用户名: 密码: 验证码:
基于离散元仿真的盾构密封舱压力平衡机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土压平衡盾构掘进机是国家基础建设、资源开发和国防建设急需的重大技术装备。密封舱压力的设置和控制直接关系到开挖地层的稳定、刀盘刀具的磨损和盾构掘进效率。针对目前盾构施工密封舱压力分布规律认识不清、密封舱压力控制缺少完备的力学模型的问题,本文以离散元数值分析为主要研究手段,结合实验和施工数据验证,提出了改性土等效离散元模型及其参数反演方法,揭示了盾构掘进界面压力与密封舱隔板压力的映射关系、掘进参数与密封舱隔板压力的映射关系,为盾构施工密封舱压力控制提供机理模型,同时丰富和完善了离散元模型参数确定方法。
     离散单元法模拟盾构密封舱土压力系统工作过程的首要内容是改性土的模拟。以某地铁标段施工地层的砂土为原状土,根据实际施工改性剂的添加比例,在实验室配制了改性砂土并进行了改性砂土的坍落度实验和直剪实验;提出了改性砂土的等效离散元模型,在此基础上建立改性砂土坍落度实验和直剪实验的离散元数值实验模型。通过不同配比改性土坍落度实验和直剪实验的数值实验结果与实际实验结果相比较,证明在选取适当的等效模型参数的情况下,提出的改性砂土等效离散元模型能够模拟改性砂土的流动特性和抗剪强度特性。
     正确确定改性土等效离散元模型参数是离散元模拟盾构密封舱土压力系统工作过程的关键。将神经网络、遗传算法、三轴实验和离散元数值模拟相结合,用于改性砂土等效离散元接触模型参数反演。反演目标是改性土三轴实验离散元数值模拟得到的主应力差和轴向应变曲线以及径向应变和轴向应变曲线与真实实验曲线误差最小,采用的求解策略是基于遗传神经网络的参数识别。三轴实验的离散元数值模拟为网络提供训练样本,遗传算法和BP梯度下降算法优化网络的权值,改性土室内三轴实验的实际测量曲线为参数反演提供依据。通过反演预测的三轴实验结果与实际实验结果相比较,证明了反演方法的有效性,为改性砂土等效离散元模型参数确定提供依据,为密封舱土压力系统离散元仿真模型建立奠定基础。
     以某地铁标段施工的土压平衡盾构机为研究对象,建立了盾构密封舱土压力系统离散元仿真的几何模型;根据盾构掘进过程中密封舱工作原理,提出盾构隧道不同埋深下掘进界面压力的模拟方法,以及掘进面生成颗粒、螺旋出口删除颗粒的改性土在密封舱中动态传输过程的模拟方法,确立了密封舱土压力系统离散元仿真模型的边界条件;通过密封舱隔板土压力的离散元仿真结果与实际施工检测结果相比较,验证了仿真模型的有效性和仿真结果的正确性,为进一步的密封舱压力控制机理模型建立奠定基础。
     在密封舱土压力系统离散元仿真模型基础上,研究了辐板式刀盘和辐条式刀盘两种情况下,隧道埋深分别为10m、15m和20m时的密封舱压力分布规律,建立密封舱隔板压力分布的数学模型;得出在盾构刀盘结构形式一定的条件下,掘进界面等效压力与密封舱隔板等效压力为比例关系的结论,将密封舱隔板等效压力与掘进界面等效压力的比值定义为压力传递系数,给出了压力传递系数与刀盘开口率的经验公式,为盾构掘进密封舱隔板压力的设定提供理论基础。
     在密封舱土压力系统离散元分析模型的基础上,通过改变开挖面颗粒生成个数和螺旋转速,模拟盾构掘进的不同工况,得到单位时间盾构开挖量(推进速度)、排土量(螺旋转速)与密封舱压力变化率的对应数据;分析不同推进速度和螺旋转速下的密封舱压力变化情况,研究推进速度对密封舱压力变化率的影响、螺旋转速对密封舱压力变化率的影响;建立出土率与密封舱压力变化率的数学关系,为盾构掘进密封舱压力控制提供参考模型。
The earth pressure balance (EPB) shield tunneling machine is the important technical equipment for infrastructure projects, resource development and national defence. The pressure balance control between the chamber and the ground at the excavation face is the key for tunneling safely and efficiently. Aiming at the problems that the satisfying mechanical model for the chamber pressure control is absent, in this work, the relation between the pressure on the excavation face and the pressure on the chamber board as well as the relation between the pressure on the chamber board and the working parameters are established, by the discrete element method (DEM) simulation, theoretical analysis and experiment validation, which not only provides the mechanical models for the chamber pressure control in tunneling, but also enriches the DEM model parameters determination method and extends the DEM engineering application.
