用户名: 密码: 验证码:
勉宁公路沿线边坡软岩力学特性及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西省南部勉县-宁强地区沟谷纵横,广泛分布着寒武系、奥陶系、志留系的地层,岩性主要以泥岩、粉砂质泥岩等为主,在公路建设过程中山区公路软岩边坡问题比较突出。随着国家西部开发战略计划的实施,这就迫切地需要对山区公路软岩问题进行系统研究,本文结合陕南勉县-宁强高速公路山区沿线公路软岩边坡,分析公路软岩边坡岩体赋存地质条件,研究该地区山区公路软岩边坡的工程地质条件和边坡变形破坏地质力学模式。通过对组成边坡的软岩流变试验,确定流变力学模型中的岩石材料参数,建立符合实际的边坡流变力学模型。从工程地质基础、软岩流变特征、软岩边坡稳定性分析与评价等方面,系统地研究山区公路典型软岩边坡流变特征及其软岩边坡的稳定性问题。研究成果主要包括:
     (1)在充分研究软岩边坡工程地质环境的基础上,采用显微镜和浸水试验的方法,对软岩岩样宏观裂隙发育过程进行了研究,并分析了影响岩石裂隙发育的主要因素和泥岩破坏面形成的微观原因。依据岩样室内试验研究,阐述了软岩的岩体物理力学性质。利用回弹仪,在野外对岩石进行了测试,提出岩石回弹值与岩石强度的相关方程,并根据岩石回弹值对勉宁高速公路沿线岩石强度进行了分级。
     (2)依据勉宁高速公路沿线软岩边坡特征,分别采用边坡岩体质量RMR方法和分形方法进行了岩体质量评价,以此为基础,提出一个以岩体节理分布的分维数D为分级指标,并根据室内外波速测试的结果,对于不同的边坡岩体质量分级提出了相应的分形损伤参数。
     (3)分析沿线公路边坡的岩性特征、岩石风化程度及结构面的特性等,将研究区域的软岩边坡变形破坏地质力学模式归纳为5种。在47处软岩边坡中,滑移-压致拉裂变形模式1处,占边坡总数的2.12%;弯曲-拉裂变形模式32处,占边坡总数的68.1%;滑移-拉裂变形模式4处,占边坡总数的8.5%;蠕滑-拉裂变形模式6处,占边坡总数的12.8%;滑移-弯曲变形模式4处,占边坡总数的8.5%。软岩边坡以弯曲-拉裂变形模式为主,该类边坡破坏形式主要为倾倒、溃屈破坏、崩塌、滑塌等。
     (4)三轴压缩蠕变试验表明,Burgers模型能更好地描述勉宁高速公路软岩受力后的力学特性,特别是其长期蠕变特征;利用试验结果,分析确定了Burgers模型本构方程中各参数的数值。根据软岩试样难以制备的现状,分别设计方形和圆柱体试验试样,进行三轴流变压缩模拟计算,探讨不同形态试验试件对岩体蠕变变形特征的影响规律。即:立方体试件的应变量数值整体小于圆柱体试验试件的应变量数值。在低围压状态下(1~5MPa),两者数值相差较小,约5~10%之间,在高围压状态下(10MPa),两者相差较大,约10~30%之间。
     (5)根据三轴压缩试验结果,选择典型软岩高边坡,分别进行软岩边坡三维流变数值模拟计算和分形岩体损伤特征的三维流变模拟计算,考虑地下水的作用,分析与研究了软岩边坡开挖过程和边坡形成后蠕变期在上述两种状态下的应力、应变、塑性区以及主要影响因素、破坏形式等规律,并计算了不同状态下的安全系数。
     (6)针对软岩边坡破坏的不同形式,利用极限平衡法计算本区部分边坡的稳定系数,定量评价软岩边坡的稳定性。采用BP神经元评价方法,在影响公路边坡稳定性的因素中,根据现场调查和室内分析结果,最终确定20个BP神经元单因子评价指标,对相应的软岩边坡进行了综合评价。对于顺层软岩边坡,采用岩板模型,应用突变理论研究了岩层在水平地应力和垂直力共同作用下失稳的力学机理。根据所建立的四边简支岩板力学模型,推导出层状岩体系统的总势能函数表达式,建立该系统的尖点突变模型,给出在水平地应力和垂直力控制空间中使系统失稳的分叉集,分析作用力的渐变导致状态突变的过程。
The gully development is widely distributed in the Ming-Ningqiang county area of southern Shaanxi province, where there are the strata of Cambrian system, Ordovician system and Silurian system, the lithology mainly is mudstone and silty mudstone which belong to the soft rock. The engineering problem of the soft rock in the mountainous area during the highway duilding is very conspicuous. With the implementation of the western development of China, the engineering problem of the soft rock in the mountainous area during the highway duilding is needed urgently to be studied. In this paper, based on the geological conditions and the nature of rock mechanics of soft rock of Mianxian - Ningqiang in the southern mountain area of Shaanxi province, the engineering geological conditions of the region's soft rock slope and the geomechanical model of slope deformation damage are studied.Through the rheological test of the soft rock slope , the rock material parameters in the rheological mechanical model is determined, and the actual rheological mechanical model of the slope is established.From the engineering geological foundation, rheological characteristics of soft rock, the stability analysis and evaluation of soft rock slope, the rerheological characteristics and stability problems of the soft rock slop in the typical regional are systematically studied. Major research results are as follow:
     (1) Based on the full study in the engineering geological environment of the soft rock slope, using the electron microscopy and water immersion test , the microcosmic and macrocosmic fracture development process of the soft rock are studied ,and the main factors impacting the rock fracture development and the microcosmic reasons of mudstone failure surface are analyzed.Based on the research of the indoor experiment of rock samples, the physical mechanic property of soft rock is described in detail. The rock in the field is tested with resiliometer.The correlation equations of the resilience value and compression strength of the rock are presented by the least square method. And by this, the rock intensity along the Mianxian-ningqiang freeway was classified.
