用户名: 密码: 验证码:
中国产绒山羊品种父系与母系起源的分子特征及遗传分化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验对中国部分产绒山羊品种完整的SRY基因编码区、线粒体DNA (mtDNA) D-loop区和细胞色素b (Cyt b)基因进行了测序,并结合GenBank中野山羊序列进行了遗传多样性及系统发育关系分析,以期为中国绒山羊品种遗传资源的保护和利用提供科学依据,本论文内容概述如下。
     试验成功克隆了雄性产绒山羊个体SRY基因整个编码区,其长度为723bp,共编码240个氨基酸。中国产绒山羊SRY基因的HMG-box区长度为231bp,位于编码区的第190位核苷酸与第420位核苷酸之间,共编码H64-A140的77个氨基酸;不同物种间SRY基因编码区序列比较分析结果支持了SRY基因在进化中高度保守的观点;通过PCR产物纯化、克隆测序的方法测定了中国11个产绒山羊品种150个个体的mtDNA D-loop区全序列,共检测到144个变异位点,群体遗传多样性丰富。基于序列的失配分布和Fu’s Fs中性检验表明,中国产绒山羊群体在历史上可能发生过群体扩张事件。基于PCR产物纯化回收、克隆测序的方法测定了中国产绒山羊线粒体Cyt b基因全序列,结果显示其全长为1140bp,编码379个氨基酸和一个终止密码子;中国产绒山羊mtDNA Cyt b基因共检测到21个变异位点,共定义了26种单倍型。基于11个中国产绒山羊品种mtDNA D-loop和Cyt b基因全序列定义的单倍型,结合GenBank中野山羊mtDNA D-loop和Cyt b基因序列,构建的系统发育树和中介网络图结果均显示,中国产绒山羊与捻角型野山羊(Capra falconeri)的母系关系密切,提示中国产绒山羊很可能起源于捻角型野山羊(Capra falconeri),但中国产绒山羊品种间系统分化不明显,呈现弱的遗传结构。
China has the richest cashmere goat genetic resources in the word. The origin of cashmere goats has long been considered a valuable research field in goat evolution. Many Chinese researchers have done much work on the origin of Chinese indigenoug goat breeds. But we have little knowledge on the origin, genetic differentiation, and breed genetic status of Chinese indigenous cashmere goats. In the present work, the complete control (D-loop) region and Cyt b gene of mitochondrial DNA and SRY gene coding region were sequenced in Chinese cashmere goat breeds, and were analyzed by combining the corresponding sequences of wild goats available in GenBank, in order to search for genetic markers on Y chrosome and mt DNA genome, and investigate deeply the molecular characterization of male and female origin in Chinese cashmere goat breeds, as well as, illuminate the quality characteristic of Chinese cashmere goat breeds from molecular level.These results will provide scientific basis for the genetic resource protection and utilization of Chinese cashmere goats. The conclusions are as follows in this work.
     (1) The fragment of SRY gene containing entire encoding region of male cashmere goat was cloned with a pair of designed primers based on the sequence of goat SRY gene sequence from GenBank. The results are as follows. The entire coding region of China cashmere goat SRY gene was 723 bp in length, encoding a peptide with 240 amino acid residues, and it contains the HMG-box with 231bp between position 190 and 420, encoding 77 amino acid residues (H64-A140). We analyzed the first structure and predicted the secondary structure and the three-dimensional structure of SRY protein, as well as, the component of SRY amino acid, characterization, structure domain and three-dimensional structure of SRY protein were also analyzed in the present work. The results showed that SRY proteinw of cashmere goats are hydrophilic without signal peptide and transmembrane region, and they have some characteristics of regulator proteins. They have three helixes and their space structure is the shape of“L”, as same as the known human SRY protein. The corresponding nucleotide sequences in GenBank of goat, sheep, cattle, yak, water buffalo, forest musk deer, alpine musk deer, sika deer, hog deer, red deer, moose, white-lipped deer, elk, and pig had identities of 100%, 97.0%, 89.2%, 89.2%, 88.3%, 87.1%, 86.9%, 86.1%, 86.3%, 86.3%, 86.4%, 86.1%, 86.5% and 67.4%, and the deduced amino acid sequences had identities of 100%, 95.4%, 83.3%, 83.3%, 82.5%, 80.0%, 79.1%, 77.5%, 77.9%, 77.9%, 79.5%, 78.3%, 78.7%, and 55.7%, respectively, with the cashmere goat. These results supported well the viewpoint that SRY gene is rather conservative in evolution of species. The clustering based on the sequences of encoding region and deduced amino acid of SRY gene among species is generally in agreement with the classic taxonomic relationship. Therefore, SRY gene coding region might be useful in the construction of phylogenetic tree among different species.
