用户名: 密码: 验证码:
鸭瘟病毒US3基因的发现、原核表达及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1鸭瘟病毒US3基因发现、克隆及分子特性分析鸭瘟病毒给养鸭业带来极大的危害,然而对于该病毒的分子生物学信息了解甚少。本文通过实验室构建的DEV基因组文库发现了一个编码DEV US3蛋白的开放阅读框,并通过PCR检测和克隆、测序进一步鉴定其存在于DEV。通过对该序列的进化树分析发现,DEV在进化关系上更接近与马立克氏病毒属。其它生物信息学分析包括基本理化性质分析、翻译后修饰分析、亚细胞定位分析、疏水性分析、抗原性分析已及蛋白高级结构预测,其为进一步研究DEV US3蛋白提供了理论支持。
     2鸭瘟病毒US3基因原核载体构建、表达、产物纯化及其抗体制备根据我们获得的鸭瘟病毒US3基因序列,设计一对特异扩增DEV US3基因完整开放阅读框的PCR引物,并将扩增序列克隆到pMD18-T载体,构建重组载体pMD18T-US3,通过对该重组质粒做PCR、酶切及测序鉴定后,将目的片段亚克隆到原核表达载体pET-32a(+),成功构建了重组表达载体pET-32a-US3。进一步将该重组质粒转化入表达宿主菌BL21(DE3),诱导表达出一条分子量约63kD的融合蛋白,与预期大小一致。重组蛋白表达可溶性研究显示该蛋白主要以包涵体形式存在于宿主菌。对表达条件优化结果显示,该重组质粒的原核表达最佳IPTG诱导浓度为0.6 mmol/L、最佳诱导表达温度为30℃、最佳诱导时间为4 h。根据优化表达条件,诱导表达的重组蛋白经过包涵体洗涤粗提后溶于8 mol/L的尿素中,溶解的表达产物再经镍离子亲和层析纯化,获得了高纯度的表达蛋白。用此纯化表达产物制备弗氏佐剂疫苗接种家兔制备抗DEVUS3蛋白高免血清,并经过进一步的纯化过程成功获得了抗DEV US3蛋白的抗体IgG,为相关DEV US3蛋白的研究提供了必要的条件。
     3鸭瘟病毒US3基因在宿主细胞内的转录时相、表达时相和US3蛋白亚细胞定位试验利用荧光定量方法对DEV感染不同时间US3基因的转录时相进行分析,结果显示DEV US3基因在感染后1 h开始启动转录,在感染后8 h达到最高峰,而在感染后12 h以后转录水平明显下降并维持在一定水平。试验同时也以间接免疫荧光技术对DEV感染细胞后US3蛋白表达时相进行了分析,结果显示在病毒感染后2 h可以在感染细胞中检测到DEV US3蛋白表达,此后随着感染时间延长表达量持续增多,虽然在感染后8 h病毒转录量明显减少,但病毒持续表达蛋白的积累效应使DEV US3蛋白在细胞浆中大量存在。亚细胞定位分析显示,DEV US3蛋白在感染后2 h主要定位于核周,随着US3蛋白的不断表达而进入胞浆,到感染后12 h时及以后US3基因表达蛋白大量存在与胞浆,此时细胞出现变形。
     4抗鸭瘟病毒US3基因原核表达蛋白抗体介导的酶免疫组化检测DEV的研究和应用建立并优化了以抗DEV US3蛋白IgG介导的酶免疫组化检测方法,并利用该方法检测人工感染鸭DEV CHv株(DEV-CHv)后,在雏鸭心、肝脏、脾脏、肺脏、肠道、肾脏、胰腺、哈氏腺、法氏囊、脑等不同组织或器官中US3蛋白的表达时相和分布规律,结果显示鸭瘟病毒人工肌肉注射雏鸭,在感染6 h后可以在心、肝、脾、肺、肾、胸腺、法氏囊中检测到DEV-US3蛋白抗原;在感染后8 h可以在脑、腺胃、胰腺、哈氏腺、十二指肠、空肠中检测到DEV-US3蛋白抗原;而在感染后12 h在食道、直肠检测到DEV-US3蛋白抗原。
     5抗鸭瘟病毒US3基因原核表达蛋白抗体介导的免疫荧光检测DEV的研究和应用建立并优化了以抗DEV US3蛋白IgG介导的免疫荧光检测方法,并利用该方法检测20株临床鸭瘟阳性样本,结果检出率为100%。进一步利用该方法研究人工感染鸭DEV CHv株(DEV-CHv)后,在雏鸭心、肝脏、脾脏、肺脏、肠道、肾脏、胰腺、哈氏腺、法氏囊、脑等不同组织或器官中US3蛋白的表达时相和分布规律,结果显示鸭瘟病毒人工肌肉注射雏鸭,在感染4 h后可以在胸腺、法氏囊中检测到DEV-US3蛋白抗原;在感染6 h后可以在心、肝、脾、肺、脑、胰腺、肾中检测到DEV US3蛋白抗原;在感染后8 h可以在腺胃、哈氏腺、十二指肠、空肠、食道、直肠中检测到DEV US3蛋白抗原。
     6鸭瘟病毒US3基因原核表达蛋白作为包备抗原ELISA检测DEV抗体的研究和应用试验利用纯化的原核表达蛋白DEV US3作为包被抗原,建立了间接ELISA检测DEV抗体的方法。通过对包被抗原和待检阳性血清的方阵加样,测定了以不同浓度抗原包被和不同稀释度一抗条件下的检测效果,结果显示最适包被蛋白浓度为2.2μg/mL,最适一抗稀释度为1:320。进一步试验利用该优化的抗原包被浓度和一抗稀释度测定了不同稀释度酶标二抗条件下的检测效果,结果显示1:2000倍稀释的酶标二抗检测具有最大的P/N比,因此确定1:2000倍稀释为最适酶标二抗稀释度。利用该优化条件,试验验证了间接ELISA检测DEV抗体的特异性、敏感性和重复性。结果显示该优化条件下的间接ELISA检测方法具有良好的特异性,且敏感性可达1:6400,重复性变异系数均小于5%,也说明该方法具良好的重复性。此外,试验利用建立的该ELISA方法检测了120个鸭瘟临床样品,结果检测率为85%,与实验室建立的全病毒包被抗原间接ELISA检测试剂盒具有相同的检出率,说明试验建立的间接ELISA方法具有很好的检测效果,可以应用于临床上检测抗DEV抗体水平。
     7基于鸭瘟病毒US3基因PCR方法的建立和应用根据试验中发现的DEV US3基因序列设计一对特异扩增DEV US3基因序列的引物,并以该引物做PCR扩增检测DEV核酸,以建立PCR检测DEV的方法。结果显示该引物可扩增产生一条148 bp的特异产物,与预期大小一致。进一步对该引物PCR扩增特异性检测发现,只有在以DEV DNA为模板时才能扩增产生该特异条带,而以鸭乙型肝炎病毒、鸭病毒性肝炎病毒、小鹅瘟病毒、鸭疫里默氏菌、鸭源沙门氏菌和鸭源大肠杆菌等病原体DNA为模板时,都未扩增产生任何条带,说明试验建立的PCR检测方法具有很好的特异性。灵敏度检测结果显示该PCR检测方法最低可以检测出3 fg DEV DNA。对15份DEV强毒感染鸭病料检测均为阳性,而3份未感染DEV鸭提取核酸为模板检测均为阴性。由此可见试验建立的PCR检测DEV的方法具有特异性好、敏感度高的特点,可以运用于临床检测DEV。
1 Discovery,Clone and Molecular characterization of Duck Enteritis Virus US3 gene Duck enteritis virus(DEV) causes substantial duck farms losses,however,its molecular biology is poorly understood.Here,an open reading frame of an US3-1ike gene of DEV was identified from a DEV genomic library.Its existence was confirmed by cloning from DEV-infected duck embryo fibroblasts(DEFs) and DNA sequencing.In addition,an US3 protein phylogenetic tree was constructed and showed that the evolutionary relationship of DEV is close to the genus Mardivirus.Bioinformatic analyses of the DEV US3-like protein predicted its post-translational modifications,secondary structure and tertiary structure,and suggested that the protein contains a serine-threonine kinase domain.
     2 Prokaryotic expression,purification and polyclonal antibody preparation of US3 gene of duck enteristis virus The recombinant plasmid pMD18T-US3 was successfully constructed as the methods in the last chapter.The recombinant plasmid pMD18T-US3 by two restriction endonucleases BamH I and Xho I was subcloned into the polyclonal sites of the plasmid pET-32a(+) digested by the same restriction endonucleases to construct recombinant expression plasmid vector pET32a-US3.After the plasmid pET32a-US3 was conformed into the host E.coli of BL21(DE3),the bacteria was induced by IPTG(β-D-1-thiogalactopyranoside) to express a recombinant protein with approximately 63kD of molecular weight.Further by optimizing the expression system,an optimal condition was verified as the recombinant expression induced by 0.6 mmol/L IPTG for 4 h at 30℃.The expressed protein was subject to purifying through Ni-column affinity chromatography.The purified recombinant protein was emulsified with an equal volume of Freund's adjuvant to vaccine rabbit for preparing anti-US3 sera.The anti-US3 IgG was purified from the sera by ion exchange chromatography combined with caprylic acid and equilibrium ammonium sulfate method.
