用户名: 密码: 验证码:
隧道管棚预支护体系的力学机理与开挖面稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在软弱破碎地层中修建山岭隧道,或采用浅埋暗挖法修筑城市地铁隧道时,为了防止隧道发生塌方、有效控制地表沉降,并全面保证围岩处于稳定状态,常采用一些辅助措施对围岩进行预支护。管棚预支护是其中广泛使用的一种隧道顶部预支护措施。该技术是在拟开挖的隧道外周边钻设水平孔,然后安装钢管,再进行灌浆固结,使拱顶形成加固的伞形保护环,在该保护环的支撑下,进行循环掘进和支护施工。该技术能同时提高隧道周边围岩的强度及抗渗性能,从而保证隧道的安全施工。本文以隧道施工过程中管棚的力学机理及管棚预支护条件下隧道开挖面的稳定性为研究对象,利用理论分析、数值模拟、现场试验等多种研究手段,得到一些直接应用于工程实践或供理论参考的研究成果。主要研究内容如下:
     (1)借鉴隧道围岩压力确定方法的合理观点,综合考虑了隧道埋深、围岩条件、开挖条件以及管棚作为临时支护结构的特点等因素,分别推导了深、浅埋隧道管棚受力荷载的计算公式,并基于Pasternak弹性地基梁理论建立了管棚的力学分析模型。以二郎山隧道为工程实例,分别采用Winkler模型和Pasternak模型对隧道施工过程中管棚的力学行为进行计算,并将理论计算结果与现场测试结果进行比较。对比分析表明:在开挖面附近,Pasternak模型较Winkler模型的计算结果与现场测试结果吻合更好,但随着距开挖面距离越来越远,理论计算曲线较现场测试曲线衰减的更快。管棚的设计参数分析表明:管棚长度及钢管直径均存在最佳值。
     (2)采用三维弹塑性有限元分析软件对乔庄隧道入口管棚预支护段的施工过程进行数值模拟,并在隧道施工过程中,进行了现场量测试验。通过数值模拟,重点分析了隧道开挖过程中管棚、隧道围岩及支护结构的受力与变形特征,并对管棚预支护条件下隧道开挖面的稳定性进行了评价。通过现场量测试验,得到了钢支撑、喷射混凝土和二次衬砌等支护构件的受力和地表沉降及围岩位移收敛状况。有限元计算结果与现场实测结果吻合较好,说明采用现场动态监控量测与有限元仿真模拟相结合的方法,可为管棚预支护条件下隧道的设计和施工提供科学依据和技术指导。
     (3)将塑性极限分析上限定理与强度折减技术相结合,建立了隧道开挖面三维稳定性分析模型,经算例分析验证了其合理性;在此基础上,改进力学模型应用于管棚预支护条件下隧道开挖面稳定性分析及考虑渗流力的管棚预支护条件下隧道开挖面稳定性分析,由此确定开挖面稳定系数及其相应的潜在破坏模式,对隧道开挖面的稳定性进行定量的描述。分析渗流力及管棚预支护对开挖面稳定性的影响,并对隧道埋深、地下水位、隧道洞径及围岩条件等影响开挖面稳定的因素进行讨论。研究表明:渗流力严重影响开挖面的稳定性,采用管棚预支护技术可以有效地减小隧道开挖面渗流力,但不考虑渗流力时,管棚预支护技术对提高开挖面稳定性的效果并不明显。
     (4)基于三维弹塑性有限元方法对隧道开挖面正面预支护及管棚预支护进行了参数分析。研究了有无管棚预支护条件下不同核心土长度、不同台阶长度、不同开挖步距、不同管棚布置方式以及在有无地下水情况下,不同管棚预支护长度、不同地下水位时,隧道开挖对管棚力学行为、地层沉降及开挖面稳定性的影响。总结一些规律性的认识,为复杂地质条件下隧道施工及管棚预支护设计提供一定参考。
     (5)采用三维弹塑性有限元数值模拟方法,研究管棚预支护条件下隧道开挖面极限支护力;以不同工况下地层参数及其极限支护压力比作为样本,待BP神经网络训练完毕后,即可预测大量给定地层参数工况下的开挖面极限支护压力比,对其进行统计,得到概率分布特征;在理论分析的基础上,结合工程实际,建立了管棚预支护条件下隧道开挖面稳定的极限状态方程,运用粒子群优化算法,对其进行可靠度分析。本文除能科学合理的评价管棚预支护条件下开挖面的稳定程度外,对软弱围岩条件下,隧道开挖面正面预支护措施的合理设计与选择也具有一定的参考作用。
In order to prevent tunnel collapse, restrain ground movement and control ground surface settlement when tunnels would be constructed in soft or weak geology stratum, several pre-reinforcement methods of heading have been developed. One of such methods is the pipe roof reinforcement method. This method consists on installing, prior to the excavation of a length of tunnel, a series of pipes, either parallel to the tunnel axis or at a certain angle with it. By injecting grout through the pipes, the ground in between the pipes is stiffened and the pipes are connected, creating a kind of 'umbrella' above the area to be excavated. This technique combines the advantages of the modern fore poling system with the grouting injection method. In other words, the improvement of the mechanical characteristics and the impermeability of the ground around the tunnel can be achieved simultaneously. Taking the mechanism of pipe roof reinforcement and the tunnel face stability as the objects to be investigated, using theoretical analysis, numerical simulation, field tests and other research tools, a series of results were obtained.