     (2) Based on the method of purified PCR products sequencing, complete sequence of mitochondrial DNA (mtDNA) D-loop region was sequenced in 150 individuals from 11 China cashmere goat breeds. The complete sequence of mtDNA D-loop region is 1,212 or 1,213 bp in length. 144 sites were polymorphic (11.88% in 1,213) with 120 parsimony informative polymorphic sites, 24 singleton polymorphic sites and one insertion/deletion in 1075 sites. High number of nucleotide difference, nucleotide diversity and haplotype diversity were manifested in analyzed cashmere goat populations. All sequence polymorphic sites defined 94 haplotypes. Many breeds had its unique haplotypes, and the distributions and frequencies were unequilibrium either among breeds or within breeds. The average number of nucleotide differences, haplotype diversity, and nucleotide diversity of different breed range from 9.448 to 20.385, from 0.886 to 0.982, and from 0.0079 to 0.0172, respectively, indicating there is a rich genetic diversities in China cashmere goat breeds. The curve of nucleotide mismatch distributions in 11 China cashmere goat breeds took on a near unimodal, and the Fu’s Fs neutrality test was significant (Fs= -23.9175, P<0.01) indicating that China cashmere goats might undergo expansions.
     (3) The complete sequence of Cyt b gene, which is a encoding protein gene, was sequenced in 55 individuals from 11 China cashmere goat breeds based on the method of purified PCR products sequencing. The complete sequence was 1140 bp in length that coded 379 amino acids and one termination. 21 sites were polymorphic with 15 parsimony informative polymorphic sites and 6 singleton polymorphic sites. The mutations of 6 sites including site 190, 287, 743, 728, 905 and 111 caused the amino acid changes. All sequence polymorphic sites defined 26 haplotypes. The haplotype frequencies, haplotype diversity and average number of nucleotide differences of different breeds range from 0.200 to 1.000, from 0.000 to 1.000, and from 0.000 to 3.200, respectively. Rich adenine presented in the 1st codons, while the 2nd had rich thymine. The base composition showed more bias at 3rd codon with the lowest guanine content (average only 4%). There was an obvious bias in codon usage of Cyt b gene.
     (4) Phylogenetic trees of NJ, ME and UPGMA method and median-joining network map were constructed based on the haplotypes defined from the sequences of mtDNA D-loop with wild goat sequences from GenBank. The results showed that there was a close genetic relationship between China cashmere goat and Capra falconeri, suggesting China cashmere goats might origin from Capra falconeri, while there no obvious divergence among China cashmere goats. The Kimura 2-parameter distances, number of nucleotide differences, number of nuc. subs. per site, and FST value between breeds range from 0.00916 to 0.01677, 10.95111 to 19.87662, 0.00904 to 0.01640, -0.02054 to 0.13538, respectively. On the whole, the result of NJ phylogenetic trees based on genetic distances of Kimura 2-parameter and Dxy of mtDNA D-loop sequences were in accordance with geographical relationship of main producing region for these cashmere breeds. But, for a few breeds, the multidimensional scaling plot of pairwise FST values constructed by SPSS software were not in accordance with geographical relationship of main producing region, indicating a weak geographical structure among breeds. The hierarchica components of mtDNA D-loop variation computed under the analysis of molecular variance (AMOVA) framework showed that smaller percentage existed among breeds (5.48%), while 94.16% within breeds with significant differences (P<0.001), indicating there were no significant divergence and weak genetic structure among breeds. The clustering and median-joining network based on the sequences of Cyt b gene were generally in agreement with that of mtDNA D-loop sequences.
引文
[1]王利民,赵虹,姜怀志,等.中国绒山羊业的可持续发展与生态环境关系的探讨[J].家畜生态,2004, 25 (1):30-31.
    [2]周占琴.中国绒山羊业发展现状、前景与对策[J].中国畜牧杂志,2008, 44 (4):42-45.
    [3]YANG L, ZHAO S H,LI K, et al. Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers[J]. Animal Genetics, 1999, 30:452-455.
    [4]尹俊,李玉荣.内蒙古3个绒山羊RAPD的初步研究.内蒙古农业大学学报(自然科学版),200, 22 (2):44-47.
    [5]陈世林,赵书红,余梅,等.绒山羊随机扩增多态DNA研究[J].湖北农业科学,2002 (2):76-78.
    [6]赵艳红,何晓红,关伟军,等.中国6个山羊群体微卫星标记的遗传多样性分析[J].畜牧兽医学报,2007, 38:20-24.
    [7]沈伟,李兰,潘庆杰,等.山羊经济性状标记辅助选择的遗传效应分析[J].遗传,2004, 26 (5):625-630.
    [8]刘迎春,张润梧,尹俊,等.利用微卫星DNA标记研究绒山羊群体遗传多样性[J].生物技术通讯,2005, 28 (1):368-372.
    [9]梁艳,刘迎春,张润梧,等.应用RAPD技术分析绒山羊DNA的多态性[J].内蒙古农业大学学报,2005,26(3):21-24.
    [10]金梅,白雪,张巍,等.两种绒山羊线粒体细胞色素b序列分析与系统进化[J].中国农业科学,2006, 39 (9):1897-1901.
    [11]狄冉,何晓红,韩建林,等.中国绒山羊遗传多样性现状和系统发生关系的微卫星分析[J].生物多样性,2007, 15 (5): 470-478.