     3 The transcript phase,translation phase and subcellular localization of the duck enteritis virus US3 gene The transcript phase of DEV US3 gene was detected by real-time quantitative PCR.The results showed that the gene began to transcript at 1 h post infection and was up to the peak at 8 h post infection while the levels of transcript were obvious to fall after 12 h post infection.In contrast,the transcript of US3 gene fluctuated at a lower level at 24 h,48 h and 60 h post infection than at 8 h post infection.In addition,the expression phase of DEV US3 gene was detected by use of indirect immunofluorescent assay.The results showed that no expression of the gene at 1 h post infection was detected and up to 2 h post infection,a weak immunofluorescence was able to detect.The expression of the US3 gene was more and more accompanied by the increasing infection period and the expression product of US3 gene was full of the cytoplasm and perinuclear area at 12 h post infection and 24 h post infection.In the subcellular localization assay,the results showed that the US3 protein was mainly localizated around the nulear area at 2 h post infection,4 h post infection and 8 h post infection.At 12 h and 24 h post infection,the protein was mainly localized at cytoplasm.
     4 Development and Application of an Indirect Immunohistochemistry Staining Method Based on the Antibody against Recombinant Prokaryotic Expression protein of Duck Enteritis Virus US3 Gene A indirect immunohistochemistry staining method based on the antibodies against DEV US3 protein was successfully constructed to dectect the DEV US3 protein.The method was verified to be specific to the DEV US3 protein through detecting the tissues infected by different viruses which include DEV,DHV, Riemerella anatipestifer and DHBV.In the further inspection on the clinical specimens infected by DEV by this method,all the 20 specmens were identified to be positive.The rate of detection is 100%.In addition,the ducklings were challenged by DEV strain CHv and the different tissue specimens,which included heart,liver,spleen,lung,kidney, thymus gland,bursa,brain,glandular stomach,pancreas,dodecadactylon,jejunum, harderian glands,esophagus and rectum,were collected respectively at 2h,4h,6h,8h, 12h,24h,2d,3d,5d,7d after infection.Expressions of DEV US3 protein at the different tissues were dectected by use of the indirect immunohistochemistry staining method to study the dynamic distribution of US3 protein in the tissues.The result showed that the DEV US3 protein was dectected in heart,liver,spleen,lung,kidney,thymus gland, bursa at 6 h post infection,in brain,glandular stomach,pancreas,harderian glands, dodecadactylon and jejunum at 8 h post infection and in esophagus and rectum at 12 h post infection.
     5 Development and Application of an Indirect Immuno-Fluorescent Staining Method based on the Antibody against Recombinant Prokaryotic Expression protein of Duck Enteritis Virus US3 Gene A indirect immuno-fluorescent staining method based on the antibodies against DEV US3 protein was successfully constructed to dectect the DEV US3 protein.The method was verified to be specific to detect the DEV US3 protein through detecting the tissues infected by different viruses which include DEV,DHV, Riemerella anatipestifer and DHBV.In the further detection on the clinical specimens infected by DEV by this method,all the 20 specmens were identified to be positive.The rate of diagnosis is 100%.In addition,the ducklings were challenged by DEV strain CHv and the different tissue specimens,which included heart,liver,spleen,lung,kidney, thymus gland,bursa,brain,glandular stomach,pancreas,dodecadactylon,jejunum, harderian glands,esophagus and rectum,were collected respectively at 2h,4h,6h,8h, 12h,24h,2d,3d,5d,7d after infection.Expressions of DEV US3 protein at the different tissues were dectected by use of the indirect immunohistochemistry staining method to study the dynamic distribution of US3 protein in the tissues.The result showed that the DEV US3 protein was dectected in thymus gland,bursa at 4h post infection,in heart,liver,spleen,lung,brain,pancreas,kidney at 6h post infection,in glandular stomach, harderian glands,esophagus,rectum dodecadactylon and jejunum at 8h post infection.
     6 Research on Detection of the Antibody against Duck Enteritis Virus by indirect ELISA Using Prokaryotic Expression Protein of DEV US3 as Coating Antigen Based on the Prokaryotic Expression Protein of DEV US3 gene as coating antigen,an indirect ELISA was developed for detection on the antibodies against DEV.In the research,the optimum conditions for ELISA were determined.The results showed that the optimal concentration of the coating antigen was 2.2μg/mL and the optimal dilution of the examined serum is 1:320.In addition,under the optimal condition of concentration of the coating antigen and dilution of the examined serum,the optimal dilution of the enzyme linked antibody was determined as 1:2000.The method was verified to be specific to DEV by detecting the serums aganst different viruses such as DEV,duck hepatitis virus B (DHBV) and duck riemirella anatipestifer(RA) etc.The sensitivity of the method was up to 1:6400.In the repeat experiments,the variation coefficients in intra-assay and inter-assay were less than 5%.In further,120 clinical specimens from the infected ducklings were detected by this indirect ELISA method and the positive rate is 85%which is consistent with the result by use of the indirect ELISA method based on DEV as coating antigen.
     7 Development and Application of PCR based on DEV US3 gene for the Detection of Duck plague virus Based on the DEV US3 gene which was first found in this paper,a pair of primers was designed to dectect the DEV by use of PCR.The results showed that a anticipated product with 148 bp was amplified.In further,the PCR method was verified to be specific to amply DEV DNA but not to amplify the DNAs from duck hepatitis virus,duck hepatitis virus B,GPV,R.A,E.coli and S.anatum.The sensitivity of the PCR method is 3 fg.In addition,by use of the PCR method 15 different tissues from ducks infected by DEV and 3 different tissues from ducks uninfected by DEV were detected and the results showed that all the tissues from the ducks infected by DEV were amplified to produce a 148 bp product but there were nothing to amplify in all the tissues from the ducks uninfected by DEV.In conclusion,this PCR method was sensitive and specific to DEV DNA and was able to be used in clinical detection.
引文
[1] Zhang G, Stevens R, Leader DP. The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. J Gen Virol. 1990. 71 (Pt 8): 1757-65.
    [2] Sakaguchi M, Urakawa T, Hirayama Y, Miki N, Yamamoto M, Hirai K. Sequence determination and genetic content of an 8.9-kb restriction fragment in the short unique region and the internal inverted repeat of Marek's disease virus type 1 DNA. Virus Genes. 1992. 6(4): 365-78.
    [3] Longnecker R, Roizman B. Clustering of genes dispensable for growth in culture in the S component of the HSV-1 genome. Science. 1987. 236(4801): 573-6.
    [4] 3rd CCF, O'Callaghan DJ. Transcriptional analyses of the unique short segment of EHV-1 strain Kentucky A. Virus Genes. 1995. 9(3): 257-68.
    [5] Kongsuwan K, Prideaux CT, Johnson MA, Sheppard M, Rhodes S. Nucleotide sequence analysis of an infectious laryngotracheitis virus gene corresponding to the US3 of HSV-1 and a unique gene encoding a 67 kDa protein. Arch Virol. 1995. 140(1): 27-39.
    [6] Brunovskis P, Velicer LF. The Marek's disease virus (MDV) unique short region: alphaherpesvirus-homologous, fowlpox virus-homologous, and MDV-specific genes. Virology. 1995. 206(1): 324-38.
    [7] Munger J, Chee AV, Roizman B. The U(S)3 protein kinase blocks apoptosis induced by the d120 mutant of herpes simplex virus 1 at a premitochondrial stage. J Virol. 2001. 75(12): 5491-7.
    [8] Benetti L, Roizman B. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc Natl Acad Sci U S A. 2004. 101(25): 9411-6.
    [9] Takashima Y, Tamura H, Xuan X, Otsuka H. Identification of the US3 gene product of BHV-1 as a protein kinase and characterization of BHV-1 mutants of the US3 gene. Virus Res. 1999. 59(1): 23-34.
    [10] Frame MC, Purves FC, McGeoch DJ, Marsden HS, Leader DP. Identification of the herpes simplex virus protein kinase as the product of viral gene US3. J Gen Virol. 1987. 68 ( Pt 10): 2699-704.
    
    [11] McGeoch DJ, Davison AJ. Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res. 1986. 14(4): 1765-77.
    
    [12] MurataT, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y. Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells. 2000. 5(12): 1017-27.
    [13] Walro DG, Rosenthal KS. The antiviral xanthate compound D609 inhibits herpes simplex virus type 1 replication and protein phosphorylation. Antiviral Res. 1997. 36(1): 63-72.
    [14] McGeoch DJ, Cook S. Molecular phylogeny of the alphaherpesvirinae subfamily and a proposed evolutionary timescale. J Mol Biol. 1994. 238(1): 9-22.