     (1) Based on the predecessors surrounding rock pressure calculating method, the equations for pipe roof reinforcement loading were proposed according to Terzaghi theory. Compared with the traditional theory, it can more reasonably describe the effects of the tunnel cover depth, the geological conditions and manners of excavation on the surrounding rock pressure.Considering the delay effect of initial lining, an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. With the example of Erlangshan tunnel excavation, the comparison of the values of longitudinal strain of reinforcing pipe between field monitoring and analytical approach was made. The results indicate that although Pasternak model gives more accurate calculation and agree better with the result of field monitoring at tuunel face than Winkler model, the general trend of decreasing longitudinal strain with increasing distance from the tunnel face for analytical approach and field monitoring are different. A systematic parameter study was conducted to study the effects of important design parameters such as the pipe diameter, pipe length, and overlap length on the mechanical behavior of pipe roof reinforcement. The findings illustrate that there exists a critical value of each reinforcement parameter, with these critical values, the maximum reinforcing effect can be achieved.
     (2) A three-dimensional elasto-plastic finite element code was employed to simulate the interaction between tunnel excavation and pipe roof in entrance of Qiaozhuang Tunnel. And the convergence deformations of surrounding rocks, the stresses of I-steel supporting, shotcrete and secondary lining were obtained by field test. The mechanical behaviours and deformation characteristics of pipe roof reinforcement, surrounding rock and tunnel lining were individually analyzed in tunnel excavation, and the effect of pipe roof reinforcement on tunnel face stability was also evaluated. The simulated results were compared with field test results, it is verified that not only the field test but also the finite element method be important for successful construction of the tunnel with pipe roof reinforcement.
     (3) Based on the kinematic method of limit analysis and the shear strength reduction technique, a three-dimensional model for expressing the tunnel face stability was established and was employed to define the safety factor and its corresponding critical failure mechanism for a given tunnel. For a typical example, the solutions computed by the proposed approach are compared with the results given by wedge model, trapezoid wedge model and centrifugal-model test to verify the reasonability of the method. Furthermore, by modifying the mechanics model, the complicated conditions such as tunnel with pipe roof reinforcement and underwater tunnel with pipe roof reinforcement were respectively considered. And the effects of pipe roof reinforcement and seepage force on tunnel face stability were individually examined. The proposed approach was also employed to study how cover depth of tunnel, groundwater level, tunnel diameter and soil parameters affect the tunnel face stability. The studies revealed that the existence of groundwater may seriously affect the tunnel face stability, and there was a relatively large reduction in the seepage pressure by adopting the pipe roof reinforcement technique, but in dry condition, the effect of pipe roof reinforcement on tunnel face stability is not significant.