    [12]SINCLAIR A H, BERTA P, PALMER M S, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J]. Nature, 1990, 346:240-244.
    [13]KOOPMAN P. The molecular biology of SRY and its role in sex determination in mammals[J]. Reproduction, Fertility and Development, 1995, 7:713-722.
    [14]KOOPMAN P, GUBBAY J, COLLIGNON J, et al. Zfy gene expression patterns are not compatible with a primary role in mouse sex determination[J]. Nature, 1989, 342:940-942.
    [15]JACOBS P A, STRONG J A. A case of human inter-sexuality having a possible XXY sex-determining mechanism[J]. Nature, 1959, 183:302-303.
    [16]WACHTEL, STEPHEN S. Possible role for H-Y anti-gen in the primary determination ofsex [J]. Nature, 1975, 257 (5523) :235-236.
    [17]PAGE D C, MOSHER R, SIMPSON E M, et al. The sex-determining region of the human Y chromo-some encodes a finger protein[J].Cell, 1987, 51 (6):1091-1104.
    [18]MCLAREN A, SIMPSON E, TOMONARE K, et al. Male sexual differen-tiation in mice lacking H-Y antigen [J]. Nature, 1984, 312 (5994):552-555.
    [19]PALMER M S, SINCLAIR A H, BERTA P, et al. Genetic evidence that ZFY is not the testis-determining factor[J].Nature, 1989, 342:937-939.
    [20]KOOPMAN P, GUBBAY J, VIVIAN N, et al. Male development of chromosomally female mice transgenic for SRY[J]. Nature, 1991, 351:117-121.
    [21]KOOPMAN P, MUNSTERBERG A, CAPEL B, et al. Expression of a candidate sex-determining gene during mouse testis differentiation[J]. Nature, 1990, 348:450-452. [22 ]HUA S.Identifieation of the transcriptional unit,Structural organization,and promoter sequence of the human sex-determining region Y (SRY) gene using a reverse genetic approach. [J]. American Journal of Human Genetics, 1993, 52:24.
    [23]YAN B, ZHANG S Z. Proceeding of human SRY gene[J]. Journal of Chinese Medical Hereditas,1995, 12 (5):282-286.
    [24]VEITIA R, FELLOUS M, MCELREAVEY K, et al. Conservation of Y chromosome specific sequences immediately 5’to the testis determining gene in primates[J].Gene, 1997, 199:63-70.
    [25]MARGARIT E, GULLEN A, REBORDOSA C, et al. Identifieation of conserved potentially regulatory sequences of the SRYgenes from 10 different species of mammals[J]. Biochemical and Biophysical Research Communications, 1998, 245:370-377.
    [26]DESCLOZEAUX M, POULAT F, BARBARA P S, et al. Characterization of two Sp1 binding sites of the human sex determining SRY promoter[J]. Biochimicaet Biophysica Acta, 1998, 1397:247-252.
    [27]袁灿,朱敏,刘智,等. SRY基因启动子不同模块的克隆及功能分析[J].湖南医科大学学报,2000, 25 (3):227-230.
    [28]LAUDET V, STEHELIN D, CLEVERS H. Ancestry and diversity of the HMG box super family[J]. Nucleic Acids Research, 1993, 21:2493-2501.
    [29]MCELREAVEY, BARBAUX S, ION A, et al.The genetic basis of murine and human sex determination: a review[J]. Heredity, 1995, 75:599-611.
    [30]周荣家,程汉华,余其兴. SRY基因与性别决定[J].中华医学遗传学杂志,1995, 12 (5): 287-289.
    [31]CAPEL B,SWAIN A,NICOLIS S,et al. Circular transcripts of the testis-determining gene SRY in adult mouse testis[J]. Cell, 1993, 73 (5):1019-1030.
    [32]KOICHIRO N, NAOKO H, SATOSHI T,et al.DNA Methylation-mediated Control of SRY Gene Expression in Mouse Gonadal Development[J]. Journal of Biological Chemistry, 2004,279:22306-22313.
    [33]赵雪,王保莉,安志兴,等.牛SRY基因的克隆与测序.西北农林科技大学学报(自然科学版),2007, 35 (7):19-22.
    [34]裴杰,刘小林,杜卫华,等.中国荷斯坦牛SRY基因编码区的克隆与原核表达[J].西北农林科技大学学报(自然科学版),2006, 34 (7):17-21.
    [35]付强,张明,秦文松,等.水牛SRY基因的克隆及序列分析[J].中国生物工程杂志,2006, 26 (7):69-73.
    [36]杨其沅,字向东,马吉云,等.牦牛SRY和TRO基因部分序列克隆与测序分析[J].生物信息学,2008, 6 (2):59-61.
    [37]帅丽芳,孙金海,赵勇.13/17罗伯逊易位猪SRY基因的克隆及其序列分析[J].中国畜牧兽医,2006, 33 (3):27-30.
    [38]杨弘,夏德全,许广平,等.奥利亚罗非鱼和尼罗罗非鱼SRY基因同源克隆和序列分析[J].农业生物技术学报,2005, 4:524-527.