     The first problem for DEM to simulate the work process of the chamber system of the EPB shield machine is the modeling of the conditioned sands. Taking the sands in a subway section as the original sands, and according to the proportion of the additives volume to the earth volume, the conditioned sands is reproduced and the slump test and the direct shear test are implemented in the laboratory. The equivalent discrete element model of the conditioned sands is provided, on the basis of which the DEM numerical model of the slump test and the shear test of the conditioned sands are established. By comparing the numerical results of the slump test and the direct shear test of the conditioned sands with different proportions to the corresponding laboratory test results, it is illustrated that the proposed DEM equivalent model can simulate the flow characteristics and strength characteristics of the conditioned sands on the condition that the proper DEM parameters is selected.
     The key for simulating the work process of the chamber system correctly is the determination of the equivalent DEM model parameters of the conditioned sands. The inversion method combining the genetic neural network and the discrete element simulation of triaxial tests is proposed for determining the contact model parameters of the conditioned soil. The aim is to make the error of the simulation curves and the laboratory curves of the triaxial tests minimum. The parameters solution is based on the genetic neural network. The training samples of network are provided by the DEM simulation. The complicated nonlinear relation between the input and the output samples is mapped by the genetic arithmetic. The simulation curves calculated with the inversed model parameters match the laboratory curves well, which illustrates that the presented inversion method of the DEM parameters of the conditioned soil is feasible. It provides the basis of the model parameters determination of the conditioned sands for the chamber pressure analysis model.
     Taking the shield machine tunneling in a subway section as the research object, the DEM geometrical model for analyzing the chamber pressure of the shield machine is established. According to the work principle of the chamber of shield machine during the tunneling, the simulation method of the excavation face pressure under different buried depths, and the modeling method of the dynamic transfer process of the conditioned sands in the chamber system which generate particles on the excavation face and delete particles on the outlet of screw conveyor are proposed. On the basis of this, the boundary condition of the DEM model of the chamber system is determined. The numerical simulation results of the observed pressure on the chamber board are compared with the field construction data, by which the feasibility of the simulation method is validated. The model provides the basis for further pressure analysis and control model building of the muck chamber system.
     On the basis of the DEM model of the chamber system, the pressure distributions of the chamber under the tunnel depth of 10m, 15m and 20m for the board cutting wheel and the spoke cutting wheel are studied. The mathematical model of the pressure distribution in the chamber is proposed. The relationship between the pressure on the excavation face and the pressure on the chamber board is established, the pressure transfer coefficient (the proportion of chamber board pressure to the excavation face pressure) in which is defined as the function of the opening ratio of the cutting wheel. The results provide the basis for the setting of the chamber pressure during tunneling.
     On the basis of the DEM model of the chamber system, by changing the numbers of the generated particles at the excavation face and the rotate speed of the screw, the different working conditions during EPB machine tunneling are simulated. The corresponding data of the pressure changing rate of the chamber under different excavation volumes per unit time (thrust speed) and the discharge volumes (the rotate speed of the screw) are obtained. The influence of the thrust speed and the screw rotate speed on the changing rate of the chamber pressure is studied respectively. The function of discharge rate and the changing rate of the chamber pressure is established, which provides the reference model of chamber pressure control for EPB machine tunneling.
引文
[1]徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[D].上海:同济大学,2006.
    [2]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报,2007,40(5):61-68.
    [3]QUEBAUD S,SIBAI M,HENRY J P.Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils[J].Tunnelling and Underground Space Technology,1998,13(2):173-180.