    [15] van ZM, der Gulden H v, de Wind N, Gielkens A, Berns A. Identification of two genes in the unique short region of pseudorabies virus; comparison with herpes simplex virus and varicella-zoster virus. J Gen Virol. 1990. 71 ( Pt 8): 1747-55.
    [16] Poon, A. P. W., L. Benetti, and B. Roizman. US3 and US3.5 Protein Kinases of Herpes Simplex Virus 1 Differ with Respect to Their Functions in Blocking Apoptosis and in Virion Maturation and Egress[J]. J Virol. 80(8):3752 - 3764. 2006.
    [17] Poon AP, Roizman B. Herpes simplex virus 1 ICP22 regulates the accumulation of a shorter mRNA and of a truncated US3 protein kinase that exhibits altered functions.J Virol.2005.79(13):8470-9.
    [18]Purves FC,Longnecker RM,Leader DP,Roizman B.Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture.J Virol.1987.61(9):2896-901.
    [19]Nishiyama Y,Yamada Y,Kurachi R,Daikoku T.Construction of a US3 lacZ insertion mutant of herpes simplex virus type 2 and characterization of its phenotype in vitro and in vivo.Virology.1992.190(1):256-68.
    [20]Eurachi,R,,T.Daikoku,T.Tsurumi,K.Maeno,Y.Nishiyama,and T.Kurata.The pathogenicity of a US3 protein kinase defective mutant of herpes simplex virus type 2 in mice.Arch Virol.133:259-273.1993.
    [21]Eimman TG,de Wind N,Oei-Lie N,Pol JM,Berns AJ,Gielkens AL.Contribution of single genes within the unique short region of Aujeszky's disease virus(suid herpesvirus type Ⅰ) to virulence,pathogenesis and immunogenicity.J Gen Virol.1992.73(Pt 2):243-51.
    [22]Meignier B,Longnecker R,Mavromara-Nazos P,Sears AE,Roizman B.Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus Ⅰ.Virology.1988.162(1):251-4.
    [23]Kimman TG,De Wind N,De Bruin T,de Visser Y,Voermans J.Inactivation of glycoprotein gE and thymidine kinase or the US3-encoded protein kinase synergistically decreases in vivo replication of pseudorahies virus and the induction of protective immunity.Virology.1994.205(2):511-8.
    [24]Lyman MG,Demmin GL,Banfield BW.The attenuated pseudorabies virus strain Bartha fails to package the tegument proteins Us3 and VP22.J Virol.2003.77(2):1403-14.
    [25]D.Schumacher,C.McKinney,B.B.Kaufer,N.Osterrieder.Virology,375:37-47(2008).
    [26]Granzow H,Klupp BG,Fuchs W,Veits J,Osterrieder N,Mettenleiter TC.Egress of alphaherpesviruses:comparative ultrastructural study.J Virol.2001.75(8):3675-84.
    [27]Reynolds AE,Wills EG,Roller RJ,Ryckman BJ,Baines JD.Ultrastructural localization of the herpes simplex virus type 1 UL31,UL34,and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids.J Virol.2002.76(17):8939-52.
    [283 Granzow H,Klupp BG,Mettenleiter TC.The pseudorabies virus US3 protein is a component of primary and of mature virions.J Virol.2004.78(3):1314-23.
    [29]Bjerke SL,Roller RJ.Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress.Virology.2006.347(2):261-76.
    [30]Van Minnebruggen G,Favoreel HW,Jacobs L,Nauwynck HJ.Pseudorabies virus US3 protein kinase mediates actin stress fiber breakdown.J Virol.2003.77(16):9074-80.
    [31]Schumacher D,Tischer BK,Trapp S,Osterrieder N.The protein encoded by the US3 orthologue of Marek's disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown.J Virol.2005.79(7):3987-97.
    [32]Favoreel HW,Van Minnebruggen G,Adriaensen D,Nauwynck HJ.Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of analphaherpesvirus are associated with enhanced spread.Proc Nat1Acad Sci U S A.2005.102(25):8990-5.
    [33]Geenen K,Favoreel HW,01sen L,Enquist LW,Nauwynck HJ.The pseudorabies virus US3 protein kinase possesses anti-apoptotic activity that protects cells from apoptosis during infection and after treatment with sorbitol or staurosporine.Virology.2005.331(1):144-50.
    [34]Leopardi R,Van Sant C,Roizman B.The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus.Proc Nat1 Acad Sci USA.1997.94(15):7891-6.
    [35]Hate S,Koyama AH,Shiota H,Adachi A,Goshima F,Nishiyama Y.Antiapoptotic activity of herpes simplex virus type 2:the role of US3 protein kinase gene.Microbes Infect.1999.1(8):601-7.
    [36]Cartier A,Broberg E,Komai T,Henriksson.M,Masucci MG.The herpes simplex virus-1 Us3 protein kinase blocks CD8T cell lysis by preventing the cleavage of Bid by granzyme B.Cell Death Differ.2003.10(12):1320-8.
    [37]Asano S,Honda T,Goshima F,Nishiyama Y,Sugiura Y.US3 protein kinase of herpes simplex virus protects primary afferent neurons from virus-induced apoptosis in ICR mice.Neurosci Lett.2000.294(2):105-8.
    [38]Asano S,Honda T,Goshima F,et el.US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice.J Gen Virol.1999.80(Pt 1):51-6.
    [39]Jerome KR,Fox R,Chen Z,Sears AE,Lee H,Corey L.Herpes simplex virus inhibits apoptosis through the action of two genes,Us5 and Us3.J Virol.1999.73(11):8950-7.
    [40]Munger J,Roizman B.The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins.Proc Nail Acad Sci USA.2001.98(18):10410-5.
    [4I]Ogg PD,McDonell PJ,Ryckman BJ,Knudson CM,Roller RJ.The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members.Virology.2004.319(2):212-24.
    [42]Cartier A,Komai T,Masucci MG.The Us3 protein kinase of herpes simplex virus 1 blocks apoptosis and induces phosporylation of the Bcl-2 family member Bad.Exp Cell Res.2003.291(1):242-50.
    [43]Peri P,Hukkanen V,Nuutila K,Saukko P,AbrahamsonM,Vuorinen T.The cysteine protease inhibitors cystatins inhibit herpes simplex virus type 1-induced apoptosis and virus yield in HEp-2 cells.J Gen Virol.2007.88(Pt 8):2101-5.
    [44]Galvan V,Roizman B.Herpes simplex virus 1 induces and blocks apoptosis at multiple steps during infection and protects cells from exogenous inducers in a cell-type-dependent manner.Proc Nail Acad Sci USA.1998.95(7):3931-6.
    [45]Mori I,Goshima F,Watanabe D,et el.Herpes simplex virus US3 protein kinase regulates virus-induced apoptosis in olfactory and vomeronasal chemosensory neurons in vivo.Microbes Infect.2006.8(7):1806-12.
    [46]Irie H,Aita K.[Role of apoptosis induced by acute herpes simplex virus].Nippon Rinsho.2000.58(4):794-800.
    [47]Roizman L,Ward P L.Herpesviridae,Alphaherpesvirinae,Simplexvirus[A],In Tidona C A,Darai G(eds.),The Springer Index of Viruses[C],Springer,2001:399-407.
    [48]Jang HK,Ono M,Kim TJ,et el.The genetic organization and transcriptional analysis of the short unique region in the genome of nononcogenic Merck's disease virus serotype 2.Virus Res.1998.58(1-2):137-47.
    [49]Zelnik V,Darteil R,Audonnet JC,et al.The complete sequence and gene organization of the short unique region of herpesvirus of turkeys.J Gen Virol.1993.74(Pt 10):2151-62.
    [50]Spatz SJ,Rue CA.Sequence determination of a mildly virulent strain(CU-2) of Gallid herpesvirus type 2 using 454 pyrosequencing.Virus Genes.2008.36(3):479-89.
    [51]Fernandez A,Menendez dCAM,Fernandez S,Camacho A,Castro JM,Tabares E.Conversion of US3-encoded protein kinase gene from pseudorabies virus in a diploid gene located within inverted repeats by genetic recombination between the viral genome isomers.Virus Res.1999.61(2):125-35.
    [52]3rd FTM,Gray WL.DNA sequence and genetic organization of the unique short(US) region of the simian varicella virus genome. Virology. 1993. 193(2): 762-73.
    [53] Tyack SG, Studdert MJ, Johnson MA. Nucleotide sequence of canine herpesvirus homologues of herpes simplex virus type 1 US2, US3, glycoproteins I and E, US8.5 and US9 genes. DNA Seq. 1997. 7(6): 365-8.
    [54] Daikoku T, Yamashita Y, Tsurumi T, Maeno K, Nishiyama Y. Purification and biochemical characterization of the protein kinase encoded by the US3 gene of herpes simplex virus type 2. Virology. 1993. 197(2): 685-94.
    [55] Whiteley, A., B. Bruun, T. Minson, and H. Browne. 1999. Effects of targeting herpes simplex virus type 1 gD to the endoplasmic reticulum and trans-Golgi network[J]. J. Virol. 73:9515-9520 .