    [39]张亮,邹方东,陈三,等.林麝及马麝SRY基因片段克隆及其在系统进化分析中的应用[J]. 2004, 25 (4):334-340.
    [40]鲁晓碹,张悦,单祥年.小麂SRY基因的克隆和测序[J].遗传,2003, 25 (3):299-301.
    [41]VINCENT R H, MICHAEL J C, ANTHONY A.The Molecular action and regulation of the testis-determining factors, SRY (Sex-Determining Region on the Y Chromosome) and SOX9 [SRY- Related High-Mobility Group (HMG) Box 9] [J]. Endocrine Reviews, 2003, 24: 466-487.
    [42]KOOPMAN P. SRY, Sox9 and mammalian sex determination[J].EXS, 2001 (91):25-56.
    [43]PARK S Y, JAMESON J L. Transcriptional regulation of gonadal development and differentiation [J]. Endocrinology, 2005, 146:1035-1042.
    [44]PARMA P, PAILHOUX E, COTINOT C. Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs[J]. Biology of Reproduction, 1999, 61:741-748.
    [45]PAYEN E, PAILHOUX E, ABOU M R, et al. Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation[J].International Journal of Developmental Biology, 1996, 40:567-575.
    [46]POULAT F, BARBARA P S, DESCLOZEAUX M, et al. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains[J]. Journal of biological chemistry, 1997, 272:7167-7172.
    [47]FOSTER J W, BRENNAN F E, HAMPIKAN G K, et al. Evolution of sex determination and the Y chromosome:SRY related sequences in marsupials[J]. Nature, 1992, 359:531-533.
    [48]NASRIN N, BUGGS C, KONG X F, et al. DNA-binding properties of the product of the testis-determining gene and a related protein[J].Nature, 1991, 354:317-320.
    [49]GIESE K,AMSTERDAM A,GROSSCHEDL R,et al. DNA- binding properties of theHMG domin of the lymphoid-specific transcriptional regulator LEF-l[J].Genes & Development, 1991, 5:2567-2571.
    [50]VAN DE W M, CLEVERS H. Sequence-specific interaction of the HMG box protein TCF-1 and SRY occurs within the minor groove of a Watson-crick double helix[J].The EMBO Journal, 1992, 11:3039-3044.
    [51]NAGAI K. Molecular evolution of SRY and Sox gene.Gene, 2001, 270 (l-2):161-169.
    [52]王晓霞,吕雪梅,张亚平. SRY基因在人猿超科和旧大陆猴中具有不同的进化规律[J].遗传学报,2000, 27 (10):847-852.
    [53]DENNY P, SWIFT S, BRAND N, et al. A conserved family of genes related to the testis-determining gene SRY[J]. Nucleic Acds Research, 1992, 20:2887-2888.
    [54]周荣家,郭一清,程汉华,等. SRY和SRY盒基因比较树[J].动物学报,1997, 43 (2): 192-196.
    [55]常重杰,周荣家,余其兴. SOX基因家族的研究现状[J].遗传,2000, 22 (1): 51-55.
    [56]STEVANOVIC M, ZUFFARDI O, COLLIGNON J. The cDNA sequence and chromosome location of the human SOX2 gene[J]. Mammal Genome, 1994, 5:640-642.
    [57]FOSTER J W, GRAVES J A M. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91:1927-1931.
    [58]GRIFFTHS R. The isolation of conserved DNA sequences related to the human sex-determining region Y gene f rom the lesser black2backed gull (Lrus fucus) [J].Proceedings of the Royal Society of London Series B: Biological Sciences, 1991, 244:123-128.
    [59]GUBBAY J, COLLIGNON J, KOOPMAN P, et al. A gene mapping to the sex determining region of a novel family of embryonically expressed genes[J]. Nature,1990, 346:245-250.
    [60]王毅. SOX9基因与性别决定的关系[J].生命的化学, 2000, 20 (2):70-71.
    [61]常重杰,周荣家,余其兴.大鳞副泥鳅中SOX9基因保守区的序列分析[J].遗传学报,2000, 27 (2):121-126.
    [62]ANDERSON S, BANKIER A T, BARRELL B G, et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290:457-465.
    [63]XIAO B,MA F,SUN Y,et al.Comparative analysis of complete mitochondrial DNA control region of four species of strigiformes[J]. Acta Genetica Sinica, 2006, 33 (11):965-974.
    [64]王飞.北方地区地方品种牛线粒体DNA多态性和亲缘关系研究[D],吉林大学硕士学位论文,2008.
    [65]赵兴波,储明星,李宁,等.绵羊线粒体的父系遗传[J].中国科学C辑,2000, 30 (6):642-645.
    [66]王存芳,曾勇庆,杜立新,等.线粒体DNA(mtDNA)的研究进展[J].动物科学与动物医学,2001, 18(1):16-18.
    [67]Beale G H, Knowles J K C (蔡以欣,胡楷,刘清琪,等译).核外遗传学[M].北京:科学出版社,1984:9-55.