    [4]ANAGNOSTOU G,KOVAR K.Face stability conditions with earth-pressure-balanced shields[J].Tunnelling and Underground Space Technology,1996,11(2):165-173.
    [5]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析[J].同济大学学报,2000,28(3):277-281.
    [6]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5):874-877.
    [7]张佳,付修华.成都地铁工程施工安全监督管理初探[J].建筑安全,2006,9:31-34.
    [8]魏康林.土压平衡式盾构施工中“理想状态土体”的探讨[J].城市轨道交通研究,2007,1:67-70.
    [9]RAFFAELE V,CLAUDIO O,DANIELE P.Soil conditioning of sand for EPB applications:a laboratory research[J].Tunnelling and Underground Space Technology,2008,23(3):308-317.
    [10]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [11]BABENDERERDE L H.Developments in polymer application for soil conditioning in EPB-TBM[J].Tunnels and Metropolises,1998,2:691-695.
    [12]MILLIGAN G.Lubrication and soil conditioning in tunnelling,pipe jacking and microtunnelling state of the art review[R].London:Geotechnical Consulting Group,2000.
    [13]MILLIGAN G.Soil conditioning and lubricating agents in tunneling and pipe jacking[C]//.Proceedings of Underground Construction.London:2001:105-116.
    [14]EFNARC.Specification and Guidelines for the use of specialist products for Soft Ground Tunnelling[EB/OL].http://www.efnarc.org/pdf/SGTSpec.pdf,2003.
    [15]BEZUIJGEN A,SCHAMINEE P E L,KLEINJAN J A.Additive testing for earth pressure balance shields[C]//.12th Eur.conf.on Soil Mech.and Geotech.Engng.Amsterdam:1999.
    [16]KURIBASHI Y,YAGI K,ISHIMOTO H.The PMF super shield tunneling process-expanding applications for earth pressure balanced shield tunneling[C]//.Burger.Proceedings of International Congress on Options for Tunnelling.Amsterdam:1993:411-420.
    [17]PERON J Y,MARCHESELLI P.Construction of the 'passante ferro viario' link in Milan.Italy.lots 3P,5P,and 6P:excavation by large EPBS with chemical foam injection[C]//.Proceedings of Tunnelling'94.London:1994:679-707.
    [18]JANCSECZ S,KRAUSE R,LANGMAACK L.Advantages of soil conditioning in shield tunneling:experiences of LRTS Izmir[C]//.ITA Symposium.Oslo:1999.
    [19]WILLIAMSON G E,TRAYLOR M T,HIGUCHI M.Soil conditioning for EPB shield tunneling on the south bay ocean outfall[C]//.Proceedings of RETC.1999:897-925.
    [20]HERRENKNECHT M.EPB or slurry machine:the choice[J].Tunnels and Tunnelling International,1994,6:35-36.
    [21]BOONE S J,ARTIGIANI E,SHIRLAW J N.Use of ground conditioning agents for earth pressure balance machine tunnelling[C]//AFTES.Proceedings of Congres International de Chambery.2005:313-319.
    [22]Langmaack L.Advanced Technology of Soil Conditioning in EPB Shield Tunnelling[EB/OL].http://www.ugc.basf.com/SiteCollectionDocuments/Reports/TBM/NAT2000_Advanced_Technolog y_of_Soil_Conditioning_in_EPB_Shield_Tunnelling.pdf,2000.
    [23]PSOMAS S.Properties of foam/sand mixtures for tunneling applications[D].Michaelmas:University of Oxford,2001.
    [24]中国科学院.《2000科学发展报告》之6·1-1999年香山科学会议学术活动与科学主题评述[M].北京:科学出版社,2000:218-219.
    [25]KAVANGH K,CLOUGH R W.Finite element applications in the characterization of elastic solids[J].Int.J.Solids Structure,1971,7:11-23.
    [26]郭怀志,马启超,薛玺成等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [27]KSISER P,ZOU D,LANG P.Stress determination by back analysis of excavation-induced stress changes[J].Rock Mechanics and Rock Engineering,1990,23(3):185-200.
    [28]KIRSTEN H A D.Detemrination of rock mass elastic moduli by back analysis of deformation measurement[C]//.Proc.SymP.on Exploration of Rock Eng..Johannesburg:1976:1154-1160.