     (2) Based on the characteristics of soft rock slope along the Mianxian-ningqiang freeway, the different grade quality of slope rock are estimated by RMR and fractal method. The fractal dimension D of rock joint distribution as classify index is provided on the base of above research. According to the indoor and outdoor wave velocity test results , the fractal damage parameters for the different grade quality of slope rock is provided.
     (3) According to analyzing the lithologic features of the soft rock slope along the freeway, the rock weathering degree and the structural characteristics, the deformation and destruction modes of soft rock slope are divided into five kinds. Through the analysis of statistics of the soft rock slopes of 47, 1 model of the sliding-compression cracking deformation, accounting for 2.1% for the total number of slopes; 32 models of the bending-fracturing deformation, accounting for 68.1% for the total number of slopes; 4 models of the sliding-fracturing deformation, accounting for 8.5% for the total number of slopes; 6 models of the creep sliping -fracturing deformation, accounting for 12.8% for the total number of slopes; 4 models of the sliding-bending deformation, accounting for 8.5% for the total number of slopes. The deformation mode of the soft rock slopes mainly is the bending-fracturing deformation, of which the main failure mode are toppling, buckling failure, collapse and sliding failure.
     (4) According to the 3-axis compression test, it is showed that the constitutive equation of viscoelastic Burgers can better explain the mechanical properties for the soft rock of Mianxian-ningqiang freeway after undergoing pressure, particularly for its long-term creep characteristics.Test samples need 23 kN of the axial pressure to be destroyed . Before the destruction, the maximum strain in axial direction around 0.02. The long-term strength for soft rock is 40.0 MPa. Based on test results, the parameters values in the constitutive equation of Burgers are made. According to the present situation of the specimen being made with difficulty , a squareness and a cylinder test sample are designed, and the simulation was calculated.The characteristics of different forms for the test samples of rock creep deformation is discussed,namely:The overall numerical variable of cube samples should be less than that of cylinder test specimen. In low confinement pressure state(1~5 MPa), the difference between the two value is smaller, about 5 to 10%. In high confinement pressure (10 MPa), the difference between the two value is larger, about 10 to 30 %.
     (5)Based on the test results of the 3-axis compression tes, 3-D Numerical Simulation of the the creep characteristics and the fractal damnification characteristics for the typical soft rock slope are calculated by considering the groundwater respectively. The rules of the stress, strain, plastic area, main influence factors and failure mode etc.in above two states during the excavation process and the creep process are analyzed and studied. The safety factors of the soft rock slope in different states are calculated.