    [56] Zhu, Z., M. D. Gershon, Y. Hao, R. T. Ambron, C. A. Gabel, and A. A. Gershon. 1995. Envelopment of varicella-zoster virus: targeting of viral glycoproteins to the trans-Golgi network[J]. J. Virol. 69:7951 -7959 .
    [57] Mettenleiter TC. Herpesvirus Assembly and Egress[J]. J Virol, 2002,76(4):1537-47 .
    [58] Gershon AA, Sherman DL, Zhu Z, Gabel CA, Ambron RT, Gershon MD. Intracellular transport of newly synthesized varicellazoster virus: final envelopment in the trans-Golgi network[J]. J Virol, 2000, 68:6372-6390 .
    [59] Granzow, H., F. Weiland, A. Jons, BG Klupp, A. Karger, and TC Mettenleiter. Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment[J]. J. Virol. 1997. 71:2072-2082 .
    [60] Granzow, H, BG Klupp, W Fuchs, J Veits, N Osterrieder, TC Mettenleiter. Egress of alphaherpesviruses: comparative ultrastructural study [J]. J. Virol, 2001, 75:3675-3684 .
    [61] Wagenaar F, Pol JM, Peeters B, Gielkens AL, de Wind N, Kimman TG. The US3-encoded protein kinase from pseudorabies virus affects egress of virions from the nucleus. J Gen Virol. 1995. 76 ( Pt 7): 1851-9.
    [62] Klupp BG, Granzow H, Mettenleiter TC. Effect of the pseudorabies virus US3 protein on nuclear membrane localization of the UL34 protein and virus egress from the nucleus. J Gen Virol. 2001. 82(Pt 10): 2363-71.
    [63] Baines, J. D., and B. Roizman. 1992. The UL11 gene of herpes simplex virus 1 encodes a function that facilitates nucleocapsid envelopment and egress from cells[J]. J. Virol. 66:5168-5174 .
    [64] Hutchinson, L., and D. C. Johnson. 1995. Herpes simplex virus glycoprotein K promotes egress of virus particles[J]. J. Virol. 69:5401-5413 .
    [65] Jayachandra, S., A. Baghian, and K. G. Kousoulas. 1997. Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production inactively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space [J]. J. Virol. 71:5012-5024.
    [66] Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol. 2001. 75(18): 8803-17.
    [67] Purves FC, Spector D, Roizman B. The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. J Virol. 1991. 65(11): 5757-64.
    [68] Purves FC, Spector D, Roizman B. UL34, the target of the herpes simplex virus U(S) 3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins. J Virol. 1992. 66(7): 4295-303.
    [69] Park R, Baines JD. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol. 2006. 80(1): 494-504.
    [70] Leader, D. P., A. D. Deana, F. Marchiori, F. C. Purves, and L A. Pinna. 1991. Further definition of the substrate specificity of the alpha-herpesvirus protein kinase and comparison with protein kinases a and c[J]. Biochim. Biophys. Acta 1091:426-431 .
    [71] Purves, F. C., A. D. Deana, F. Marchiori, D. P. Leader, and L. A. Pinna. 1986. The substrate specificity of the protein kinase induced in cells infected with herpesviruses: studies with synthetic substrates indicate structural requirements distinct from other protein kinases[J]. Biochim. Biophys. Acta 889:208-215 .
    [72] Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, T. J. Gibson, G. F. Hatfull, G. S. Hudson, S. C. Satchwell, C. Seguin, P. Tuffnell, and B. G. Barrell. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome[J]. Nature 310:207-211 .
    [73] Chee, M. S., A. T. Bankier, S. Beck, R. Bohni, C. M. Brown, R. Cerny, T. Horsnell, C. A. Hutchinson, T. Kouzarides, J. A. Martignetti, E. Preddie, S. C. Satchwell, P. Tomlinson, K. M. Weston, and B. G. Barrell. 1990. Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169[J]. Curr. Top. Microbiol. Immunol. 154:125-169.
    [74] McGeoch, D. J., M. B. Dalrymple, A. J. Davison, A. Dolan, M. C. Frame, and D. McNab. 1988. The complete DNA sequence of the unique long region in the genome of herpes simplex virus type 1[J]. J. Gen. Virol. 69:1531-1574 .
    [75] Ryckman BJ, Roller RJ. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol. 2004. 78(1): 399-412.
    [76] Scott, E., and P. O' Hare. 2001. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection[J]. J. Virol, 75:8818-8830 .
    [77] Fuchs, W., B. G. Klupp, H. Granzow, N. Osterrieder, and T. C. Mettenleiter. 2002. The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions[J]. J. Virol. 76:364 - 378 .
    [78] Reynolds, A., B. Ryckman, J. Baines, Y. Zhou, L. Liang, and R. Roller. 2001. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids[J]. J. Virol. 75:8803-8817 .
    [79] Chang, Y. E., C. Van Sant, P. W. Krug, A. E. Sears, and B. Roizman. 1997. The null mutant of the UL31 gene of herpes simplex virus 1: construction and phenotype in infected cells[J]. J. Virol. 71:8307-8315 .
    [80] Klupp, B. G., H. Granzow, and T. C. Mettenleiter. 2000. Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product[J]. J. Virol. 74:10063-10073 .
    [81] Roller, R., Y. Zhou, R. Schnetzer, J. Ferguson, and D. DeSalvo. 2000. Herpes simplex virus type 1 UL34 gene product is required for viral envelopment[J]. J. Virol. 74:117-129 .
    [82] Reynolds, A. E., B. J. Ryckman, J. D. Baines, Y. Zhou, L. Liang, and R. J. Roller. 2001. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids[J]. J. Virol. 75:8803-8817 .
    [83] Chung, T. D., J. P. Wymer, C. C. Smith, M. Kulka, and L. Aurelian. 1989. Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) [J]. J. Virol. 63:3389-3398.
    [84] De Wind, N., J. Domen, and A. Berns. 1992. Herpesviruses encode an unusual protein-serine/threonine kinase which is nonessential for growth in cultured cells[J]. J. Virol. 66:5200-5209 .
    [85] Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol. 2001. 75: 8803-8817.
    [86] Klupp, B. G., W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter. 2002. The pseudorabies virus UL36 tegument protein physically interacts with the UL37 gene product[J]. J. Virol. 76:3065-3071 .
    [87] Klupp, B. G., H. Granzow, E. Mundt, and T. C. Mettenleiter. 2001. Pseudorabies virus UL37 gene product is involved in secondary envelopment[J]. J. Virol. 75:8927-8936 .
    [88] Poon AP, Gu H, Roizman B. ICPO and the US3 protein kinase of herpes simplex virus 1 independently block histone deacetylation to enable gene expression. Proc Natl Acad Sci U S A. 2006. 103(26): 9993-8.
    [89] Poon APW, Benetti L, Roizman B. US3 and US3.5 Protein Kinases of Herpes Simplex Virus 1 Differ with Respect to Their Functions in Blocking Apoptosis and in Virion Maturation and Egress. J Virol. 2006. 80(8): 3752-3764.
    [90] Michael K, Klupp BG, Mettenleiter TC, Karger A. Composition of pseudorabies virus particles lacking tegument protein US3, UL47, or UL49 or envelope glycoprotein E. J Virol. 2006. 80(3): 1332-9.
    [91] Matsuzaki A, Yamauchi Y, Kato A, et al. US3 protein kinase of herpes simplex virus type 2 is required for the stability of the UL46-encoded tegument protein and its association with virus particles. J Gen Virol. 2005. 86(Pt 7): 1979-85.
    [92] Valderrama, F., Cordeiro, J. V., Schleich, S., Frischknecht, F., Way, M., 2006. Vaccinia virus-induced cell motility requires F11L-mediated inhibition of RhoA signaling[J]. Science 311, 377-381 .
    [93] Bustelo, X. R., Sauzeau, V., Berenjeno, I. M., 2007. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo[J]. Bioessays 29(4), 356-370 .
    [94] Baines, J. D., P. L. Ward, G. Campadelli-Fiume, and B. Roizman. 1991. The UL20 gene of herpes simplex virus 1 encodes a function necessary for viral egress[J]. J. Virol. 65:6414-6424 .
    [95] Poon AP, Roizman B. Mapping of key functions of the herpes simplex virus 1 U(S)3 protein kinase: the U(S)3 protein can form functional heteromultimeric structures derived from overlapping truncated polypeptides. J Virol. 2007. 81(4): 1980-9.
    [96] Daikoku T, Kurachi R, Tsurumi T, Nishiyama Y. Identification of a target protein of US3 protein kinase of herpes simplex virus type 2. J Gen Virol. 1994. 75 ( Pt 8): 2065-8.
    [97] Murata T, Goshima F, Nishizawa Y, et al. Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol Immunol. 2002. 46(10): 707-19.
    [98] Kato A, Yamamoto M, Ohno T, Kodaira H, Nishiyama Y, Kawaguchi Y. Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1. J Virol. 2005. 79(14): 9325-31.
    [99] Brandimarti, R., and B. Roizman. US9, a stable lysine-less herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes[J]. Proc. Natl. Acad. Sci. USA, 1997, 94:13973-13978.