    [29]MAIER G,JURINA L,PODOLAK K.On mode identincation problems in rock mechanics[C]//.Proe.symp.on the Geotechnics of Structurally Complex Formations.Capri:1977:257-261.
    [30]GIODA G.Indirect identification of the average elastic characteristics of rock masses[C]//.Int.Conf.on Structural Foundations on Rock.Sydney:1980:65-73.
    [31]刘怀恒.支护荷载反演及安全度预测[J].西安矿业学院学报,1991,11(4):1-8.
    [32]李云鹏.支护位移反分析中的几个实用问题[C]//.首届全国岩土力学与工程青年工作者学术讨论会论文集.杭州:浙江大学出版社,1992,186-189.
    [33]朱永全,景诗庭,张清.隧道支护结构荷载作用的随机反演[J].岩土力学,1999,17(2):57-63.
    [34]SAKUARRI S.Determination of initial stresses and mechanical properties of viscoelastic underground medium[C]//.Proc.3rd ISRM Cong..Denver:1974:1169-1174.
    [35]SAKUARRI S,TAKEUEHI K.Back analysis of measured displacement of tunnel[J].Rock Mech.and Rock Eng.,1983,16(3):173-180.
    [36]陈子荫.由位移测定值反算流变岩体变形参数及地应力[J].煤炭学报,1982,7(4):340-345.
    [37]刘允芳.弹性介质岩体中非圆形洞室位移反分析计算[J].岩石力学与工程学报,1986,5(5):141-144.
    [38]薛琳,杨志法.粘弹性岩体力学参数的解析法[C]//中科院地质研究所工程地质力学开放实验室1992年报.北京:地震出版社,1992:71-84.
    [39]薛琳,杨志法.隧道周围粘弹性岩土介质蠕变柔量反演[C]//中科院地质研究所工程地质力学开放实验室1992年报.北京:地震出版社,1992:178-190.
    [40]KANANGH K,CLOUGH R W.Finite element applications in the characterization of elastic solids[J].Int.J.Solids Structure,1971,7:11-23.
    [41]SONMEZ H.A practical procedure for the back analysis of slope failure in closely jointed rock masses[J].Int.J.Rock Mech.Min.Sci,1998,35(2):219-233.
    [42]强天驰,周维垣,杨若琼.拱坝多参数优化反演方法及其应用[J].岩石力学与工程学报,2000,19(增):997-1000.
    [43]李守巨,刘迎曦,王登刚.岩体初始应力场识别的随机方法[J].岩土力学,2000,21(2):126-129.
    [44]王华宁,吕爱钟.巷道裂隙岩体的损伤参数辨识.岩土工程学报,2001,23(5):593-596.
    [45]曹国金,苏超,姜弘道.一种三维优化位移反演分析法.岩土力学,2001,22(3):303-308.
    [46]WILLIAM Y.Review of parameter identification procedures in groundwater hydrology,The inverse problem[J].Water Resources Research,1986,22(2):95-108.
    [47]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾与进展[J].力学进展,1998,28(4):488-499.
    [48]NAJJAR Y M.Utilizing computational neural networks for evaluating the permeability of compacted clay liners[J].Geotechnieal and Geological Engineering,1996,(14):193-212.
    [49]CAO X.Application of artificial neural networks to load identification[J].Computers & Structures,1998,69:63-78.
    [50]MEULENKAMP F.Application of neural networks for the prediction of the unconfined compressive strength from Equotip hardness[J].Int.J.of Rock Mechanics and Mining Sciences,1999,36:29-39.
    [51]周保生.巷道围岩参数的人工神经网络预测[J].岩土力学,1999,20(1):22-25.
    [52]CHANG H C.Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system[J].Computers & Geosciences,2000,26:591-601.
    [53]CHANG H C,CHEN H C,FANG J H.Lithology determination from well logs with fuzzy associative memory neural network[J].IEEE Transactions on Geoscienee and Remote Sensing,1997,35(3):773-780.
    [54]李守巨,刘迎曦,王登刚.基于人工神经网络的岩体渗透系数反演方法及其工程应用[J].岩石力学与工程学报,2002,21(4):22-26.