     (4) Based on three-dimensional elasto-plastic finite element method, the design parameters of pipe roof reinforcement were analyzed. The effect of the length of bench and core soil, excavation length, length of steel pipe, underwater level and arrangement of pipe roof reinforcement on the squeezing of tunnel working face, the displacement ahead of the face and mechanical behaviours of pipe roof reinforcement are analyzed. Some valuable conclusions for the construction of tunnel with pre-reinforcement were proposed.
     (5) The limit support pressure at tunnel face was studied by elasto-plastic finite element method. First, BP neural net work was trained with parameters of surrounding rock and ratio of limit support pressure of tunnel face as training samples. After training, the net work can predict ratio of limit support pressure when lots of parameters were imported. The statistics character of ratio of limit support pressure was gained. Limit state function of face stability of tunnel with pipe roof reinforcement was established, and reliability was solved with the particle swarm optimization. Using this method, not only stability of tunnel face can be appraised rationally, but also it was reference to select pre-reinforcement technique rightly.
引文
[1]耿永常.地下空间建筑与防护结构[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [2]王梦恕.21世纪我国隧道及地下空间发展的探讨[J].铁道科学与工程学报,2004,1(1):7-9.
    [3]关宝树.隧道施工的技术特性、理念及其发展[J].铁道建筑技术,2003,3:1-6.
    [4]关宝树.隧道施工的技术特性、理念及其发展[J].铁道建筑技术,2003,4:1-5.
    [5]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2005.
    [6]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [7]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [8]冯卫星,况勇,陈建军.隧道坍方案例分析[M].成都:西南交通大学出版社,2002.
    [9]周顺华,董新平.管棚工法的计算原理及其应用[M].上海:同济大学出版社,2007.
    [10]IBRAHIM O.Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro[J].Tunnelling and Underground Space Technology,2008,23(6):674-681.
    [11]MIWA M,OGASAWARA M.Tunneling through an embankment using all ground fasten method[J].Tunneling and Underground Space Technology,2005,20(2):121-127.
    [12]杨明举.浅埋偏压隧道地表预加固及施工影响分析[J].公路,2008,10:270-272.
    [13]张明聚,张斌,黄明琦,等.厦门翔安隧道穿越风化深槽施工效应及技术措施[J].北京工业大学学报,2008,34(2):155-158.
    [14]姜子良.国道306线经棚隧道穿越风积砂地层的综合施工技术探讨[J].水利与建筑工程学报,2008,6(4):67-73.
    [15]安刘生.隧道洞口施工地表预加固技术及应用[J].北京工业大学学报,2007,33(3):278-282.
    [16]周顺华,张先锋,佘才高,等.南京地铁软流塑地层浅埋暗挖法施工技术的探讨[J].岩石力学与工程学报,2005,24(3):526-531.
    [17]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报.2005,24(10):1728-1734.
    [18]陈宇,曾建雄,刘建国,等.既有公路下超浅埋软弱土层四车道隧道施工技术研究[J].铁道标准设计,2005,10:89-92.
    [19]周希圣,习哲,罗志阳,等.南京地铁1#线隧道典型区间施工技术[J].岩石力学与工程学报,2004,23(20):3523-3528.
    [20]郑战清.高速公路超浅埋下穿318国道施工技术[J].隧道建设,2005,25(4):29-33.
    [21]黎荐.高速公路隧道浅埋段特大塌方的综合处置技术[J].地下空间与工程学报,2008,4(3):591-594.
    [22]李力.粉细砂地层大跨浅埋隧道注浆管棚数值分析[J].隧道建设,2008,28(6):656-659.
    [23]饶为国.管棚-大断面箱涵暗顶技术在下穿公路工程中的应用及分析[J].土木工程学报,2008,41(4):106-111.
    [24]夏才初,龚建伍,陈佑新,等.滑行道下超长管棚-箱涵顶进地表沉降分析[J].岩石力学与工程学报,2008,27(4):676-702.