    [68]赵兴波,李宁,吴常信.动物线粒体核质基因互作的研究进展[J].遗传,2001, 23 (1) :81-85.
    [69]牛屹东,李明,魏辅文,等.线粒体DNA用作分子标记的可靠性和研究前景[J].遗传,2001, 23 (6):593-598.
    [70]LARSON G, DOBNEY K, ALBARELLA U, et al. World wide phylogeography of wild boar reveals multiple centers of pig domestication [J]. Science, 2005, 307:1618-1621.
    [71]BELLWOOD P, WHITE P, LARSON G, et al. Domesticated pigs in Eastern Indonesia [J]. Science, 2005, 309: 381.
    [72]TROY C S, MACHUGH D E, BALLEY J F, et al. Genetic evidence for Near-Eastern origins of European cattle[J]. Nature, 2001, 410:1088-1091.
    [73]MANNEN H, KOHNOA M, NAGATAA Y, et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle[J]. Molecular Phylogenetics and Evolution, 2004, 32: 539-544.
    [74]LEI C Z, ZHANG W, CHEN H, et al. Two maternal lineages revealed by mtDNA D-loop sequences in Chinese native water buffaloes (Bubalus bubalis) [J]. Asian-Australasian Journal of Animal Sciences, 2007, 20 (4):471-476.
    [75]LEI C Z, GE Q L, ZHANG H C, et al. African maternal origin and genetic diversity of Chinese domestic donkeys[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20 (5): 645-652.
    [76]VILA C, LEONARD J A, GOTHERSTROM A, et al. Widespread origins of domestic horse lineages[J]. Science, 2001, 291: 474-477.
    [77]JANSEN T, FORSTER P, LEVINE M A, et al. Mitochondrial DNA and the origins of the domestic horse[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99 (16): 10905-10910.
    [78]KEVIN G, CRACKEN M C, WILLIAM P, et al. Molecular population genetics, phylogeography, and conservation biology of the mottled duck(Anas fulvigula) Conservation[J].Genetics, 2001, 2:87-102.
    [79]ANDERUNG C, BOUWMAN A, PERSSON P, et al.Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian Bronze Age cattle[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (24): 8431-8435.
    [80]BEJA-PEREIRA A, CARAMELLI D, LALUEZA-FOX C, et al. The origin of Europeancattle: Evidence from modern and ancient DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (21): 8113-8118.
    [81]KIKKAWA Y, AMANO T, SUZUKI H, et al.Analysis of genetic diversity of domestic cattle in East andSoutheast Asia in terms of variation in restriction sites and sequences of mitochondrial DNA[J]. Biochemical Genetics, 1995, 33:51-60.
    [82]LOFTUS R T, MACHUGH D E, BRADLEY D G, et al. Evidence for two independent domestications of cattle[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91:2757-2761.
    [83]李伟,张雁云.基于线粒体细胞色素b基因序列探讨红喉姬鹅两亚种的分类地位[J].动物学研究,2004, 25 (2):127-131.
    [84]秦树臻.太湖猪核DNA和线粒体DNA遗传变异的研究[D].南京师范大学,1994.
    [85]向余劲攻,杨岚,张亚平.白腹锦鸡和红腹锦鸡的遗传分化[J],遗传,2000, 22 (4):225-228.
    [86]杨玉慧,张德兴,李义明,等.中国黑斑蛙种群的线粒体DNA多样性和生物地理演化过程的初探[J].动物学报,2004, 5 (2):193-201.
    [87]BERMINGHAM E, AVISE J C. Molecular Zoogeography of Freshwater Fishes in the South eastern United States[J]. Genetics. 1986, 113 (4):939-965.
    [88]王义权,朱伟铨,王朝林.扬子鳄饲养种群线粒体DNA控制区的序列多态性[J],遗传学报, 2003, 30 (5):425-430.
    [89]ZHANG Y P, RYDER O A, FAN Z Y, et a1. Sequence variation and genetic diversity in the giant panda[J]. Science in China Series C Life Science, 1997, 40 (2):210-216.
    [90]赵凯,何舜平,彭作刚,等.青海湖裸鲤的种群结构和线粒体DNA变异[J].青海大学学报(自然科学版),2006, 24 (4):1-4.
    [91]涂正超,张亚平,邱怀.中国牦牛线粒体DNA多态性及遗传分化[J].遗传学报,1998, 25 (3):205-212.
    [92]刘 发,文陇英,黄族豪,等.六盘山地区石鸡和大石鸡间的渐渗杂交(英文) [J].动物学报,2006, 52 (1):153-159.
    [93]金园庭,刘迺发.青海高原两种沙蜥mtDNA的渐渗杂交[J].动物学报,2008, 54 (1):11-121.
    [94]亐开兴,文际坤.红安格斯牛mtDNA D-loop序列变异[J].中国草食动物,2006, (6):12-13.
    [95]BELL B R, MCDANIEL B T, ROBISON O W. Effects of Cytoplasmic Inheritance on Production Traits of Dairy Cattle[J].Journal of Dairy Science, 1985, 68:2038-2051.