    [100] Nishiyama, Y., R. Kurachi, T. Daikoku, and K. Umene. The US9, 10, 11, and 12 genes of herpes simplex virus type 1 are of no importance for its neurovirulence and latency in mice[J]. Virology, 1993, 194:419-423 .
    [101] Shao, L., L. M. Rapp, and S. K. Weller. Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus[J]. Virology, 1993, 196:146-162 .
    [102] Mou F, Forest T, Baines JD. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol. 2007. 81(12): 6459-70.
    [103] Scott, E., and P. O' Hare. Fate of the inner nuclear membrane protein lamin B receptor and nuclear lamins in herpes simplex virus type 1 infection[J]. J. Virol., 2001, 75:8818-8830 .
    [104] Muranyi, W., J. Haas, M. Wagner, and U. H. Koszinowski. 2002. Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 287:854-856 .
    [105] Nikolakaki, E., J. Meier, G. Simos, S. D. Georgatos, and T. Giannakouros. Mitotic phosphorylation of the lamin B receptor by a serine/arginine kinase and p34cdc2[J]. J. Biol. Chem., 1997, 272:6208-6213 .
    [106] Nikolakaki, E., G. Simos, S. D. Georgatos, and T. Giannakouros. A nuclear envelope-associated kinase phosphorylates arginine-serine motifs and modulates interactions between the lamin B receptor and other nuclear proteins[J]. J. Biol. Chem., 1996, 271:8365-8372.
    [107] Courvalin, J. C., N. Segil, G. Blobel, and H. J. Worman. 1992. The lamin B receptor of the inner nuclear membrane undergoes mitosis specific phosphorylation and is a substrate for the p34cdc2-type protein kinase [J]. J. Biol. Chem., 267:19035-19038.
    [108] Morris JB, Hofemeister H, O'Hare P. Herpes simplex virus infection induces phosphorylation and delocalization of emerin, a key inner nuclear membrane protein. J Virol. 2007. 81 (9): 4429-37.
    [109] Leach N, Bjerke SL, Christensen DK, et al. Emerin is hyperphosphorylated and redistributed in herpes simplex virus type 1-infected cells in a manner dependent on both UL34 and US3. J Virol. 2007. 81(19): 10792-803.
    
    [110] Bruni R, Fineschi B, Ogle WO, Roizman B. A novel cellular protein, p60, interacting with both herpes simplex virus 1 regulatory proteins ICP22 and ICP0 is modified in a cell-type-specific manner and Is recruited to the nucleus after infection. J Virol. 1999. 73(5): 3810-7.
    
    [111] Carter KL, Roizman B. The promoter and transcriptional unit of a novel herpes simplex virus 1 alpha gene are contained in, and encode a protein in frame with, the open reading frame of the alpha 22 gene. J Virol. 1996. 70(1): 172-8.
    
    [112] Smith-Donald BA, Roizman B. The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. J Virol. 2008. 82(9): 4533-43.
    
    [113] Kurachi R, Daikoku T, Tsurumi T, Maeno K, Nishiyama Y, Kurata T. The pathogenicity of a US3 protein kinase-deficient mutant of herpes simplex virus type 2 in mice. Arch Virol. 1993. 133(3-4): 259-73.
    [114] Geenen K, Favoreel HW, Nauwynck HJ. Cell type-specific resistance of trigeminal ganglion neurons towards apoptotic stimuli. Vet Microbiol. 2006. 113(3-4): 223-9.
    [115] Simmons, A. & Tscharke, D. C. (1992). Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons[J]. J Exp Med 175, 1337 - 1344 .
    [116] Perng, G.-C., Jones, C., Ciacci-Zanelle, J. & 8 other authors (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript[J]. Science 287, 1500-1503 .
    [117] Geiger, K. D., Gurushanthaiah, D., Howes, E. L., Lewandowski, G. A., Reed, J. C., Bloom, F. E. & Sarvetnick, N. E. (1995). Cytokinemediated survival from lethal herpes simplex virus infection: role of programmed neuronal death [J]. Proc Natl Acad Sci U S A 92,3411-3415 .
    [118] Aleman, N., Quiroga, M. I., Lo' pez-Pena, M., Va' squez, S., Guerrero, F. H. &Nieto, J. M. (2001). Induction and inhibition of apoptosis by pseudorabies virus in the trigeminal ganglion during acute infection of swine [J]. J Virol 75, 469-479 .
    [119] Geenen K, Favoreel HW, Nauwynck HJ. Higher resistance of porcine trigeminal ganglion neurons towards pseudorabies virus-induced cell death compared with other porcine cell types in vitro. J Gen Virol. 2005. 86 (Pt 5): 1251-60.
    [120] Preston, C. M. (2000). Repression of viral transcription during herpes simplex virus latency [J]. J Gen Virol 81, 1 - 19 .
    [121] Tomishima, M. J., Smith, G. A. & Enquist, L. W. (2001). Sorting and transport of alpha herpes viruses in axons[J]. Traffic 2, 429-436 .
    [122] Smith, G. A., Pomeranz, L., Gross, S. P. & Enquist, L. W. (2004). Local modulation of plus-end transport targets herpes virus entry and egress in sensory axons[J]. Proc Natl Acad Sci USA 101, 16034-16039 .
    [123] Bearer, E. L., Breakefield, X. O., Schuback, D., Reese, T. S. & LaVail, J. H. (2000). Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument[J]. Proc Natl Acad Sci U S A 97, 8146-8150 .
    [124] Aubert M, Blaho JA. Modulation of apoptosis during herpes simplex virus infection in human cells. Microbes Infect. 2001. 3(10): 859-66.
    [125] Nash AA (2000) T cells and the regulation of herpes simplex virus latency and reactivation[J]. J. Exp. Med. 191: 1455-1457 .
    [126] Dahershia M, Feldman LT and Rouse BT (1998) Herpes virus latency and the immune response[J]. Curr. Opin. Microbiol. 1: 430-435 .
    [127] Simmons A and Tscharke DC (1992) Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implication for the fate of virally infected neurons[J]. J. Exp. Med. 175: 1337 -1344 .
    [128] ShimeldC, Whiteland JL, Nicholls SM, Grinfeld E, Easty DL, Gao H and Hill TJ (1995) Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex type-l[J]. J. Neuroimmunol. 61:7-16 .
    [129] Liu T, Khanna KM, Chen X, Fink DJ and Hendrix RL (2000) CD81T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons[J]. J. Exp. Med. 191: 1459 -1466 .
    [130] Kagi D, Ledermann B, Burki K, Zinkernagel RM and Hengartner H (1996) Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo [J]. Ann. Rev. Immunol. 14:207-232.
    [131]Atkinson EA and BleackleyRC (1995) Mechanisms of lysis by cytotoxic T cells[J]. Crit. Rev. Immunol. 15: 359-384 .
    [132] Jerome, K. R., J. F. Tait, D. M. Koelle, and L. Corey. Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis[J]. J. Virol. 1998, 72:436-441 .
    [133] Jerome KR, Tait JF, Koelle DM and Corey L (1998) Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis[J]. J. Virol. 72: 436-441 .
    [134] Yamamoto M, Kurachi R, Morishima T, Kito J, Nishiyama Y. Immunohistochemical studies on the transneuronal spread of virulent herpes simplex virus type 2 and its US3 protein kinase-deficient mutant after ocular inoculation. Microbiol Immunol. 1996. 40(4): 289-94.
    [135] Aubert M, Krantz EM, Jerome KR. Herpes simplex virus genes Us3, Us5, and Us12 differentially regulate cytotoxic T lymphocyte-induced cytotoxicity. Viral Immunol. 2006. 19(3): 391-408.
    [136] Piroozmand A, Koyama AH, Shimada Y, Fujita M, Arakawa T, Adachi A. Role of Us3 gene of herpes simplex virus type 1 for resistance to interferon. Int J Mol Med. 2004. 14(4): 641-5.
    [137] Irie H, Kiyoshi A, Koyama AH. A role for apoptosis induced by acute herpes simplex virus infection in mice. Int Rev Immunol. 2004. 23(1-2): 173-85.
    [138] Ng TI, Ogle WO, Roizman B. UL13 protein kinase of herpes simplex virus 1 complexes with glycoprotein E and mediates the phosphorylation of the viral Fc receptor: glycoproteins E and I. Virology. 1998. 241(1): 37-48.
    [139] Meignier B, Longnecker R, Mavromara-Nazos P, Sears AE and Roizman B (1988) Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1[J]. Virology 162: 251-254 .
    [140] Olsen LM, Ch'ng TH, Card JP, Enquist LW. Role of pseudorabies virus Us3 protein kinase during neuronal infection. J Virol. 2006. 80(13): 6387-98.
    [141] Moffat JF, Zerboni L, Sommer MH, et al. The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci U S A. 1998. 95(20): 11969-74.
    [142] Coller KE, Smith GA. Two viral kinases are required for sustained long distance axon transport of a neuroinvasive herpesvirus. Traffic. 2008. 9(9): 1458-70.