    [25]苟德明,阳军生,张戈,等.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [26]HISATAKE M,OHNO S.Effects of pipe roof supports and the excavation method on the displacements abovea tunnel face[J].Tunnelling and Underground Space Technology,2008,23(2):120-127.
    [27]SHIN J H,CHOI Y K,KWON O Y,et al.Model testing for pipe-reinforced tunnel heading in a granular soil[J].Tunnelling and Underground Space Technology 2008,23(3):241-250.
    [28]KAMATA H,MASHIMO H.Centrifuge model test of tunnel face reinforcement by bolting[J].Tunnelling and Underground Space Technology,2003,18(2):205-212.
    [29]YOO C S.Finite-element analysis of tunnel face reinforced by longitudinal pipes[J].Computers and Geotechnics,2002,29(1):73-94.
    [30]BAE G J,SHIN H S,SICILIA C,et al.Homogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunnelling[J].International Journal for Numerical and Analytical Methods in Geomechanics 2005,29:1-24.
    [31]董新平,彭中和.浅埋地下工程管棚法施工中合理管棚直径分析[J].岩土工程学报,2007,29(9):1355-1360.
    [32]毕俊丽,刘保国,刘昌林.浅埋双连拱隧道进洞口管棚预支护参数分析[J].隧道建设,2008,28(4):438-444.
    [33]刘文彬,刘宝国,王伟锋,等.Pipe shield effect analysis of double-arched tunnel under unsymmetrical pressures[J].岩石力学与工程学报,2007,26(s2):3704-3710.
    [34]张明聚,江一帆,潘庆明,等.采用双参数地基模型分析管棚变形及内力特征[J].北京工业大学学报,2008,34(9):938-943.
    [35]PEILA D,ORESTE P P,PELIZZA S,et al.Study of the influence of sub-horizontal fiber-glass pipes on the stability of a tunnel face[C].Proc.Int.Conf.on North American Tunnelling 1996,Washington DC 1,425 - 431.
    [36]PEILA D.A theoretical study of reinforcement influence on the stability of a tunnel face[J].Geotechnical and Geological Engineering,1994,12:145 - 168.
    [37]王梦恕.北京地铁浅埋暗挖施工法[J].岩石力学与工程学报,1989,8(1):52-62.
    [38]黄成光.公路隧道施工[M].北京:人民交通出版社,2001.
    [39]关宝树.隧道及地下工程专题技术-辅助工法概论[M].成都:西南交通大学出版社,1998.
    [40]HSIAO F Y,WANG C L,CHERN J C.Numerical simulation of rock deformation for support design in tunnel intersection area[J].Tunnelling and Underground Space Technology,2009,24(1):14-21.
    [41]FUNATSU T,HOSHINO T,SAWAE H,et al.Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the.distinct element method[J].Tunnelling and Underground Space Technology,2008,23(5):561-573.
    [42]LEE Y Z,SCHUBERT W.Determination of the round length for tunnel excavation in weak rock[J].Tunnelling and Underground Space Technology,2008,23(3):221-231.
    [43]VAROL A,DALGIC S.Grouting applications in-the Istanbul metro,Turkey[J].Tunnelling and Underground Space Technology 2006,21(6):602-612.
    [44]BASARIR H.Engineering geological studies and tunnel support design at Sulakyurt dam site,Turkey[J].Engineering Geology,2006,86(4):225-237.
    [45]BASARIR H,OZSAN A,KARAKUS M.Analysis of support requirements for a shallow diversion tunnel at Guledar-dam site,Turkey[J].Engineering Geology,2005,81(2):131-145.
    [46]KAVVADAS M J.Monitoring ground deformation in tunnelling:Current practice in transportation tunnels[J].Engineering Geology,2005,79(1-2):93-113.
    [47]AYDIN A,OZBEK A,COBANOGLU I.Tunnelling in difficult ground:a case study from Dranaz tunnel,Sinop,Turkey[J].Engineering Geology,2004,74(3-4):293-301.