    [55]HUANG C S.A neural network approach for structural identification and diagnosis of a building from seismic response data[J].Earthquake Engineering and Structural Dynamics,2003,32:187-206.
    [56]李守巨,刘迎曦,王登刚.基于遗传算法的岩体初始应力场反演[J].煤炭学报,2001,26(1):13-17.
    [57]高玮,颖人.用快速遗传算法进行岩土工程反分析[J].土工程学报,2001,23(1):120-122.
    [58]刘杰,王媛.体流变参数反演的加速遗传算法[J].坝观测与土工测试,2001,25(6):24-27.
    [59]MAULDON A D.An inversion technique for developing models for fluid flow in fracture systems using simulated annealing[J].Water Resour.Res.,1993,29(3):3775-3789.
    [60]李守巨,刘迎曦.基于模拟退火法的含水层参数非线性反演[J].西安交通大学学报,2001,35(5):546-548.
    [61]NESTOR V Q.Efficient global optimization for hydraulic fracturing treatment design[J].J.of Petroleum Science and Engineering,2002,35(1):151-166.
    [62]张晖.引入模拟退火机制的新型遗传算法[J].电子科技大学学报,2003,32(1):39-42.
    [63]李端有,甘孝清,周武.基于均匀设计及遗传神经网络的大坝力学参数反分析方法[J].岩土工程学报,2007,1(29):125-130.
    [64]陈炳瑞,冯夏庭,丁秀丽等.基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报,2005,4(24):553-558.
    [65]魏连伟.基于模拟退火算法的水文地质参数识别[J].天津大学学报,2003,36(5):618-621.
    [66]苏怀智,李季,吴中如.大坝及岩基物理力学参数优化反演分析研究[J].水利学报,2007,10(增刊):129-134.
    [67]LIANG Y C.Neural identification of rock parameters using fuzzy adaptive learning parameters[J].Computers and Structures,2003,81:2373-2382.
    [68]魏培君,章梓茂,韩华.双相介质参数反演的混沌搜索方法[J].计算力学学报,2002,19(4):398-402.
    [69]王登刚,刘迎曦,李守巨.非线性二维导热反问题的混沌一正则化混合解法[J].应用数学和力学,2002,23(8):864-870.
    [70]CALVETTI F.Limitations and perspectives of the micromechanical modeling of granular materials[J].Mathematical and Computer Modeling,2003,37:485-495.
    [71]MISHRA B K,MURTY C V R.On the determination of contact parameters for realistic DEM simulations of ball mills[J].Powder Technology,2001,115:290-297.
    [72]HERTZE H.Uber die berurung fester elasticher korper[J].Journal of Reine Angew Mathematics,1882,92:156-171.
    [73]CALVETTI F,COMBE G,LANIER J.Experimental micro-mechanical analysis of a 2D granular material:relation between structure evolution and loading path[J].Mechanics of Cohesive-frictional Materials,1997,2(2):121-163.
    [74]CLEARY P W,MORRISSON R,MORRELL S.Comparison of DEM and experiment for a sealemodel SAG mill[J].Int.J.Miner.Process,2003,68:129-165.
    [75]FRANCO Y,RUBINSTEIN D,SHMULEVICH I.Prediction of soil-bulldozer blade interaction using discrete element method[J].Transactions of the ASABE,2007,50(2):345-353.
    [76]ASAF Z,RUBINSTEIN D,SHMULEVICH I.Evaluation of link-track performances using DEM[J].Journal of Terramechanies,2006,43(2):141-161.
    [77]MANUEL J M M,LUIS E M R.Discrete numerical model for analysis of earth pressure balance tunnel excavation[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1234-1242.
    [78]ASAF Z,RUBINSTEIN D,SHMULEVICH I.Determination of discrete element model parameters required for soil tillage[J].Soil & Tillage Research,2007,92:227-242.
    [79]ALESSIO N,BEMHARD S,MAREK L.Application of artificial neural network for identification of parameters of a constitutive law for soils,Developments in Applied Artificial Intelligence,Lecture Notes in Computer Science[M].Heidelberg:Springer Berlin,2003:423-436.
