    [13]Lovering RC,Camon EB,Blake JA,et al.Access to immunology through the Gene Ontology[J].Immunology,2008,125(2):154-160.
    [14]Gruber K,Reitzer R,Kratky C.Radical Shuttling in a Protein:Ribose Pseudorotation Controls AlkyI-Radical Transfer in the Coenzyme B(12) Dependent Enzyme Glutamate Mutase This work was supported by the Osterreichische Akademie der Wissenschaften(APART fellowship 614),the Osterreichische Fonds zur Forderung der wissenschaftlichen Forschung(FWF-project 11599),and the European Commission(TMR project number ERB 4061 PL 95-0307).Crystallographic data were collected at the EMBL-beamline BW7B at DESY in Hamburg,Germany.We thank the beamline scientists for their assistance,and Ingrid Dreveny,Gunter Gartler,Gerwald Jogl,and Oliver Sauer for their help during data collection.This research emerged from a collaboration with Prof.W.Buckel(Marburg) who supplied us with clones of the glutamate mutase proteins[J].Angew Chem Int Ed Engl,2001,40(18):3377-3380.
    [15]Mulder N,Apweiler R.InterPro and InterProScan:tools for protein sequence classification and comparison[J].Methods Mol Biol,2007,396:59-70.
    [16]Mulder NJ,Apweiler R,Attwood TK,et al.New developments in the InterPro database[J].Nucleic Acids Res,2007,35(Database issue):D224-228.
    [17]Natale DA,Shankavaram UT,Galperin M,et al.Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins(COGs)[J].Genome Biol,2000,1(5):RESEARCH0009.
    [18]Phan JH,Quo CF,Wang MD.Functional genomics and proteomics in the clinical neurosciences:data mining and bioinformatics[J].Prog Brain Res,2006,158:83-108.
    [19]Conesa A,Gotz S.Blast2GO:A Comprehensive Suite for Functional Analysis in Plant Genomics[J].Int J Plant Genomics,2008:619832.
    [20]Gotz S,Garcia-Gomez JM,Terol J,et al.High-throughput functional annotation and data mining with the Blast2GO suite[J].Nucleic Acids Res,2008,36(10):3420-3435.
    [21]Aparicio G,Gotz S,Conesa A,et al.Blast2GO goes grid:developing a grid-enabled prototype for functional genomics analysis[J].Stud Health Technoi Inform.,2006,120:194-204.
    [22]Conesa A,Gotz S,Garcia-Gomez JM,et al.Biast2GO:a universal tool for annotation,visualization and analysis in functional genomics research[J].Bioinformatics,2005,21(18):3674-3676.
    [23]陈作舟.EST转录组功能差异的数据挖掘系统及应用[D].杭州:浙江大学,博士学位论文,2007.
    [24]Ingram J,Bartels D.The Molecular Basis of Dehydration Tolerance in Plants[J].Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    [25]Mahalingam R,Gomez-Buitrago A,Eckardt N,et al.Characterizing the stress/defense transcriptome of Arabidopsis[J].Genome Biol,2003,4(3):R20.
    [26]吴斌.霸王抗旱性的分子机理及相关基因克隆研究[D].北京:中国林业科学研究院,博士学位论文,2006.
    [27]李会勇.玉米花期干旱胁迫下诱导基因的分离和功能分析[D].北京:中国农业大学,博士学位论文.2007.
    [28]De Costa W,Zorb C,Hartung W,et al.Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress[J].Plant Physiol,2007,131(2):311-321.
    [29]Martinez JP,Lutts S,Schanck A,et al.Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L?[J].Plant Physiol,2004,161(9):1041-1051.
    [30]Nuccio ML,Rhodes D,McNeil SD,et al.Metabolic engineering of plants for osmotic stress resistance[J].Curr Opin Plant Biol,1999,2(2):128-134.
    [31]Pramanik MH,Imai R.Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice[J].Plant Mol Biol,2005,58(6):751-762.
    [32]Chary SN,Hicks GR,Choi YG,et al.Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis[J].Plant Physiol,2008,146(1):97-107.