    [48]DARRAG A A.Ground stabilization for tunnel construction in mixed-face conditions[J].Tunnelling and Underground Space Technology,1999,14(3):319-326.
    [49]吴波,高波,骆建军.地铁区间隧道水平旋喷预加固效果数值模拟[J].西南交通大学学报,2004,39(5):605-608.
    [50]孙星亮,王海珍.水平旋喷固结体力学性能试验及分析[J].岩石力学与工程学报,2003,22(10):1695-1698.
    [51]孙星亮,景诗庭.水平钻孔旋喷注浆加固地层效果研究[J].岩石力学与工程学报,1998,17(5):589-593.
    [523 NIKBAKHTAN B,OSANLOO M.Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(3):498-505.
    [53]COULTER S,MARTIN C D.Effect of jet-grouting on surface settlements above the Aeschertunnel,Switzerland[J].Tunnelling and Underground Space Technology,2006,21(5):542-553.
    [54]王秀英,张鍼,吕和林,等.机械预切槽法开挖软土隧道地层变形研究[J].岩土力学,2005,26(1):140-144.
    [55]BOUGARD J F.Mechanical pre-cutting method[J].Tunnelling and Underground Space Technology,1988,3(2):163-167.
    [56]李远宁,段玉刚,吴胜.浅埋软弱地层隧道旋喷预衬砌支护技术的研究[J].探矿工程(岩土钻掘工程),2001,5:58-61.
    [57]雷军,白明洲,许兆义,等.地铁隧道施工期冻结法穿越断层破碎带施工效果现场试验研究[J].岩石力学与工程学报,2008,27(7):1492-1498.
    [58]岳丰田,仇培云,杨国祥,等.复杂条件下隧道联络通道冻结施工设计与实践[J].岩土工程学报,2006,28(5):660-663.
    [59]徐利锋.小导管超前注浆法在通过隧道塌方段施工中的应用[J].铁道建筑,2002,2:5-7.
    [60]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].长沙:中南大学,2005.
    [61]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005,24(14):2565-2570.
    [62]苟德明.既有公路下连拱隧道管棚变形测试与作用机理研究[D].长沙:长沙理工大学,2007.
    [63]关宝树,杨其新.地下工程管棚法[M].成都:西南交通大学出版社,1996
    [64]TAN W L,RANJITH P G.Numerical analysis of pipe roof reinforcement in soft ground tunneling[C].In proceedings of the 16th International Conference on Engineering Mechanics,2003,ASCE,Seattle,USA.
    [65]MUSSO G.Jacked pipe provides roof for underground construction in busy urban area[J].Civil Engineering-ASCE,1979,49(11):79-82.
    [66]RHODES G W and EAUSCHINGER J L.Microtunnelling provides structural support for large tunnels with shallow cover[C]// North American Tunneling,Balkema,Rotterdam.1996,443-449.
    [67]SATOH S,FURUYAMA S,MURAI Y.Construction of a subway tunnel just beneath a conventional railway by means of a large-diameter long pipe-roof methodiC]// North American Tunneling,Balkema,Rotterdam,1996,473-481.
    [68]董新平,周顺华.管棚法在东部城市软弱地层中应用前景综述[J].现代隧道技术,2004,增:212-215.
    [69]常艄东.管棚超前预支护机理研究[D].成都:西南交通大学,1999.
    [70]林振球,白敏华.向大口径长管棚应用范围的挑战:大口径长管棚施工法在城市隧道中的应用[J].铁道建筑,1989,10:29-33.
    [71]钟延.南岭隧道设计施工教训的拙见[J].铁道工程学报,1991,1:63-65.
    [72]寇煜.大型隧道管棚法通过岩土堆积段的工程实践[J].土木工程学报,1987,20(2):78-84.
    [73]张溶.中梁山隧道不良地质地段大断面施工[J].公路,1994,9:29-32.
    [74]陆传波.长大管棚预支护技术在北京地铁4号线西单站暗挖段的应用[J].铁道建筑技术,2008,4:35-40.