     (6) According to the different damage forms of the soft rock slope,the coefficient of stability of some slope are calculated by the method of limit equilibrium, the quantitative evaluation are made for the stability of soft rock slope.According to the results of field investigation and lab analysis of the affecting factors for the stability of the slope, 20 BP neurons evaluation index is eventually identified by BP neurons evaluation method. 27 slope samples are the raining sample back-testing. The comprehensive evaluation of 21 slopes is made, and the corresponding slope stability types are got. For the bedding soft rock slope, the rock stratum model was adopted. The method of apply catastrophe theory has been studied the lose steady mechanical mechanism when the rock stratum is under the horizontal and vertical stress working together.According to the established mechanical model of four sides simply back rock stratum, a layered rock system's total potential function expression is provied, and the cusp catastrophe model of the system is established, the tee-offs anthology at the level crustal stress and vertical control of space in the instable system is given, the gradual change of acting force led to the gradual process of mutation status.
引文
[1]周得培,朱本珍,毛坚强.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995.
    [2]谬协兴,何满潮.软岩力学[M].北京:中国矿业大学出版社,1995.
    [3]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1997.
    [4]孙均.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [5]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [6]薛守义,刘汉东.岩体工程学性质透视[M].郑州:黄河水利出版社,2002.
    [7]王芝银,李云鹏.岩体流变理论及其数值模拟[M].北京:科学出版社,2008.
    [8]王芝银.岩土工程学科发展动向[J].西安矿业学院学报(增刊),1999:1~6.
    [9]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报. 2007,26(6):1081~1106
    [10]林育梁.软岩工程力学若干理论问题的探讨[J].岩石力学与工程学报,1999,18(6):690~693
    [11]何满湖,黄福昌,阎吉太.世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999.
    [12]何满潮.中国煤矿软岩工程地质力学研究进展[J].煤.2000,9(1):1~11
    [13]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [14]崔政权,李宁.边坡工程:理论与实践最新发展[M].北京:中国水利水电出版社,1999.
    [15]乔兰,李远.露天矿山高陡边坡变形破坏的工程地质模型[J].北京科技大学学报,2004,26(5):461~464
    [16]马惠民,张忠平,李晓军.特殊条件下公路边坡病害变形类型和特征[J].公路交通科技,2005,22(6):11~14
    [17]于德海,彭建兵.陕南公路软弱变质岩边坡变形破坏特征的研究[J].工程地质学报,2007,15(4):549~563
    [18].陈洪凯,杨世胜,叶四桥,等.公路高切坡分类及其破坏模式[J].重庆交通大学学报(自然科学版),2007,26(5):92~95
    [19] H.Kumsar et al. Dynamic and static stability assessment of rock slope against wedge failures.Rock Mech.Rock Engng..2000,33(1);31~51
    [20] Azm S. Al-Homoud et al. Seismic reliability analysis of earth slopes under short term stability conditions. Geotechnical and Geological Engineering. 2002,20 (3): 201~234
    [21] P.K. Woodward. Stability of Slopes with Berms on Rigid Foundations. Geotechnical andGeological Engineering. 1999,16 (4): 309~320
    [22] Galos, Miklos. Rock slopes as engineering constructions. Periodica Polytechnica, Civil Engineering.1999,43(2):153~161
    [23] Gokceoglu, C., Sonmez, H., Ercanoglu, M. Discontinuity controlled probabilistic slope failure risk maps of the Altindag (settlement) region in Turkey. Engineering Geology.2000,55(4):277~296
    [24] Gaziev, E.G. Stability analysis of the rock slope in the Zimapan Arch Dam Reservoir, Mexico. Bulletin of Engineering Geology and the Environment.2001,60(2): 135~137
    [25] Bergamin, St.,Kirchhofer, P.,Filippini, R. Rock mechanics investigations for the endangered Bristen road Source.Rock Mechanics and Rock Engineering.2001, 34(2):83~98
    [26] Siad, L. Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynamics and Earthquake Engineering. 2003,23(3):203~212
    [27] Bhasin, Rajinder ,Kaynia, Amir M. Static and dynamic simulation of a 700-m high rock slope in western Norway. Engineering Geology. 2004,71(3-4): 213~226
    [28] Goodman, Richard E.,Kieffer, D. Scott. Behavior of rock in slopes. Journal of Geotechnical and Geoenvironmental Engineering. 2000,126(8):675~684
    [29]王在泉.复杂边坡工程系统稳定性研究[M].徐州:中国矿业大学出版社,2000.