    [96]TOELLE V D. Cytoplasmic effects in swine[J]. Journal of Animal Science,1986,63:203.
    [97]BROWN DR, KOEHLER CM, LINDBERG G L, et al. Molecular analysis ofcytoplasmic genetic variation in Holstein cows[J]. Journal of Animal Science, 1989, 67 (8):1926-1932.
    [98]MANNEN, H, KOJIMA T, OYAMA K, et al. Effect of mitochondrial DNA variation on carcass traits of Japanese Black cattle[J]. Journal of Animal Science, 1998, 76:36-41.
    [99]SUTARNO A, CUMMINS J M, GREEFF J, et al. Mitochondrial DNA polymorphisms and fertility in beef cattle[J].Theriogenology, 2002, 57:1603-1610.
    [100]MANNEN H, MORIMOTO ML, OYAMAT K, et al. Identification of mitochondrial DNA substitution related to meat quality in Japanese Black cattle[J]. Journal of Animal Science, 2003, 81:68-73.
    [101]BOETTCHER P J, STEVERINK D W B, BEITZ D C, et al . Multiple herd evaluation of the effects of maternal lineage in yield traits of Holstein cattle[J]. Journal of Dairy Science, 1996,79: 655-662.
    [102]BOETTCHER P J, FREEMAN A E, JOHNSTON S D, et al. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows[J]. Journal of Dairy Science, 1996, 79:647-654.
    [103]ZHANG B, CHEN H, HUA L, et al. Novel SNPs of the mtDNA ND5 Gene and Their Associations with Several Growth Traits in the Nanyang Cattle Breed[J]. Biochemical Genetics, 2008, 46: 362-368.
    [104]Luis G, Carvajal C, Nelson B. Abundant mtDNA Diversity and Ancestral Admixture in Colombian criollo Cattle (Bos taurus)[J].Genetics, 2003, 165:1457-1463.
    [105]赖松家.中国三个牛种遗传多样性和分子系统进化研究[D].四川农业大学博士学位论文,2003.
    [106]李祥龙.山羊起源与分化研究概况[J].内蒙古畜牧科学,1998 (2):6-9.
    [107]常洪.中国家畜遗传资源研究[M].西安:陕西人民教育出版社,1998:114-117
    [108]KEN N, YOSHIAKI K, KENJI T. Gene constitution of the yunnan native goat in China [J]. Report of the society for researches on native livestock, 1995, 15: 131-142.
    [109]HARTL G B, BURGER H , WILLING R, et al . On the biochemical systimatics of the caprini and the rupicaprini[J].Biochemical Systematics and Ecology, 1990, 18 (2-3):175-182.
    [110]陈红艳,叶绍辉.遗传标记在山羊起源分化中的研究进展[J].畜牧与饲料科学,2004, 25 (1):18-20.
    [111]TAKADA T, KIKKAWA Y, YONEKAWA H, et al. Bezoar (Capra aegagrus) is a matriarchal candidate for ancestor of domestic goat (Capra hircus): evidence from the mitochondrial DNA diversity[J]. Biochemical Genetics, 1997, 35 (9-10):315-26.
    [112]MANNEN H, NAGATA Y, TSUJ I S. Mitochondrial DNA reveal that domestic goat(Capra hircus) are genetically affected by two subspecies of bezoar(Capra aegagurus) [J]. Biochemical Genetics, 2001, 39 (5-6):145-54.
    [113]李祥龙,张亚平,陈圣偶,等.山羊mtDNA多态性及其起源分化研究[J].畜牧兽医学报,1999, 30 (4):313-319.
    [114]LUIKART G, GIELLY L, EXCOFFIER L, et al. Multiple maternal origins and weak phylogeographic structure in domestic goats[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98 (10):5927-5932.
    [115]JOSHI M B, ROUT P K, MANDAL A K, et al. Phylogeography and origin of Indian domestic goat[J].Molecular Biology and Evolution, 2004, 21: 454-462.
    [116]CHEN S Y, SU Y H, WU S F, et al. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats[J]. Molecular Phylogenetics and Evolution, 2005, 37 (3):804-814.
    [117]张思仲,周荣家.太熊猫SRY基因的PCR扩增和克隆[J].遗传学报,1994, 21 (4):281-286.
    [118]黄晓,周荣家,程汉华,等.两种淡水鱼SOX基因的扩增和测序[J].动物学报,1998, 44 (2):239-240.
    [119]KING V, GOODFELLOW P N, PEARKS WILKERSON A J, et al. Evolution of the male determining gene SRY within the cat family Felidae[J]. Genetics, 2007, 175: 1855-1867.
    [120]WHITFIELD L S, ROBINLOVELL-BADGE, PETER N G. Rapid sequence evolution of the mammalian sex-determining gene SRY [J].Nature, 1993, 364: 713-715.
    [121]HAWKINS J R. Sex determination[J]. Human Molecular Genetics, 1994, 3:1463-1467.