    [80]王家映.地球物理反演问题概述[J].工程地球物理学报,2007,1(4):1-3.
    [81]陈立生,王洪新.土压平衡盾构平衡控制的新思路[J].上海建设科技,2008,5:18-21.
    [82]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [83]李笑,陈振环,陈烘陶.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006,7:129-131.
    [84]魏建华,丁书福.土平衡式盾构开挖面稳定机理与压力舱土压力控制[J].工程机械,2005,1:18-19.
    [85]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005,24(增2):5762-5766.
    [86]杨洪杰,傅德明,葛修润.盾构周围土压力的实验研究与数值模拟[J].岩石力学与工程学报,2006,25(8):1652-1657.
    [87]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005,4:45-51.
    [88]徐前卫,朱合华,廖少明.软土地层土压平衡盾构法施工的模型试验研究[J].岩土工程学报,2007,29(12):1849-1857.
    [89]朱合华,徐前卫,廖少明.土压平衡盾构法施工参数的模型试验研究[J].岩土工程学报,2006,28(5):553-557.
    [90]胡新朋,孙谋,李建华.地铁EPB盾构不同地层密封舱压力设置问题研究[J].地下空间与工程学报,2006,2(8):1413-1417.
    [91]Yeh I-Cheng.Application of neural networks to automatic soil pressure balance control for shield tunneling[J].Automation in Construction,1997,5(5):421-426.
    [92]施虎,龚国芳,杨华勇.盾构掘进土压平衡控制模型[J].煤炭学报,2008,33(3):343-346.
    [93]Li Xiao,Chen Zhen-huan.Fuzzy immune control for shield's earth-pressure-balance simulation system[C]//.Fourth International Conference on Natural Computation.IEEE Computer Society,2008:648-652.
    [94]Li Xiao,Chen Zhen-huan.Modeling and simulation for earth-pressure-balance simulated system of shield machine[C]//.2008 Asia Simulation Conference.IEEE Computer Society,2008:732-735.
    [95]MAINI T,CUNDALL P A.Computer modeling of jointed rock mases[R].Defense Technical Information Center,1978.
    [96]STRACK O D L,CUNDALL P A.The distinct element method as a tool for research in granular media[R].Minnesota:University of Minnesota,1978.
    [97]THORNTON C,BARNES D J.Computer simulated deformation of compact granular assemblies[J].Acta Mechanica,1986,64(1):45-61.
    [98]川井忠彦,都井裕.平面歪问题の离散化解析に[J].生产研究,1977,29(4):204-207.
    [99]SAWAMOTO Y,TSUBOTA H,KASAI Y.Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method[J].Nuclear Engineering and Design,1998,179:157-177.
    [100]LIU K,GAOL T,TANIMURA S.Application of discrete element method in impact problems[J].JSME International Journal,2004,47(2):138-145.
    [101]LIU K,GAOL T.The application of discrete element method in solving three-dimension impact dynamics problems[J].Acta Mechniaca Solida,2003,16(3):256-261.
    [102]THORNTON C.On the relationship between the modulus of particulate media and the surface energy of the constituent particles[J].J.Phys.D Appl.Phys.,1993,26:1587-1591.
    [103]CUNDALL P A.Rational design of tunnel supports:a computer model for rock mass behavior using interactive graphics for the input and output of geometrical data[R].Missouri River Division,U.S.Army Crops of Engineers,1974.
    [104]CUNDALL P A.BALL-A program to model granular media using the distinct element method[R].London:Dames & Moore Advanced Technology Group,1978.
    [105]CUNDALL P A.UDEC:A generalized distinct element program for modelling jointed rock[R].Peter Cundall Associates,European Research Office,U.S.Army,1980.
    [106]CUNDALL P A,HART R D.Development of generalized 2-D and 3-D distinct element programs for modeling jointed rock[R].ITASCA Consulting Group,U.S.Army Corps of Engineers,1985.
    [107]LEMOS J V.A hybrid distinct element computational model for the half-plane[D].Minnesota:University of Minnesota,1983.
    [108]LORIG L J.A hybrid computational model for excavation and support design in jointed media[D].Minnesota:University of Minnesota,1984.