    [75]周希圣,习哲,罗志阳,等.南京地铁1~#线隧道典型区段施工技术[J].岩石力学与工程学报,2004,23(20):3523-3528.
    [76]王建洲.长安街过街道的设计与施工[J].隧道建设,1997,2:13-22.
    [77]孟凡亚.武隆隧道进口段浅埋软弱围岩的处理技术[J].西部探矿工程,2003,1:99-101.
    [78]苟德明,阳军生,高世军.下穿公路连拱隧道双层管棚预加固作用数值分析[J].长沙交通学院学报,2008,24(2):16-22.
    [79]谷兆祺,彭守拙,李仲奎.地下洞室工程[M].北京:清华大学出版社,1994.
    [80]K.太沙基.理论土力学[M].北京:地质也版社,1960
    [81]TB10003-2005,铁路隧道设计规范[S].北京:中国铁道出版社,2005.
    [82]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.
    [83]谢家杰.浅埋隧道的地层压力[J].土木工程学报1964(6).
    [84]SL279-2002,水工隧洞设计规范[S].北京:中国水利水电出版社,2003.
    [85]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [86]孙钧,侯学渊.上海地区圆形隧道设计的理论和实践[J:.土木工程学报,1984,17(3),35-47.
    [87]刘洪洲.大跨度扁坦隧道施工的力学响应及施工方法的研究[D].重庆:重庆大学,1999.
    [88]周小文.盾构隧道土压力离心模型试验及理论研究[D].北京:清华大学,1999.
    [89]ORESTE P P,PEILA D,POMA A.Numerical study of low depth tunnel behaviour [A].World Tunnel Congress on Challenges for the 21st Century[C].Balkema,Oslo,Norway,1999:155 - 162.
    [90]SWOBODA G,ABU-KRISHA A.Three-dimensional numerical modeling for TBM tunneling in consolidated clay[J].Tunnelling and Underground Space Technology,1999,14(3):327-333.
    [91]DE FARIAS M M,MOPAES J A H,DE ASSIS A P.Displacement control in tunnels excavated by the NATM:3D numerical simulations[J].Tunnelling and Underground Space Technology,2004,19(3):283- 293.
    [92]毕继红,丛蓉.各种形状洞室的围岩压力分析[J].地下空间,2004,24(1):23-26.
    [93]秦建设.盾构施工开挖面变形与破坏机理研究[D].南京:河海大学,2005.
    [94]张川,杨春满,左永江.松软地层水平管棚工艺参数的研究[J].煤炭学报,2000,25(6):607-609.
    [95]孔恒.城市地铁隧道浅埋暗挖发地层预加固机理及应用研究[D].北京:北京交通大学,2003.
    [96]YOO C S,Shin H E.Deformation behaviour of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation[J].Tunnelling and Underground Space Technology,2003,18(4):303-319.
    [97]陈浩,姜景山,姚海波.崇文门车站过既有线管棚施工及变形分析[J].隧道建设,2006,26(1):78-80.
    [98]董新平,周顺华,胡新朋.软弱地层管棚法施工中管棚作用空间分析[J].岩土程学报,2006,28(7):841-846.
    [99]董新平,周顺华.软弱地层管棚荷载传递作用分析[J].现代隧道技术,2005,42(6):24-29.
    [100]董新平,周顺华.软土地层开挖释放荷载引起管棚位移敏感度分析[J].岩土程学报,2005,27(11):1296-1299.
    [101]伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J].岩石力学与工程学报,2005,24(6):1026-1029.
    [102]程小彬,刘建民,三维非线性有限元分析在地下管棚支护中的应用[J].探矿工程(岩土钻掘工程),2007,6:59-62.
    [103]肖世国,夏才初,朱合华,等.管幕内箱涵顶进中顶部管幕竖向变形预测[J].岩石力学与工程学报,2006,25(9):1887-1892.