    [30]赵法锁,张伯友,彭建兵,等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527~1532
    [31]赵法锁,张伯友,卢全中,宋飞.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报.2001,(4):477~480
    [32]陈渠,西田和范,岩本健,等.沉积软岩的三轴蠕变实验研究及分析评价.岩石力学与工程学报[J],2003,22(6):905~912
    [33]王林龙,冈文夫.关于沉积软岩固有各向异性特性的研究[J].岩石力学与工程学报,2003,22(6):894~898
    [34]丁卫华,仵彦卿,曹广祝,等.三轴条件下软岩变形破坏过程的CT图像分析[J].煤田地质与勘探,2003,31(3):31~35
    [35]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635~1639
    [36]许宝田,阎长虹,许宏发,等.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863~867
    [37]万玲,彭向和,杨春和,等.泥岩蠕变行为的实验研究及其描述[J].岩土力学,2005,26(6):924~927
    [38]范庆忠,李术才,高延法,等.软岩三轴蠕变特性的试验研究[J].岩石力学与工程学报,2007,26(7):1381~1385
    [39]王志俭,殷坤龙,简文星,等.三峡库区万州红层砂岩流变特性试验研究[J].岩石力学与工程学报,2008,27(4):840~847
    [40]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):732~779
    [41]陈沅江,潘长良,曹平,王文星.软岩流变的一种新力学模型[J].岩石力学,2003,24(2):209~214
    [42]陈沅江,潘长良,曹平,王文星.一种软岩流变模型[J].中南工业大学学报(自然科学版) ,2003,34(1):16~20
    [43]汪华安,杨庆刚,陈记.弹粘塑本构模型辩识的半经验法及三阀值流变模型[J].西部探矿工程,2003,87(8):44~46
    [44]张芳枝,陈晓平,吴煌峰,等.风化泥质软岩变形特性及邓肯模型参数的试验研究[J].岩土力学,2003,24(4):610~612
    [45]丁秀丽.岩体流变特性的试验研究及模型参数辨识[D].中国科学院武汉岩土力学研究所博士研究生论文,2005.
    [46]李云鹏,王芝银,丁秀丽.岩体原位流变荷载试验的力学参数与模型反演[J].实验力学,2005,20(2):297~303
    [47]李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型识别及其应用[J].石油大学学报(自然科学版),2005,29(2):73~76
    [48] Maranini E,Brignoli M. Creep behavior of a weak rock:experunental characterization[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(1):127~138
    [49] T.Adachi. An elasto-plastic constitutive model for soft rock with strain softening . Rock Mechanics and Mining Science.2001,33 (2): 65~68
    [50] Hayano K,Matsumoto M,Tatsuoka F,et al. Evaluation of time-dependent deformation properties of sedimentary soft rocks and their constitutive modelling[J]. Soils and Foundations, 2001,41(2):21~38
    [51] Okubo s,Fukui K. Long - term creep test and constitutive equation of Tage tuff[J].Journal of the Mining and Materials,2002,118(l):36~42
    [52] Heege T J H, De Bresser J H P, Spiers C J. Rbeological behavior of synthetic rock salt:the interplay between water, dynamic recrystallization and deformation mechanisms[J]. Journal of Structual Geology, 2005, 27(6): 948~963
    [53] Shin K, Okubo S, Fukui K, et al. Variation in strength and creep life of six Japaneserocks[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):251~260
    [54] Berest P, Blump A, Charpentier J P,et al. Very slow creep tests on rock samples[J]. International Journal of Rock Mechanics and MiningSciences, 2005, 42(4):569~575
    [55] Fabre G,Pellet F. Creep and time-dependent damage in argillaceons rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 950~960
    [56]王芝银,刘怀恒.粘-弹-塑性有限元及其在岩石力学与工程中的应用[J].西安矿业学报,1985,(1):85~105
    [57]王芝银.隧道围岩粘弹性损伤有限元分析的统一模式[J].西安公路交通大学学报,1997,17(2):39~44