    [122]HURLES M, JOBLING M. Haploid chromosomes in molecular ecology: lessons from the human Y [J]. Molecular Ecology, 2001, 10:1599-1613.
    [123]KIKKAWA Y, TAKADA T, SUTOPO, et al. Phylogenies using mtDNA and SRY provide evidence for male-mediated introgression in Asian domestic cattle[J]. Animal Genetics, 2003, 34 (2): 96-101.
    [124]王永,郑玉才,龙虎,等.中国绒山羊研究[M].成都:四川科学技术出版社,1998:11-17.
    [125]VON HEIJINE G.1986.Towards a comparative anatomy of N-terminal topogenic protein sequences[J]. Journal of Molecular Biology, 189 (l):239-242.
    [126]WERNER M H, HUTH J R, GRONENBORN A M, et al.The molecular basis of human 46 X, Y sex reversal revealed From the three-dimensional solution structure of the human Sry-Dna complex[J]. Cell, 1995, 81:705-714.
    [127]JIMENEZ R, BURGOS M. Mammalian sex determination: joining pieces of the genetic puzzle [J]. Bioessays, 1998, 20 (9):696-699.
    [128]ZHAO X B, CHU M X, LI N, et al. paternal inheritance of sheep mtchondrial DNA[J]. Science of China (C series), 2000, 30 (6):642-646.
    [129]TIAN Z H. Cytoplasmic inheritances are not all the matrilineal heredity[J]. Bulletin of Biology, 1999,34 (1):14-15.
    [130]杨晓娟,杨玉华,张义正,等.浣熊SRY.HMG box的克隆和序列分析[J].动物学报,2002, 48(3):425-428.
    [131]郭金虎,单祥年,常青,等.赤麂SRY基因的测序及其与部分偶蹄目动物SRY基因序列的比较[J].动物学报,2001, 47 (2):145-149.
    [132]HALL T A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp[J]. Ser. 1999, 41:95–98.
    [133]TAMURA K, DUDLEY J, NEI M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution, 2007, 24:1596-1599.
    [134]TAJIMA F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, l23:585-589.
    [135]ROGERS A R, HARPENDING H. Population growth makes waves in the distribution of pairwise genetic differences[J]. Molecular Biology and Evolution, 1992, 9:552-569.
    [136]FU Y X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection[J].Genetics, 1997, 147:915-925.
    [137]WAKELEY J. Substitution rate variation among sites in hypervariable regionⅠof human mitochondrial DNA[J]. Journal of Molecular Evolution, 1993, 37:613-623.
    [138]PARSONS T J, MUNIEC D S, SULLIVAN K, et al. A high observed substitution rate in the human mitochondrial DNA control region[J]. Nature Genetics, 1997, 15(4):363-368.
    [139]ANDERSSON S G, STOTHARD D R, FUERST P, et al. Molecular phylogeny and rearrangement of rRNA genes in Rickettsia species[J]. Molecular Biology and Evolution, 1999, 16:987-995.
    [140]ROGERS A R. Genetic evidence for a Pleistocene population expansion [J]. Evolution, 1995, 49: 608-615.
    [141]王杰.中国11个山羊品种遗传多样性与起源分化研究[D].杨凌:西北农林科技大学博士学位论文, 2007.
    [142]张红平.采用mtDNA序列研究中国家养山羊的遗传多样性与起源分化[D].雅安:四川农业大学博士学位论文, 2003.
    [143]郝荣超.中国部分家养山羊mtDNAD环区遗传多样性与进化[D].杨凌:西北农林科技大学硕士学位论文,2008.
    [144]狄冉.中国产绒山羊微卫星和单核苷酸多态性研究[D].北京:中国农业科学院博士学位论文,2008.
    [145]李祥龙.我国主要地方山羊品种遗传多样性及其起源分化研究[D].雅安:四川农业大学博士学位论文,1997.
    [146]季维置,宿兵.遗传多样性研究的原理和方法[M].杭州:浙江科学技术出版社,1998:44.
    [147]刘宁.中国南方主要地方山羊品种遗传多样性及进化特征研究[D].兰州:甘肃农业大学博士学位论文,2005.
    [148]武艳平.中国部分山羊品种的多样性及系统进化分析[D].北京:中国农业科学院博士学位论文, 2008.
    [149]IRWIN D M, KOCHER T D, Wilson A C. Evolution of the cytochrome b gene of mammals[J]. Journal of Molecular Evolution, 1991, 32:128-144.
    [150]MEYER A, WILSON A C. Origion of tetrapods inferred from their mitochondrial DNA affiliation to lungfish [J]. Journal of Molecular Evolution, 1990, 31:359-364.
    [151]COLLURA R, STEWART C. lnsertions and duplications of mtDNA in then unclear genomes of old world monkeys and hominoids[J]. Nature, 1995, 378:485-489.
    [152]DEWOODY J A, CHESSER R K, BAKER R J. A translocated mitochondrial cytochrome b pseudogene involes (Rodentia: Microtus) [J]. Journal of Molecular Evolution, 1999, 48:380-382.