    [33]丁顺华,李艳艳,王宝山.外源海藻糖对小麦幼苗耐盐性的影响[J].西北植物学报,2005, 25(3):513-518.
    [34]Yang J,Zhang J,Liu K,et al.Involvement of polyamines in the drought resistance of rice[J],J Exp Bot,2007,58(6):1545-1555.
    [35]Alcazar R,Marco F,Cuevas JC,et al.Involvement of polyamines in plant response to abiotic stress[J].Biotechnol Lett,2006,28(23):1867-1876.
    [36]Tassoni A,Franceschetti M,Tasco G,et al.Cloning,functional identification and structural modelling of Vitis vinifera S-adenosylmethionine decarboxylase[J].Plant Physiol,2007,164(9):1208-1219.
    [37]Tassoni A,Franceschetti M,Bagni N.Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers[J].Plant Physiol Biochem,2008,46(5-6):607-613.
    [38]Kusano T,Berberich T,Tateda C,et al.Polyamines:essential factors for growth and survival[J].Planta,2008,228(3):367-381.
    [39]Groppa MD,Benavides MP.Polyamines and abiotic stress:recent advances[J].Amino Acids,2008,34(1):35-45.
    [40]B.布坎南,B.W.格鲁依森姆,L.琼斯主编.植物生物化学与分子生物学[M].瞿礼嘉,顾红雅,白书农,等主译.北京:科学出版社,2004:779,780,785-789,961.
    [41]Olabisi OA,Soto-Nieves N,Nieves E,et al.Regulation of transcription factor NFAT by ADP-ribosylation[J].Mol Cell Biol,2008,28(9):2860-2871.
    [42]Yoo CM,Wen J,Motes CM,et al.A class I ADP-ribosylation factor GTPase-activating protein is critical for maintaining directional root hair growth in Arabidopsis[J].Plant Physiol,2008,147(4):1659-1674.
    [43]Coemans B,Takahashi Y,Berberich T,et al.High-throughput in planta expression screening identifies an ADP-ribosylation factor(ARF1) involved in non-host resistance and R gene-mediated resistance[J].Mol Plant Pathol,2008,9(1):25-36.
    [44]Broz AK,Muszynski MG,Miernyk JA,et al.ZMPP2,a novel type-2C protein phosphatase from maize[J].J Exp Bot,2001,361:1739-1740.
    [45]Leung J,Merlot S,Giraudat J.The Arabidopsis ABSCISIC ACID-INSENSITIVE2(ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abseisic acid signal transduction[J].Plant Cell,1997,9(5):759-771.
    [46]Schweighofer A,Hirt H.Plant PP2C phosphatases:emerging functions in stress signaling[J].Trends Plant Sci,2004,19:236-243.
    [47]Meyer K,Leube MP,Grill E.A protein phosphatase 2C involved in ABA transduction in Arabisopsis thaliana 1452-1455[J].Science,1994:264.
    [48]Lorenzo O,Nicolas C,Nicolas G,et al.Molecular cloning of a functional protein phosphatase 2C(FsPP2C) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica.[J].Plant Physiol,2002,114:482-490.
    [49]Neil SJ.Regulation of gene expression during water deficit stress[J].Plant Growth Regul.,1999,29:23-33.
    [50]王海华,郝中娜,谢科,等.水稻WRKY89中的亮氨酸拉链结构增强蛋白与W盒元件的相互作用[J].科学通报,2005,50(10):970-978.
    [51]沈元月,黄丛林,张秀海,等.植物抗旱分子机制[J].中国生态农业报,2002,10(1):30-34.
    [52]林忠平.走向21世纪的植物分子生物学[M].北京:科学出版社,2000:234-225.
    [53]黄吉祥,任丽平,曹明富.植物抗胁迫类转录因子研究进展[J].杭州师范学院学报(自然科学版),2008,7(1):55-59.
    [54]Heim MA.The basic helix-loop-helix transcription factor family in plants:a genome-wide study of proteinstructure and functional diversity[J].Mol Biol Evol,2003,20:735-747.