    [58]王芝银,李云鹏,王思敬,杨志法.工程岩体地质力学作用过程的数值模拟[J].工程地质学报,1996,4(4):49~53
    [59]王芝银,杨志法,李云鹏,等.石窟顶板流变断裂过程的数值模拟与反演分析[J].岩石力学与工程学报,2006,25(1):9~14
    [60]李云鹏,王芝银.岩体裂隙扩展过程的数值模拟[J].工程地质学报,1995,4(4):48~52
    [61]李云鹏,王芝银,韩常领,等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006,27(1):11~16
    [62]邱祥波,廖忠刚,刘宗仁,齐震明.小浪底工程边坡稳定性有限元流变分析[J].岩土力学.1998,19(3):27~32
    [63]肖洪天,强天弛,周维垣.三峡船闸高边坡损伤流变研究及实测分析[J].岩土力学,1999,19(3):27~32
    [64]夏熙伦,徐平,丁秀丽.岩石的流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15(4):312~322
    [65]章根德,剡公瑞.岩体高边坡流变学性状有限元分析[J].岩土工程学报,1999,21(2):166~170
    [66]徐卫亚,罗先启,谢守益,等.水布垭马崖高边坡岩体地下开挖三维数值模拟研究[J].工程地质学报,1999,7(1):89~94
    [67]孙钧.三峡工程高边坡岩体长期变形与稳定研究[J].同济大学学报.2001,29(3):253~257
    [68]韩冰,王芝银,丁秀丽,等.软硬互层岩体流变特性的数值模拟[J].长江科学院院报,2007,24(2):25~28
    [69]韩冰,王芝银,丁秀丽,等.大桥隧道锚旋三维粘弹塑性数值模拟[J].长安大学学报(自然科学版),2008,28(1):78~80
    [70]肖克强,周德培,李海波.软岩高边坡开挖变形规律的物理模拟研究[J].岩土力学, 2007,28(1):111~115
    [71] A.S.Al-Homud et al. SARETL:an expert system for probabilistic displacement-based dynamic 3 - D slope stability analysis and remediation of earthquake triggered landslides. Environmental Geology.2000,39(8);849~874
    [72] YangZhifa,WangZhiyin,ZhangLuqing,ZhouRuiguang,XingNianxing. Back-analysis of viscoelastic displacements in a soft rock road tunnel. rock mechanics and mining science.2001,38 (3): 331~341
    [73] ZhiYinWang,YunPengLi,ZhiFaYang. Numerical simulation of the geomechanical processes in rock engineering. Rock Mechanics and Mining Sciences 37(2000): 499~507
    [74] Gioda G. A finite element solution of nonlinear creep problem in rock. Int J Rock Mech Mim Sci Geomech Abstr.1981,18:35~46
    [75] Wang, C.,Tannant, D.D.,Lilly, P.A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D.International Journal of Rock Mechanics and Mining Sciences.2003,40(3):415~424
    [76] Schweigl, Joachim, Ferretti, Carlo, Nossing, Ludwig . Geotechnical charaterization and rockfall simulation of a slope: A practical case study from South Tyrol (Italy).Engineering Geology.2003,67(3-4):281~296
    [77]郑颖人,赵尚毅,时卫民,等.边坡稳定分析的一些进展[J].地下空间.2001, 21(4):262~271
    [78]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [79] Yoon, W.S. ,Jeong, U.J., Kim, J.H. Kinematic analysis for sliding failure of multi-faced rock slopes. Engineering Geology.2002,67(1-2):51~61
    [80] MacLaughlin, M.,Sitar, N.,Doolin, D.,Abbot,T. Investigation of slope - stability kinematics using discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences.2001,38(5): 753~762
    [81]黄润秋,张卓元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991.
    [82]黄润秋,许强.工程地质广义系统科学分析原理及应用[M].北京:地质出版社,1997.
    [83]王来贵,黄润秋,王永嘉,等.岩石力学系统运动稳定性理论及其应用[M].北京:地质出版社,1998.
    [84]刘军,秦四清,张倬元.边坡岩体系统的非线性演化和分岔研究[J].成都理工学院学报.2000, 27(4):379~382
    [85]谭文辉,蔡美峰,乔兰.边坡岩体系统演化的非线性动力学模拟研究[J].中国地质灾害与防治学报.2003, 14(2):98~102
    [86]谢和平.岩石混凝土损伤力学[M].徐州中国矿业大学出版社,1990.