    [143] Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A Basic biological phenomenon with wide granging implications in tissues kinetics[J]. Br J Cancer, 19 71,26:239-2 .
    [144] Harwood SM, Yagoob MM and Allen DA. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis[J]. Ann Clin Biochem. 2005,42(6): 415-31 .
    [145] Bumiston JG, Ellison GM, Clark WA, et al. Relative toxicity of cardiotonic agents: some induce more cardiac and skeletal myocyte apoptosis and necrosis in vivo than others[J]. Cardiovasc Toxicol, 2005, 5(4): 355-64 .
    [146] Wyllie All, Kerr JF, Currie AR. Cell death: the significance of apoptosis [J]. Int Rev Cytol 1980, 68: 251-306 .
    
    [147] Cummings MC. Wmterford CM and Walker NI. Apoptosis[J]. Am J Surg Pathol, 1997, 21:88-101 .
    [148] Gerschenson LE, Rotello RJ. Apoptosis:a diferent type of cell death[J]. J FASEB J, 1992,6:2450-245 .
    [149] Hetts SW. To die or not die: an overview of apoptosis and its role in disease[J]. JAMA, 1998,279:300-30 .
    [150] Sgonc R, Wick G. Methods for the detection of apoptosis[J].Int Arch Allergy Immunol,1994,105:327-337 .
    [151] Fang M, Zhang H, Xue S, Li N, Wang L. Intracellular calcium distribution in apoptosis of HL-60 cells induced by harringtonine: intranuclear accumulation and regionalization. Cancer Lett. 1998. 127(1-2): 113-21.
    [152] Fan M, Zhang HQ, Xue SB. Differential effects of Ca2+ and Mg2+ on endonuclease activation in isolated promyelocytic HL-60 cell nucli [J]. Science in China(c), 1998, 41:351-359 .
    [153] Orrenius S. Apoptosis: molecular mechanisms and implication for human disease[J]. J Inter Med, 1995,237:529-53 .
    [154] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation[J]. Science 1998, 281(5381): 1305-1308 .
    [155] Hatano E, Bradham CA, Stark A et al.The mitochondrial permeability transition augments Fas-induced apoptosis in mouse hepatocytes[J]. J. Biol. Chem. 2000, 275(16): 11814-11823 .
    [156] Yuan J, Yankner BA. Apoptosis in the nervous system[J]. Nature, 2000, 40(6805): 802—809 .
    [157]Creagh EM,Conroy H,Martln SJ.Caspase activation pathways in apoptosis and immunity[J].Inununol.Rev.,2003,193:10-21.
    [158]Li H,Zhu H,Xu CJ,et al.Cleavage of Bid by caspase-8 mediates mitochondrial damage in the Fas pathway of apoptosis[J].Cell,1998,94:491-501.
    [159]Gupta S.Molecular signaling in death receptor and mitochondrial pathways of apoptosis (Review)[J].Int J Oncol,2003,22(1):15-20.
    [160]Degterev A,Boyce M,Yuan J.A decade of caspases[J].Oncogene,2003,22(53):8543-8567.
    [161]Baud V,Karin M.Signal transduction by tumor necrosis factor and its relatives[J].Trends Cell.Biol.,2001,11(9):372-377.
    [162]Ashkenazi A,Dixit V M.Death receptors:signaling and modulation[J].Science,1998,281:1305-1308.
    [163]Stewart JH,Nguyen DM,Chen GA,Schrump DS.Induction of apoptosis in malignant pleural mesothelioma cells by activation of the Fas(Apo-Ⅰ/CD95) death-signal pathway[J].J Thorac Cardiovasc Surg 2002,123(2):295-302.
    [164]de Oliveira Pinto LM,Garcia S,Lecoeur H,Rapp C,Gougeon ML.Increased sensitivity of T lymphocytes to tumor necrosis factor receptor 1(TNFR1)-and TNFR2-mediated apoptosis in HIV infection:relation to expression of Bcl-2 and active caspase-8 and caspase-3.Blood.2002.99(5):1666-75.
    [165]Sartorins U,Schmitz I,Krammer PH,et al.Molecular mechanisms of death receptor mediated apoptosis[J].Biochem 2001,2(1):20-29.
    [166]Snearwin WL,Harvey NL,Kumar S.Subcelular localization and CARD dependent oligomerization of the death adaptor RAIDD[J].Cell Death Differ 2000,7(21):155-165.
    [167]Yeh WC,Dompa JL,Mccarrach ME,et al.FADD:essential for embryo development and signaling from some,but not all inducer of apoptosis[J].Science,1998,279(5):1954-1958.
    [168]Kuang AA,Diehl GE,Zhang J,et al.FADD is required for DR4- and DR5-mediated apoptosis:lack of trail induced apoptosis in FADD deficied mouse embryonic fibroblasts[J].Biochem Biophys Res Commun,2000,60(1):4119-4147.
    [169]Kim IK,Gupta S.Expression of FRAIl,DR4(TRAIL receptor 1),DR5(TRAIL receptor 2)and TRID(TRAIL receptor 3)genes in muhidrug resistant human acutemyeloidlet,kemia cell lines that overexpression MDR1(HL60/79X) or MRP(HL60/AR)[J].Biochem Biophys Res Commun 2000,277(20):311-316.
    [170]Liu X,Kim CN,Yeng J.Induction of apoptosis program in cell-free extracts,requirement for Derp and cytochrome[J].Cell,1996,86(1):147-157.
    [171]Wallace DC.Mitochondria diseases in manand mouse[J].Science,1999,283(S407):1482-1488.
    [172]Rao RV,Hermel E,Castro-Obregon S,et al.Coupling endoplasmic retivulum stress to the cell death program mechanism of caspase activation[J].J Biol Chem,2001,276(36):33869-33874.
    [173]Nakamura K,Bossy-Wetzel E,Bums K et al.Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis[J].J Cell Biol,2000,150(4):731-740.
    [174]Mesaeli N,Nakamura K,Zvaritch E,et al.Calreticulin is essential for cardiac development[J].J Cell Biol,1999,144(5):857-868.
    [175]Otlewaki J,Jaskolaki M,Buczek O,et al.Structure-function relationship of serine protease-protein inhibitor interaction[J].Acta Biochemica Polonica,2001,48(2):419-428.
    [176]贾洪,张宁,俞淑文.胰蛋白酶抑制剂研究进展[J].中华医学实践杂志,2003,2(10):891-893.
    [177]Bleackley R C,Heibein J A.Enzymatic control of apoptosis[J].Natural Product Reports,2001,18(4):431-440.
    [178]Muzio M.Signalling by proteolysis:death receptors induce apoptosis[]].Int J Clin Lab Res,1998,28(3):141-147.
    [179]Cohen GM.Caspases:the executioners of apoptosis[J].Biochem J,1997,326:1-11.
    [1803 Earnshaw WC,Martins LM,Kaufmann SH.Mammalian caspases:structure,activation,substrates,and functions during apoptosis[J].Annu Rev Biochem,1999,68:383-424.
    [181]Yang X,Chang HY,Baltimore D.Essential role of CED-4 oligomerization in caspase-3 activation and apoptosis[J].Science,1998,281(5381):1355-1357.
    [1823 Beere HM,Wolf BB,Cain K et al.Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-Ⅰ apoptosome[J].Nat Cell Biol,2000,2(8):469-475.
    [183]Cain C,Miller S,Ahn J,et al.The N terminus of p53 rezulates its dissociation from DNA[J].J Biol Chem,2000,275(51):39944-39953.
    [184]Cain K,Brown DG,Langlais C,et al.Caspase activation involves the formation of aposome,a large(approximately 700kDa) caspase-activating complex.J Biol Chem,1999,274(32):22686-22692.
    [185]Takahashi M,Tajima S,Okada K,et a l.Involvement of bovine leukemia virus in induction and inhibition of apoptosis[J].Microbes and infection,2005,7:19-28.
    [186]Antonsson B.Bax and other pro-apoptotic Bcl-2 family "killer-proteins" and their victim the mitochondrion.Cell Tissue Res.2001.306(3):347-61.
    [187]Scorrano L,Korsmeyer SJ.Mechanisms of cytochrome c release by proapoptotic BCL-2 family members.Biocham Biophys Res Commun.2003.304(3):437-44.
    [188]Desagher,S.,Osen-Sand,A.,Nichols,A.,Eskes,R.,Montessuit,S.,Lauper,S.,Maundrell,K.,Antonsson,B.,Martinou,J.C.,1999.Bidinduced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis[J].J.Cell Biol.144(5),891-901.
    [189]Chittenden,T.,C.Flemington,A.B.Houghton,R.G.Ebb,G.J..Gallo,B.Elangovan,G.Chinnadurai,and R.J.Lutz.1995.A conserved domain in Bak,distinct from BH1 and BH2,mediates cell death and protein binding functions[J].EMBO J.14:5589- 5596.
    [190]Oltvai,Z.N.,C.L.Milliman,and S.J.Korsmeyer.1993.Bcl-2 heterodimerizes in vivo with a conserved homolog,Bax,that accelerates programmed cell death[J].Cell 74:609-619.