    [55]Magnotta SM,Gogarten JP.Multi site polyadenylation and transcriptional response to stress of a vacuolar type H~+-ATPase subunit A gene in Arabidopsis thaliana[J].BMC Plant Biol,2002,2:3.
    [56]Maghuly F,Borroto-Fernandez EG,Khan MA,et al.Expression of calmodulin and lipid transfer protein genes in Prunus incisa ×serrula under different stress conditions[J].Tree Physiol,2009,29(3):437-444.
    [57]Wu G,Robertson AJ,Liu X,et al.A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress,ABA,anisomycin,and sphingosine in bromegrass(Bromus inermis)[J].Plant Physiol,2004,161(4):449-458.
    [58]Lindorff-Larsen K,Lerche MH,Poulsen FM,et al.Barley lipid transfer protein,LTP1,contains a new type of lipid-like post-translational modification[J].J Biol Chem,2001,276(36):33547-33553.
    [59]Johansson I,Karlsson M,Shukla VK,et al.Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation[J].Plant Cell,1998,10:451-460.
    [60]杜金友,陈晓阳,李伟,等.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通报,2004,(2):10-14.
    [61]曾华宗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报,2003,4(3):270-273.
    [62]Oztur ZN,Talame V,Deyholos M,et al.Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley[J].Plant Mol Biol,2002,48(5-6):551-573.
    [63]Broin MCS,Peltier G,Rey P.Involvement of CDSP 32,a drought-inducedt hioredoxin,in the response to oxidative stress in potato plants[J].FEBS Lett,2004,67(2-3):245-248.
    [64]Schenk H,Klein M,Erdbrugger W,et al.Distinct effects ofthioredoxin and antioxidants on the activation of transcription factors NF-kappa B and AP-1[J].Proc Natl Acad Sci USA,1994,91(5):1672-1676.
    [65]Moons A,Prinsen E,Bauw G,et al.Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots[J].Plant Cell,1997,9(12):2243-2259.
    [66]Jin S,Cheng Y,Guan Q,et al.A metallothionein-like protein of rice(rgMT) functions in E.coli and its gene expression is induced by abiotic stresses[J].Biotechnol Lett,2006,28(21):1749-1753.
    [67]Serrato A,l,Perez-Ruiz JM,Spinola MC,et al.A novel NADPH thioredoxin reductase,localized in the chloroplast,which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana[J].J Biol Chem,2004,279(42):43821-43827.
    [68]Yuki Muramatsu,Akiko Harada,Ohwaki Y.Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L.[J].Plant Cell Physiol,2002,43(10):1137-1145.
    [69]章文华,刘友良.盐胁迫下钙对大麦和小麦离子吸收分配及H~+-ATP酶活性的影响[J].植物学报,1993,35(6):435-440.
    [70]Krawiec Z,Bilinski T,Schuller C,et al.Reactive oxygen species as second messengers?Induction of the expression of yeast catalase T gene by heat and hyperosmotic stress does not require oxygen[J].Acta Biochim Pol,2000,47(1):201-207.
    [71]Heck DE,Vetrano AM,Mariano TM,et al.UVB light stimulates production of reactive oxygen species:unexpected role for catalase[J].J Biol Chem,2003,278(25):22432-22436.
    [72]Moskovitz J.Roles of methionine suldfoxide reductases in antioxidant defense,protein regulation and survival[J].Curr Pharm Des,2005,11(11):1451-1457.
    [73]Ishikawa T,Morimoto Y,Madhusudhan R,et al.Acclimation to diverse environmental stresses caused by a suppression of cytosolic ascorbate peroxidase in tobacco BY-2 cells[J].Plant Cell Physiol,2005,46(8):1264-1271.
    [74]Davletova S,Rizhsky L,Liang H,et al.Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J].Plant Cell,2005,17(1):268-281.
    [75]Wingate VP,Lawton MA,Lamb CJ.Glutathione Causes a Massive and Selective Induction of Plant Defense Genes[J].Plant Physiol,1988,87(1):206-210.