    [153]MOREIRO M A M, SEUANEZ H N. Mitochondrial pseudogenes and phyletic relationships of Cebuella and callithrix (Platyrrhini, Primates) [J]. Primates, 1999, 40 (2):353-364.
    [154]LüX M, FU Y X, ZHANG Y P. Evolution of mitochondrial cytochrome b pseudogene in genus nycticebus[J]. Molecular Biology and Evolution, 2002, 19 (12):2337-2341.
    [155]耿荣庆,王兰萍,常洪.江苏山羊品种细胞色素b基因(Cyt b)变异特点及其系统地位分析[J].江苏农业学报,2007, 23 (1):26-30.
    [156]SIMON C, FRATIF F, BECKENBACH A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomological Society of America, 1994, 87 (6):651-701.
    [157]OSAWA S. Evolution of the genetic code[M]. Oxford :Oxford University Press, 1995.
    [158]SUEOKA N. On the genetic basis of variation and heterogeneity of DNA base composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48:582-592.
    [159]BERNADI G, OLOFSSON B, FILIPSKI J, et al. The mosaic genome of war-blooded vertebrates [J]. Science, 1985, 228:953-958.
    [160]BERNADI G, MOUNCHIROUND D, GAUTIER C, et al. Compositional patterns in vertebrate genomes: Conservation and change in evolution [J]. Journal of Molecular Evolution, 1988, 28:7-18.
    [161]DA SILVA M N, PATTON J L. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha)[J]. Molecular Phylogenetics and Evolution, 1993,2 (3):243-255.
    [162]NUNN G B, STANLEY S E. Body size effects and rates of cytochrome b evolution in tube-nosed seabirds[J]. Molecular Biology and Evolution, 1998, 15(10):1360-1371.
    [163]MEYER A. Shortcomings of the cytochrome b gene as a molecular marker[J]. Trends in Ecology and Evolution, 1994, 9:278-280.
    [164]贾志海.国外绒山羊研究现状及展望[J].中国畜牧杂志,1994, 40 (1):57-59.
    [165]WOLSTENHOLME D. R. Animal mitochondrial DNA: structure and evolution[J]. International Review of Cytology, 1992, 141:173-216.
    [166]KIKKAWA Y, YONEKAWA H , SUZUKI H , et al. Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b. Animal Genetics[J]. 1997, 28:195-201.
    [167]廖顺尧,鲁成.动物线粒体基因组研究进展.生物化学与生物物理进展[J].2000, 7 (5):508- 511.
    [168]KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16:111-120.
    [169]FELSENSTEIN J. Confidence limits on phylogenies: An approach using the bootstrap[J]. Evolution, 1985, 39:783-791.
    [170]BANDELT H, FORSTER P, ROHL A. Median joining networks for inferring intraspecific phylogenies[J]. Molecular Biology and Evolution, 1999, 16 (1):37-48.
    [171]EXCOFFIER L, LAVAL G, SCHNEIDER S. Arlequin ver.3.0: an integrated software package forpopulation genetics data analysis[J]. Evolutionary Biology Online, 2005, 1:47-50.
    [172]郭志刚.社会统计分析方法—SPSS软件应用[M].北京:中国人民大学出版社,1999.
    [173]GYLLENSTEN U, WHARTON D, JOSEFSSON A, et al. Paternal inheritance of mitochondrial DNA in mice[J]. Nature, 1991,352:255-257.
    [174]UPHOLT W B, DAVID I B.Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution in the D-loop region[J].Cell, 1977,11,571-583.
    [175]HUTCHINSON C A. Maternal inheritance of mammalian mitochondrial DNA[J].Nature, 1980, 251:536-538.
    [176]李祥龙,张亚平,陈圣偶,等.山羊品种间线粒体DNA限制性片段长度多态性研究[J].动物学研究,1997, 18 (4):421-428.
    [177]叶绍辉,王文.云南保种山羊线粒体DNA限制性酶切研究[J].中国畜牧杂志,1998, 34 (3):11-12.
    [178]贾永红,史宪伟,简承松,等.贵州四个山羊品种mtDNA多态性及起源分化[J].动物学研究,1999, 20 (2):88-92.
    [179]SULTANA S, MANNEN H, Tsuji S. Mitochondrial DNA diversity of Pakistani goats[J]. Aniamal Genetics, 2003, 34:417-421.
    [180]JOSHI M B, ROUT P K, MANDAL A K, et al. Phylogeography and origin of Indian domestic goats[J]. Molecular Biology and Evolution, 2004, 21 (3):454-462.
    [181]刘若余.中国山羊、黄牛线粒体DNA遗传多样性与起源进化[D].杨凌:西北农林科技大学论文,2006.
    [182]LAUVERGUE J J, RENIERI C.Description and classification of sheep and goats using genes with visible effects[J].A.B.A.1991, 60 (2):115.
    [183]常洪.家畜遗传资源学纲要[M].北京:中国农业出版社,1995.
    [184]马月辉,王蒲,王惠生,等.科学养羊指南[M],北京:金盾出版社,2003:332-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700