    [191]Yin,X.M.,Z.N.Oltvai,and S.J.Korsmeyer.1994.BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax[J].Nature 369:272-273.
    [192]Jsujimoto Y,CossmanJ,Jaffe E,et al.Involvement of Bcl-2 gene in human follicularlymphoma[J].Science,1985,228:1440-1443.
    [193]阎水忠,赵晓航,吴昊.细胞凋亡与瘤基因[J].生物化学与生物物理进展,1994,21(3):222-225.
    [194]付永锋,樊廷俊.Bcl-2家族蛋白与细胞凋亡[J].生物化学与生物物理学报,2002,34(4):389-394.
    [195]Adams JM,Cory S.The Bcl-2 protein family arbiters of cell survival[J].Science,1998,281:1306-1322.
    [196]Zimmermann K C,Bonzon C,Green D R.The machinery of programmed cell death[J].Pharmacology & Therapeutics,2001,92(1):57-70.
    [197]Datta SR,Dudek H,Tao X,et al.Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery.Cell.1997.91(2):231-41.
    [198]del Peso,L.,M.Gonzales-Garcia,C.Page,R.Herrera,and G.Nunez.1997.Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt[J].Science 278:687-689.
    [199]Harada,H.,B.Becknell,M.Wilm,M.Mann,L.J.Huang,S.S.Taylor,J.D.Scott,and S.J.Korsmeyer.1999.Phosphorylationand inactivation of BAD by mitochondria-anchored protein kinase A[J].Mol.Cell 3:413-422.
    [200]Scheid,M.P.,and V.Duronio.1998.Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/Akt: involvement of MEK upstream of Bad phosphorylation[J]. Proc. Natl. Acad. Sci. USA 95:7439-7444 .
    [201] Tan, Y., H. Ruan, M. R. Demeter, and M. J. Comb. 1999. p90RSK blocks Bad-mediated cell death via a protein kinase C dependent pathway [J]. J. Biol. Chem. 274:34859-34867 .
    [202] Hsu, S. Y., A. Karpia, L. Zhu, and A. J. Hsueh. 1997. Interference of BAD (Bcl-xL/Bcl-2-associated death promoter) induced apoptosis in mammalian cells by 14-3-3 isoforms and P11[J]. Mol. Endocrinol. 11:1858-1867 .
    [203] Pastorino, J. G., M. Tafani, and J. L. Farber. 1998. Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-0H kinase-dependent pathway[J]. J. Biol. Chem. 274:19411-19416 .
    [204] Zha, J., H. Harada, E. Yang, J. Jockel, and S. J. Korsmeyer. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-XL[J]. Cell 87:589-592 .
    [205] Tan, Y., M. R. Demeter, H. Ruan, and M. J. Comb. 2000. BAD ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival [J]. J. Biol. Chem. 275:25865-25869 .
    [206] Zhou, X. M., Y. Liu, G. Payne, R. J. Lutz, and T. Chittenden. 2000. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155[J]. J. Biol. Chem. 275:25046-25051 .
    [207] Datta, S. R., A. Katsov, L. Hu, A. Petros, S. W. Fesik, M. B. Yaffe, and M. E. Greenberg. 2000. 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation[J]. Mol. Cell 6:41-51 .
    [208] Wang, H.-G., N. Pathan, I. M. Ethel, S. Krajewski, Y. Yamaguchi, F. Shibasaki, F. McKeon, T. Bobo, T. F. Franke, and J. C. Reed. 1999. Ca2 -induced apoptosis through calcineurin dephosphorylation of BAD[J]. Science 284:339-343 .
    [209] Salomoni, P., F. Condorelli, S. M. Sweeney, and B. Calabretta. 2000. Versatility of BCR/ABL-expressing leukemic cells in circumventing proapoptotic BAD effects[J]. Blood 96:676-684 .
    [210] Condorelli, F., P. Salomoni, S. Cotteret, V. Cesi, S. M. Srinivasula, E. S. Alnemri, and B. Calabretta. 2001. Caspase cleavage enhances the apoptosisinducing effects of BAD[J]. Mol. Cell. Biol. 21:3025-3036 .
    
    [211] Shen Y, Shenk TE. Viruses and apoptosis. Curr Opin Genet Dev. 1995. 5(1): 105-11.
    [212] B. J. Thomson. Viruses and apoptosis[J]. Int. J. Exp. Pathol. 2001, 82:65-76 .
    [213] Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A. Physiological significance of apoptosis in animal virus infection. Microbes Infect. 2000. 2(9): 1111-7.
    [214] Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science. 1995. 269(5232): 1885-8.
    [215] Xue D, Horvitz HR. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature. 1995. 377(6546): 248-51.
    [216] Chiou SK, Tseng CC, Rao L, White E. Functional complementation of the adenovirus E1B 19-kilodalton protein with Bcl-2 in the inhibition of apoptosis in infected cells. J Virol. 1994. 68(10): 6553-66.
    [217] Cheng EH, Nicholas J, Bellows DS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A. 1997. 94(2): 690-4.
    [218] Bertin, J., R. C. Armstrong, S. Ottilie, D. A. Martin, Y. Wang, S. Banks, G. -H. Wang, T. G. Senkevich, E. S. Alnemri, B. Moss, M. J. Lenardo, K. J. Toniaselli, and J. I. Cohen. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both fas- and TNFR1-induced apoptosis[J]. Proc. Natl. Acad. Sci. USA. 1997, 94:1172-1176.
    [219] Thome, M., P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl, F. Neipel, C. Mattmann, K. Burns, J.-L. Bodmer, M. Schroter, C. Scaffidi, P. H. Krammer, M. E. Peter, and J. Tschopp. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors[J]. Nature 1997, 386:517-521 .
    [220] Leopardi, R., and B. Roizman. 1996. The herpes simplex major regulatory protein 1CP4 blocks apoptosis induced by the virus or hyperthermia[J]. Proc. Natl. Acad. Sci. USA 93:9583-9587 .
    [221] Yu, K., Y., B. Kwon, J. Ni, Y. Zhai, R. Ebner, and B. S. Kwon. 1999. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis[J]. J. Biol. Chem. 274:13733-13736 .
    [222] Fox, C. J. Froelich, and L. Corey. 2001. HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas[J]. J. Immunol. 167:3928-3935 .
    [223] Sieg, S., Z. Yildirim, D. Smith, N. Kayagaki, H. Yagita, Y. Huang, and D.Kaplan. 1996. Herpes simplex virus type 2 inhibition of Fas ligand expression[J]. J. Virol. 70:8747-8751 .
    [224] Koyama, A. H., and Y. Miwa. 1997. Suppression of apoptotic DNA fragmentation in herpes implex virus type 1-infected cells[J]. J. Virol. 71:2567-2571 .
    [225] Calton CM, Randall JA, Adkins MW, Banfield BW. The pseudorabies virus serine/threonine kinase Us3 contains mitochondrial, nuclear and membrane localization signals. Virus Genes. 2004. 29(1): 131-45.
    [226] Murata T, Goshima F, Yamauchi Y, Koshizuka T, Takakuwa H, Nishiyama Y. Herpes simplex virus type 2 US3 blocks apoptosis induced by sorbitol treatment. Microbes Infect. 2002. 4(7): 707-12.
    [227] Galvan, V., R. Brandimarti, J. Munger, and B. Roizman. Bcl-2 blocks a caspase-dependent pathway of apoptosis activated by herpes simplex virus 1 infection in HEp-2 cells[J]. J. Virol. 2000, 74:1931-1938 .
    [228] E Yang, J Zha, J Jockel, LH Boise, CB Thompson, SJ Korsmeyer. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death [J]. Cell, 1995, 80:285-291 .
    [229] J. Zha, H. Harada, E. Yang, J. Jockel, S. J. Korsmeyer. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L)[J]. Cell, 1996, 87:619-628 .
    [230] S. R. Datta, H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery[J]. Cell 1997, 91:231-241 .
    [231] X. Fang, S. Yu, A. Eder, M. Mao, R. C. Bast Jr., D. Boyd, et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway[J]. Oncogene, 1999,18:6635-6640 .
    [232] J. M. Lizcano, N. Morrice, P. Cohen. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155[J]. Biochem. J. 2000, 349:547-57.
    [233] X.M. Zhou, Y. Liu, G. Payne, R. J. Lutz, T. Chittenden. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155[J]. J. Biol. Chem. 2000, 275:25046-25051 .
    [234] Lizcano JM, Morrice N, Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J. 2000. 349(Pt 2): 547-57.
    [235] Tan, Y., Demeter, M. R., Ruan, H., Comb, M. J. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival [J]. J. Biol Chem, 2000, 275 (33):25865 - 25869 .
    [236] Virdee, K., Parone, P. A., Tolkovsky, A.M., 2000. Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contributes to cell survival[J]. Curr. Trends Biol. 10 (18), 1151-1154 .