    [109]CUNDALL P A.3 DEC:Distinct element code-user's manual[M].Minnesota:Itasca Consulting Group inc.,1991.
    [110]CUNDALL P A.PFC3D user's manual(version 3.1)[M].Minneapolis:Itasca Consulting Group Inc.,2005.
    [111]THORNTON C.On the relationship between the modulus of particulate media and the surface energy of the constituent particles[J].J.Phys.D Appl.Phys.,1993,26:1587-1591.
    [112]王泳嘉,宋文洲,赵艳娟.离散单元法软件系统2D-block的现代化特点[J].岩石力学与工程学报,2000,6(增刊):1057-1060.
    [113]王泳嘉,刘连峰.三维离散单元法软件系统TRUDEC的研制[J].岩石力学与工程学报,1996,15(3):200-210.
    [114]郑文刚,刘凯欣.离散元法工程计算软件的前后处理系统[J].计算机工程与科学,2000,22(6):14-17.
    [115]刘凯欣,郑文刚,高凌天.脆性材料动态破坏过程的数值模拟[J].计算力学学报,2003,20(2):127-132
    [116]KUHN M R.Structured deformation in granular materials[J].Mechanics of Materials,1999,31(6):407-429.
    [117]MISHRA B K.A review of computer simulation of tumbling mills by the discrete element method,part Ⅱ:practical applications[J].Int.J.Miner.Process,2003,71:95-112.
    [118]CLEARY P W.Predicting charge motion,power draw,segregation and wear in ball mills using discrete element methods[J].Minerals Engineering,1998,11:1061-1080.
    [119]YANG S C,HSIAU S S.Self-diffusion analysis in a vibrated granular bed[J].Advanced Powder Technology,2001,12(1):61-77.
    [120]RAJI A O,FAVIER J F.Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method,Ⅰ:theory,model development and validation[J].Journal of Food Engineering,2004,64:359-371.
    [121]Landry H,Lague H,Roberge M.Discrete Element Representation of Manure Products[J].Computers and Electronics in Agriculture,2006,51:17-34.
    [122]LANDRY H,LAGUE C,ROBERGE M.Discrete element modeling of machine-manure interactions[J].Computers and Electronics in Agriculture,2006,52:90-106.
    [123]HERRMANN H J,LUDING S.Modeling granular media on the computer[J].Continuum Mech.Thermodyn,1998,10:189-231.
    [124]TSUJI Y.Activities in discrete particle simulation in Japan[J].Powder Technology,2000,113:278-286.
    [125]NIE X B,DOOLEN G D,CHEN S Y.Simulations of fluid flows in MEMS[J].Journal of Statistical Physics,2002,107:279-289.
    [126]FANG H P,CHEN S Y.Lattice boltzmann method for three-dimensional moving particles in a newtonian fluid[J].Chinese Physics,2004,13(1):47-53.
    [127]NIE X B,CHEN S Y,WEINAN E.A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow[J].J.Fluid Mech.,2004,500:55-64.
    [128]KANG Q J,ZHANG D,CHEN S Y.Unified lattice boitzmann method for flow in muitiscale porous media[J].Physical Review E,2002,66:1-11.
    [129]FANELLIA M,FEKEA D L,MANAS Z I.Prediction of the dispersion of particle clusters in the nano-scale,part Ⅰ:steady sheafing responses[J].Chemical Engineering Science,2006,61:473-488.
    [130]KANEKO Y,SHIOJIMA T,HORIO M.DEM simulation of fluidized beds for gas-phase olefin polymerization[J].Chemical Engineering Science,1999,54:5809-5821.
    [131]TATEMOTOA Y,MAWATARIB Y,NODAA K.Numerical simulation of cohesive particle motion in vibrated fluidized bed[J].Chemical Engineering Science,2005,60:5010-5021.
    [132]WATANO S.Mechanism and control of electrification in pneumatic conveying of powders[J].Chemical Engineering Science,2006,61:2271-2278.
    [133]ABBASPOUR-FARD M H.Theoretical validation of a multi-sphere,discrete element model suitable for biomaterials handling simulation[J].Biosystems Engineering,2004,88(2):153-161.