    [76]Sobrevals L,Muller P,Fabra A,et al.Role of glutathione in the growth of Bradyrhizobium sp.(peanut microsymbiont) under different environmental stresses and in symbiosis with the host plant[J].Can J Microbiol,2006,52(7):609-616.
    [77]Ogawa K.Glutathione-associated regulation of plant growth and stress responses[J].Antioxid Redox Signal,2005,7(7-8):973-981.
    [78]Portis AR,Li C,Wang D,et al.Regulation of Rubisco activase and its interaction with Rubisco[J].J Exp Bot,2008,59(7):1597-1604.
    [79]Sage RF,Way DA,Kubien DS.Rubisco,Rubisco activase,and global climate change[J].J Exp Bot,2008,59(7):1581-1595.
    [80]Nisbet EG,Nisbet RE.Methane,oxygen,photosynthesis,rubisco and the regulation of the air through time[J].Philos Trans R Soc Lond B Biol Sci,2008,363(1504):2745-2754.
    [81]Jensen-Jarolim E.Allergulogic exploration of germins and germin-like proteins,a new class of plant allergens[J].Allergy,2002,57(9):805-810.
    [82]Vallelian-Bindschedler L,Mosinger E,Metraux JP,et al.Structure,expression and localization of a germin-like protein in barley(Hordeum vulgare L.) that is insolubilized in stressed leaves[J].Plant Mol Biol,1998,37(2):297-308.
    [83]Kim HJ,Triplett BA.Cotton fiber germin-like protein Ⅰ:Molecular cloning and gene expression[J].Planta,2004,218(4):516-524.
    [84]Kim HJ,Pesacreta TC,Triplett BA.Cotton-fiber germin-like protein Ⅱ:Immunolocalization,purification,and functional analysis[J].Planta,2004,218(4):525-535.
    [85]Muller B,Bourdais G,Reidy B,et al.Association of specific expansins with growth in maize leaves is maintained under environmental,genetic,and developmental sources of variation[J].Plant Physiol,2007,143(1):278-290.
    [86]Gao Q,Guo QF,Xing SC,et al.The characteristics of expansins in wheat coleoptiles and their responses to water stress[J].J Plant Physiol Mol Biolphys,2007,33(5):402-410.
    [87]Caramelo JJ,Iusem ND.When cells lose water:Lessons from biophysics and molecular biology[J].Prog Biophys Mol Biol,2008,23:345-359.
    [88]Drame KN,Clavel D,Repellin A,et al.Water deficit induces variation in expression of stress-responsive genes in two peanut(Arachis hypogaea L.) cultivars with different tolerance to drought[J].Plant Physiol Biochem,2007,45(3~4):236-243.
    [89]Goyal K,Walton L J,Tunnacliffe A.LEA proteins prevent protein aggregation due to water stress[J]. J Biochem, 2005, 388(Pt 1): 151 - 157.
    [90] Xie Y, Chiba M, Shinohara A, et al. Studies on lead-binding protein and interaction between lead and selenium in the human erythrocytes[J]. Ind Health, 1998, 36(3):234-239.
    [91] Chappie C. Molecular genetics of analysis of plant cytochrome P450-dependent monooxygenases [J]. Plant Mol Biol, 1998,49:311 -343.
    [92] Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis thaliana cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolims[J]. EMBO J, 2004, 23: 1647-1656.
    [93] Richard D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins[J]. Trends Plant Sci, 2003, 8:135-142.
    [94] Schubert U, Anton L C, Gibbs J, et al. Rapid degradaiton of a large fraction of newly synthesized proteins by porteasomes[J]. Nature, 2000, (404):770-774.
    [95] Khedr AH, Wahid AA. Abogadallah GM. proline induces the expression of salt stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress[J]. J Exp Bot, 2003, 54(392):2553-2562.
    [96] Chen Y, Piper PW. Consequences of the overexpression of ubiquitin in yeast: elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin[J]. Biochim Biophys Acta, 1995, 1268(1):59-64.
    [1]Giulietti A,Overbergh L,Vaickx D,et al.An overview of real-time quantitative PCR:applications to quantify cytokine gene expression[J].Methods,2001,25(4):386-401.