    [237] Zhou, X.M., Liu, Y., Payne, G., Lutz, R.J., Chittenden, T., 2000. Growth factors inactivate the cell death promoter BAD by phosphorylation of its BH3 domain on Ser155[J]. J. Biol. Chem. 275 (32), 25046- 25051 .
    [238] Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999. 286(5443): 1358-62.
    [239] Fang X, Yu S, Eder A, et al. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene. 1999. 18(48): 6635-40.
    [240] Tzivion, G., Shen, Y. H., Zhu, J., 2001. 14-3-3 Proteins; bringing new definitions to scaffolding[J], Oncogene 20 (44), 6331-6338 .
    [241] Benetti L, Munger J, Roizman B. The herpes simplex virus 1 US3 protein kinase blocks caspase-dependent double cleavage and activation of the proapoptotic protein BAD. J Virol. 2003. 77(11): 6567-73.
    [242] Darmon AJ, Nicholson DW and Bleackley RC (1995) Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B[J]. Nature 377:446-448 .
    [243] Darmon AJ, Ley TJ, Nicholson DW and Bleackley RC (1996) Cleavage of CPP32 by granzyme B represents a critical role for granzyme B in the induction of target cell DNA fragmentation[J]. J. Biol. Chem. 271: 21709-21712 .
    [244] Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M and Lazebnik YA (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis[J]. Nature 376: 37-43 .
    [245] Tewari M, Quan LT, O' Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS and Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase[J]. Cell 81: 801-809 .
    [246] Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA and Trapani JA (2000) Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B-mediated caspase activation[J]. J. Exp. Med. 192: 1403-1414 .
    [247] Heibein JA, Swie Goping I, Barry M, Pinkoski MJ, Shore GC and Green DR (2000) Granzytne-B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Max[J]. J. Exp. Med. 192: 1391 - 1401 .
    [248] Thomas DA, Scorrano L, Putcha GV, Korsmeyer SJ and Ley TJ (2001) Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK[J]. Proc. Natl. Acad. Sci. USA 98: 14985-14990 .
    [249] Desagher S, Osen-Sand A, Montessuit S, Magnenat E, Vilbois F, Hochmann A, Journot L, Antonsson B and Martinou JC (2001) Phosphorylation of Bid by casein kinases I and II regulates its cleavage by caspase 8[J]. Mol. Cell 8: 601-611 .
    [250] McLean, T. I. & Bachenheimer, S. L. (1999) Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication[J]. J. Virol. 73, 8415 ± 8426 .
    [251] Zachos, G., Clements, B. & Conner, J. (1999) Herpes simplex virus type 1 infection stimulates p38/c-June N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1[J]. J. Biol. Chem. 274, 5097±5103 .
    [252] Zanke, B. W., Boudreau, K., Rubie, E., et al. (1996) The stressactivated protein kinase pathway mediates cell death following injury induced by cis-platinum,UV irradiation or heat[J].Curr.Biol.6,606±613.
    [253]Xia,Z.,Dickens,M.,Raingeaud,J.,.Davis,R.J.& Greenberg,M.E.(1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis[J].Science 270,1326±1331.
    [254]Zachos G,Clements B,Conner J.Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1.J Biol Chem.1999.274(8):5097-103.
    [255]McLean TI,Bachenheimer SL.Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication.J Virol.1999.73(10):8415-26.
    [256]Putcha GV,Moulder KL,Golden JP,et al.Induction of BIM,a proapoptotic BH3-only BCL-2 family member,is critical for neuronal apoptosis.Neuron.2001.29(3):615-28.
    [257]J.Whitfield,S.J.Neame,L.Paquet,O.Bernard,J.Ham,Dominantnegntive c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release[J].Neuron,2001,29:629-643.
    [258]I.Mori,Y.Nishiynma,T.Yokochi,Y.Kimura,Virus-induced neuronal apoptosis as pathological and protective responses of the host[J].Roy.Med.Virol.14(2004) 209-216.
    [259]Mori I,Goshima F,Koshizuka T,et al.The US3 protein kinase of herpes simplex virus attenuates the activation of the c-Jun N-terminal protein kinase signal transduction pathway in infected piriform cortex neurons of C57BL/6 mice.Neurosci Lett.2003.351(3):201-5.
    [260]D.Watanabe,T.Honda.K.Nishio,Y.Tomita,Y.Sugiura,Y.Nishiynma,Corneal infection of herpes simplex virus type 2-induced neuronal apoptosis in the brain stem of mice with expression of tumor suppressor gene(p53) and transcription factors,Acta Neuropathol[J].100(2000) 647-653.
    [261]Desagher S,Martinou JC.Mitochondria as the central control point of apoptosis.Trends Cell Biol.2000.10(9):369-77.
    [262]Baudet AERF.Mortality in ducks in the Netherlands caused by a filtrable virus;fowl plague.Tijdschr Diergeneeskd.1923.(50):455-459.
    [263]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第二版)[M].北京:科学技术出版社,1996,17-27,50-55,474-490.
    [264]Tamura K,Dudley J,Nei M,Kumar S.MEGA4:Molecular Evolutionary Genetics Analysis(MEGA)software version 4.0.Molecular Biology and Evolution.2007.24(8):1596-1599.
    [265]Bendtsen JD,Nielsen H,Brunak GvHS.Improved prediction of signal peptides:SignalP 3.0.J Mol Biol.2004.340:783-795.
    [266]Krogh A,Larsson B,yon Heijne G,Sonnhammer ELL.Predicting Transmembrane Protein Topology with a Hidden Markov Model:Application to Complete Genomes.J Mol Biol.2001.305:567-580.
    [267]Cuff JA,Barton GJ.Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.PROTEINS:Structure,Function and Genetics.1999.34:508-519.
    [268]Arnold K,Bordoli L,Kopp J,Schwede T.The SWISS-MODEL Workspace:A web-based environment for protein structure homology modelling.Bioinformatics.2006.22:195-201.
    [269]Eisenberg D,Luthy R,J.U.Bowie.VERIFY3D:assessment of protein models with three-dimensional profiles.Methods Enzymol.1997.277:396-404.
    [270]Melo F,Feytmans E.Assessing protein structures with a non-local atomic interaction energy.J Mol Biol.1998.277(5):1141-1152.
    [271]Cristobal S,Zemla A,Fischer D,Rychlewski L,Elofsson A.A study of quality measures for protein threading models.BMC Bioinformatics.2001.2:5.
    [272]Guex N,Peitsch MC.SWISS-MODELand the Swiss-PdbViewer:An environment for comparative protein modeling.Electrophoresis.1997.18:2714-2723.
    [273]程安春,汪铭书,文明等.鸭病毒性肠炎病毒基因文库的构建及其核衣壳蛋白基因的发现、克隆与鉴定.高技术通讯.2006.16(9):948-953.
    [274]Johnson MA,Tyack SG.Molecular evolution of infectious laryngotracheitis virus(ILTV;gallid herpesvirus 1):An ancient example of the Alphaherpesviridae.Veterinary Microbiology.1995.46:221-231.
    [275]Liu S,Chen S,Li H,Kong X.Molecular characterization of the herpes simplex virus 1(HSV-Ⅰ)homologues,UL25 to UL30,in duck enteritis virus(DEV).Gene.2007.401:88-96.
    [276]Liu F,Ma B,Zhao Y,et al.Characterization of the gene encoding glycoprotein C of duck enteritis virus.Virus Genes.2008.37(3):328-332.
    [277]Zhao LC,Chang AC,Wang MS,et al.Identification and characterization of duck enteritis virus dUTPase gene.Avian Dis.2008.52(2):324-31.
    [278]Davidson I,Silva RF.Creation of diversity in the animal virus world by inter-species and intra-species recombinations:lessons learned from poultry viruses.Virus Genes.2008.36:1-9.
    [279]Ehlers B,Goltz M,Ejercito MP,Dasika GK,Letchworth GJ.Bovine Herpesvirus Type 2 is Closely Related to the Primate A1phaherpesviruses.Virus Genes.1999.19(3):197-203.
    [280]Ficarro,S.B.,McCleland,M.L.,Stukenberg,P.T.et al.Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae[J].Nature Biotechnology,2002,20(3):301-305.
    [281]Krupa,A.,Preethi,G.,Srinivasan,N.Structural modes of stabilization of permissive phosphorylation sites in protein kinases:distinct strategies in Ser/Thrand Tyr kinases[J].J.Mol.Biol.,2004,339:1025-1039.
    [282]Hu J.,Guo Y.,Li Y.Research progress in protein post-translational modification[J].Chinese Science Bulletin,2006,51:6633-6645.
    [283]Knighton DR,Zheng JH,Eyck LFT,et al.Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase.Science.1991.253(5018):407-414.
    [284]Larry,H.S.,Martin,V.,Hector J.S.one-step purification of mouse monoclonal antibodies from ascites fluid by hydroxylapatite chromotography[J].Journal of immunological Methods,1985,76:157.
    [285]谭卫峰,陈丽阳.高压修复与微波修复在免疫组织化学中的应用比较[J].现代中西医结合杂志,2008,17(28):4449-4450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700