    [134]朱焕春,吴海斌,石安池.论三峡永久船闸中隔墩北倾变形机制[J].岩石力学与工程学报,2005,24(23):4289-4296.
    [135]IWASHITA K,ODA M.Micro-deformation mechanism of shear banding process based on modified distinct element method[J].Powder Technology,2000,109:192-205.
    [136]TANAKA H,MOMOZU M,OIDA A.Simulation of soil deformation and resistance at bar penetration by the distinct element method[J].Journal of Terramechanics,2000,37:41-56.
    [137]ZHANG R,LI J Q.Simulation on mechanical behavior of cohesive soil by distinct element method[J].Journal of Terramechanics,2006,43:303-316.
    [138]ERFAN G N,YOUSSEF M A H,DAWEI Z,JAMSHID G.Simulation of front end loader bucket-soil interaction[J].International Journal for.Numerical and Analytical Methods in Geomechanics,2007,31:1147-1162.
    [139]PAUL W C.DEM simulation of industrial particle flows:case studies of dragline excavators,mixing in tumblers and centrifugal mills[J].Powder Technology,2000,109:83-104.
    [140]Florian F,Timo G,Peter E.Applications of the discrete element method in mechanical engineering[J].Multibody System Dynamics,2007,18:81-94.
    [141]SHMULEVICH I,ASAF Z,RUBINSTEIN D.Interaction between soil and a wide cutting blade using the discrete element method[J].Soil & Tillage Research,2007,97:37-50.
    [142]HORNER A D,PETERS F J,CARRILLO A.Large scale discrete element method modeling of vehicle-soil interaction[J].Journal of Engineering Mechanics,2001,127(10):1027-1032.
    [143]OIDA A,SCHWANGHART H,OHAKUBO S.Simulation of soil deformation under a track shoe by the DEM[C]//.Proceedings of the 7th European Conference of the International Society of Terrain-Vehicle Systems.1997:155-162.
    [144]SCHWANGHART H,OIDA A,YAMAZAKI M.Application of DEM to find the interaction between tire and soil[C]//.Proceedings of the 5th Asia-Pacific Conference of the International Society of Terrain-Vehicle Systems.1998:175-183.
    [145]MOMOZU M,OIDA A,YAMAZAKI M.Simulation of a soil loosening process by means of the modified distinct element method[J].Journal of Terramechanics,2003,39(4):207-220.
    [146]王泳嘉.离散元法-一种适用于节理岩石力学分析的数值方法[C]//.第一届全国岩石力学数值计算及模型试验讨论会文集.江西:西南交通大学出版社,1986:32-37.
    [147]李世海,汪远年.三维离散元计算参数选取方法研究[J].岩石力学与工程学报,2004,23(21):3642-3651.
    [148]刘辉,陈文胜,冯夏庭等.大冶铁矿露天转地下开采的离散元数值模拟研究[J].岩土力学,2004,25(9):1413-1417.
    [149]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [150]张翠兵,邓志勇,高凌天等.抛石散体振动密实过程的离散元数值模拟[J].岩石力学与工程学报,2004,23(1):95-100.
    [151]徐泳,李红艳,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,2(19):34-38.
    [152]付宏,董劲男,刘振宇.精密排种器的集成分析设计系统开发研究[J].计算机集成制造系统,2005,5(11):744-750.
    [153]孙裕晶,马成林,牛序堂.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,11(37):45-48.
    [154]张明晶.土压平衡式盾构施工中闭塞问题的发生机理及其防治措施研究[D].南京:河海大学,2004.
    [155]郭涛.盾构用发泡剂性能评价方法研究[D].南京:河海大学,2005.
    [156]林键.土体改良降低土压平衡式盾构刀盘扭矩的机理研究[D].南京:河海大学,2005.
    [157]GB/T 50080-2002,普通混凝土拌和物性能试验方法标准[S].中国:中华人民共和国建材行业标准,2003.
    [158]邓聚龙.灰色控制系统(第2版)[M].武汉:华中理工大学出版社,1997.
    [159]宋克志,王本福.常见盾构刀盘型式及选用[J].筑路机械与施工机械化,2007,6:44-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700