    [104]庄丽,雷震宇.软弱地层管棚施工中失水引起的地表沉降计算[J].地下空间与工程学报,2005,1(3):383-385.
    [105]周顺华,庄丽,王炳龙,等.管棚成孔失水引起地表沉降因素分析[J].中国铁道科学,2006,27(1):23-26.
    [106]BORMS B B,BENNEMRARK H.Stability of clay at vertical openings[J].Journal of the soil Mechanics and Foundations Division,1967,93(1):71-94.
    [107]ATTEWELL P B,BODEN J B.Development of stability ratios for tunnels driven in clay[J].Tunnels and Tunnelling,1971(3):195-198.
    [108]LECA E,DORMIEUX L.Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J].Geotechnique,1990,40(4):581 - 606.
    [109]CHAMBON P,CORTE J F.Shallow tunnels in cohesionless soil:Stability of tunnel face[J].Journal of Geotechnical Engineering,1994,120(7):1148- 1165.
    [110]MAIR R J,TAYLOR R N.Theme lecture:Bored tunnelling in the urban environment[A].In:Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering[C],Hamburg,1997:2353-2385.
    [111]骞大锋,王兵,谢世昌.土砂互层中浅埋隧道的破裂角及破坏试验研究[J].兰州铁道学院学报.1999,18(3):25-29.
    [112]周小文,濮家骝,包承纲,砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999,16(4):9-14.
    [113]LEE I M,NAM S W.The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J].Tunnelling and Underground Space Technology,2001,16(1):31-40
    [114]LEE I M,NAM S W,AHN J H.Effect ef seepage forces on tunnel face stability[J]Canadian Geotechnical Journal,2002,40(2):342-350.
    [115]朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J].岩土工程学报,2005,27(8):897-902.
    [116]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [117]杨伟军,赵传智.土木工程结构可靠度理论与设计[M].北京:人民交通出版社.1999.
    [118]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社.2003.
    [119]贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003.
    [120]ANG A H-S,ABDELNOUR J,CHAKER A A.Analysis of activity networks under uncertainty[J].J.Eng.Mech.Div.,ASCE 1968.94:671-691.
    [121]赵国藩.钢筋混凝土结构按照数理统计方法计算的探讨[J].土木工程学报,1960(4).
    [122]GB50153-1992,工程结构可靠度设计统一标准[S].北京:中国计划出版社,1992.
    [123]GB50158-1992,港口工程结构可靠度设计统一标准[S].北京:中国计划出版社,1992.
    [124]GB50216-1994,铁路工程结构可靠度设计统一标准[S].北京:中国计划出版社,1994
    [125]GB50199-1994,水利水电工程结构可靠度设计统一标准[S].北京:中国计划出版社,1994.
    [126]GB/T50283-1999,公路工程结构可靠度设计统一标准[S].北京:中国计划出版社,1999.
    [127]GB50068-2001,建筑结构可靠度设计统一标准[S].北京:中国建筑工业出版社,2001.
    [128]包承纲.谈岩土工程概率分析法中的若干基本问题[J].岩土工程学报,1989,11(4):94-98.
    [129]景诗庭.地下结构可靠度分析研究之进展[J].石家庄铁道学院学报,1995,8(2):13-19.
    [130]MATSUO M,ASAOKA A.Bayesian calibration of embankment safety under earthquake loading[J].Structural Safety,1983,1(1):53-65
    [131]松尾稔著,万国朝等译,地盘工学(可靠性设计的理论和实际)[M].北京:人民交通出版社,1990.
    [132]ICHIKAWA Y,KAWAMURA K,NAKANO M,et al.Unified molecular dynamics and homogenization analysis for bentonite behavior current results and future possibilities[J].Engineering Geology,1999,54(1):21-31.
    [133]POMTE P R,WALLMANN P C,DERSHOWITZ W S.Stochastic estimation of fracture size through simulated sampling[J].International Journal of Rock Mechanics and Mining Science,1993,30(7):1611-1617.
    [134]EINSTEIN H H.Risk and risk analysis in rock engineering[J].Tunnelling and Underground Space Technology,1996,11(2):141-155.