    [2]Schmittgen TD,Zakrajsek BA,Mills AG,et al.Quantitative reverse transcription-polymerase chain reaction to study mRNA decay:comparison of endpoint and real-time methods[J].Anal Biochem,2000,285(2):194-204.
    [3]Mackay IM,Arden KE,Nitsche A.Real-time PCR in virology[J].Nucleic Acids Res,2002,30(6):1292-1305.
    [4]Bustin SA.Quantification of mRNA using real-time reverse transcription PCR(RT-PCR):trends and problems[J].J Mol Endocrinol,2002,29(1):23-39.
    [5]Bustin SA.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J].J Mol Endocrinol,2000,25(2):169-193.
    [6]Klein D.Quantification using real-time PCR technology:applications and limitations[J].Trends Mol Med,2002,8(6):257-260.
    [7]Morrison TB,Weis JJ,Wittwer CT.Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J].Biotechniques,1998,24(6):954-958,960,962.
    [8]张驰宇,张高红,杨敏,等.四步法消除SYBR Green I实时定量RT-PCR中引物二聚体的影响[J].中国生物化学与分子生物学学报,2004,20(3):387-392.
    [9]Colborn JM,Byrd BD,Koita OA,et al.Estimation of copy number using SYBR Green:confounding by AT-rich DNA and by variation in amplicon length[J].Am J Trop Med Hyg,2008,79(6):887-892.
    [10]Higuchi R,Fockler C,Dollinger G,et al.Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J].Biotechnology(NY),1993,11(9):1026-1030.
    [11]Kaufman J,Le M,Ross G,et al.Trityl monitoring of automated DNA synthesizer operation by conductivity:a new method of real-time analysis[J].Biotechniques,1993,14(5):834-839.
    [12]Liu W,Saint DA.A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics[J].Anal Biochem,2002,302(1):52-59.
    [13]Livak KJ,Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J].Methods,2001,25(4):402-408.
    [14]Winer J,Jung CK,Shackel I,et al.Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro[J].Anal Biochem,1999,270(1):41-49.
    [15]张驰宇,徐顺高,黄新祥.一种新颖简便的荧光实时RT-PCR相对定量方法的建立[J].生物化学与生物物理进展,2005,33(9):883-888.
    [16]张蓓,沈立松.实时荧光定量PCR的研究进展及其应用[J].国外医学:临床生物化学与检验学分册,2003,24(6):45-47.
    [17]张亚莉.人巨细胞病毒感染ECV304细胞的病变效应及基因组表达谱研究[D].广州:第一军医大学,博士学位论文,2006.
    [1]邵宏波,梁宗锁,邵明安.小麦抗旱生理生化和分子生物学研究进展与趋势[J].草业学报,2006,15(3):5-17.
    [2]汪文涛.硝酸盐对水稻幼苗硝酸还原酶活性的影响及受诱导的基因文库的构建[D].武汉:湖北大学,硕士学位论文,2005.
    [3]Ozawa T,Kondo M,Isobe M.3' rapid amplification of cDNA ends(RACE) walking for rapid structural analysis of large transcripts[J].J Hum Genet,2004,49(2):102-105.
    [4]Wang X,Young WS.Rapid amplification of cDNA ends[J].Methods Mol Biol,2003,226:105-116.
    [5]Fu GK,Wang JT,Yang J,et al.Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes[J].Genomics,2004,84(1):205-210.
    [6]Zhang Y,Frohman MA.Using rapid amplification of cDNA ends(RACE) to obtain full-length cDNAs[J].Methods Mol Biol,1997,69:61-87.
    [7]王庆梅.小麦和水稻磷酸丙糖转运器基因的克隆及其表达的组织特异性分析[D].北京:中国农业大学,博士学位论文,2001:22-23.
    [8]Kirby K,Hu J,Hilliker AJ,et al.RNA interference-mediated silencing of Sod2 in Drosophila leads to early adult-onset mortality and elevated endogenous oxidative stress[J].Proc Natl Acad Sci USA,2002,99(25):16162-16167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700