    [135]SHIGEYUKI K,ALFREDO H S,ANGWILSON H T.Reliability evaluation of design of idealized tunnel systems[J].Structural Safety,1992,11(2):81-93.
    [136]PHOON K K,FRED H K,MIRCEA D G.Reliability-based design for transmission line structure foundations[J].Computers and Geotechnics,2000,26(3):169-185.
    [137]XIE J C,TAN Z S.Optimum fit for the probability distribution function of loosened rock load on railway tunnel lining in China[C].Proeeedings of the International Congress the ITA Annual Meeting.Chengdu,1990.
    [138]关宝树.铁路隧道围岩分类的定量化研究[R],西南交通大学,1996.
    [139]赵旭峰,严松宏.响应面法在隧道衬砌结构可靠度分析中的应用[J].岩石力学与工程学报.2003,22(S2):2853-2856.
    [140]徐军,郑颖人.可靠度响应面有限元及其工程应用[J].地下空间,2001,21(5):354-360.
    [141]邓建,朱合华.基于神经网络的岩土工程结构随机有限元分析[J].同济大学学报,2003,30(3):269-272.
    [142]徐军,邵军,郑颖人.遗传算法在岩土工程可靠度分析中的应用[J].岩土工程学报,2000,22(5):586-589.
    [143]谭忠盛.隧道支护结构体系可靠度的理论研究及其工程应用[D].成都:西南交通大学,1998.
    [144]朱正国.连拱隧道围岩压力计算方法与动态施工力学行为研究[D].北京:北京交通大学,2007.
    [145]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [146]HUANG M S,JIA C Q.Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage[J].Computers and Geotechnics,2009,36(1),93-101.
    [147]WEI W B,CHENG Y M,LI L.Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods[J].Computers and Geotechnics,2009,36(1),70-80.
    [148]魏纲,贺峰.砂性土中顶管开挖面最小支护压力的计算[J].地下空间与工程学报,2007,3(5):903-908.
    [149]皇甫明,孔恒,王梦恕,等.核心土留设对隧道工作面稳定性的影响[J].岩石力学与工程学报,2005,24(3):521-525.
    [150]李地元,李夕兵,张伟,等.基于流固耦合理论的连拱隧道围岩稳定性分析[J].岩石力学与工程学报,2007,26(5):1056-1064.
    [151]NAM S W,BOBET A.Radial deformations induced by groundwater flow on deep circular tunnels[J].Rock Mechanics and Rock Engineering,2007,40(1),23-39.
    [152]李志华,华渊,周太全,等.盾构隧道开挖面稳定的可靠度研究[J].岩土力学,2008,29(增):315-319.
    [153]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].成都:西南交通大学,2003.
    [154]裴洪军.城市隧道盾构法施工开挖面稳定性研究[D].南京:河海大学,2005.
    [155]吴微.神经网络计算[M].北京:高等教育出版社,2003.
    [156]朱大奇,史慧.人工神经网络原理与应用[M].北京:科学出版社,2006.
    [157]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [158]叶慷慨,王延民.土压平衡盾构施工土压力的确定[J].隧道建设,2003,23(2):47-51.
    [159]贡金鑫,仲伟秋,赵国藩.结构可靠指标的通用计算方法[J].计算力学学报,2003,20(1):12-18.
    [160]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
    [161]李炳宇.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,18:74-76.
    [162]KENNEY J,EBERHART R.Particle swarm optimization[C].Perth:IEEE Piscataway,1995:1942-1948.
    [163]王运良.飞行器总体参数优化的进化算法及其应用研究[D].西安:西北工业大学,2006.
    [164]SHI Y,EBERHART R.A modified particle swarm optimizer.In:IEEE international conference on evolutionary computation.IEEE Press,Piscataway,NJ,1998.p.69-73.
    [165]FOURIE P,GROENWOLD A.The particle swarm optimization algorithm in size and shape optimization[J].Struct Multidisc Optim,2002,23(4):259-267.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700