    [87]刘建国,彭功勋,韩文峰.岩体裂隙网络的分形特征[J].兰州大学学报(自然科学版),2000,36(4):95~99
    [88]范卫锋.分形理论在岩石力学中的应用[D].武汉理工大学硕士学位论文,2005
    [89]刘艳章.岩体结构面分布的分形特征及岩体质量评价研究[D].武汉科技大学硕士学位论文,2004
    [90]易顺民,朱珍德.裂隙岩体损伤力学导论[M].科学出版社,2005:175~210
    [91]徐志斌,谢和平.断裂尺度的分形分布与其损伤演化的关系[J].地质力学学报,2004,10(3):268~275
    [92]夏玉成、陈练武、薛喜成.地学信息数字化技术概论[M].陕西:陕西科学技术出版社,2003.
    [93]夏元友,李新平,朱瑞赓.基于人工神经网络的边坡稳定性工程地质评价方法[J].岩土力学,1996,17(3):27~33
    [94]卢才金,胡厚田,徐建平,等.改进的BP算法在岩质边坡稳定性评判中的应用[J].岩石力学与工程学报,1999, 18(3): 303~307
    [95]陈昌彦,王思敬,沈小克.边坡岩体稳定性的人工神经网络预测模型[J].岩土工程学报,2001, 23(2):157~161
    [96]熊海丰.基于人工神经网络技术的边坡稳定性评价研究[D].武汉理工大学硕士学位论文,2003
    [97]徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D].吉林大学博士学位论文,2006
    [98]凌复华.突变理论及其应用[M].上海:上海交通大学出版社, 1988
    [99]唐春安.岩石破裂过程中的灾变[M] .北京:煤炭工业出版社,1993
    [100] Qin S, Jiao J J, Wang S. A cusp catastrophe model of instability of slip-buckling slope[J].International Rock Mechanics and Rock Engineering, 2001,34(2): 119~134
    [101] Qin Siqing, He Huaifeng. Analysis on the destabilization for the narrow coal pillar burst by the catastrophe theory[J].Hydrogeology and Engineering Geology, 1995,18(5): 17~20
    [102] Siqing Qin, Jiu Jimmy Jiao, C.A. Tang and Zhigang Li .Instability leading to coal bumps and nonlinear evolutionary mechanisms for a coal-pillar-and-roof system. International Journal of Solids and Structures, Volume 43, Issues 25-26, December 2006, Pages 7407~7423
    [103]王德禹,杨桂通.基于突变理论的弹性圆柱壳冲击扭转屈曲[J] .工程力学,1992,9(2):36~40
    [104]李云鹏,安晓宁,王芝银.考虑不同拉压特性的边坡岩体结构稳定性位移判据[J].西安公路交通大学学报,1999,19(4):15~17
    [105]王芝银,杨志法,李云鹏,杨相海.顺层边坡岩体结构变形分叉灾变特性研究[J].西安矿业学院学报,1999,19(3):203~207
    [106]刘军,秦四清,张悼元.缓倾角层状岩体失稳的尖点突变模型研究[J].岩土工程学报.2001,23(1):42~44
    [107]刘长武,陆世良.泥岩遇水崩解软化机理的研究[J].岩土力学.2000,(3):28~31
    [108]吴益平,余宏明,胡艳新.巴东新城区紫红色泥岩工程地质性质研究[J].岩土力学.2000,27(7):1202~1205
    [109]颜文,周丰峻,郑明新.长衡段软岩水理特性研究[J].华东交通大学学报.2005, 22(2):15~17
    [110]徐红梅,侯龙清,罗嗣海.红层工程性质指标相关性研究[J].东华理工学院学报.2005, 28(1):23~26
    [111]张永安,李峰,陈军.红层泥岩水岩作用特征研究[J].工程地质学报.2008, 16(1):43~47
    [112]杨宗才,张俊石,周德培.红层泥岩边坡快速风化特性研究[J].岩石力学与工程学报.2006, (2):275~283
    [113]郭永春,谢强,文江泉.红层泥岩崩解特性室内试验研究[J].路基工程.2008,(2):53~55
    [114]黄宏伟,车平.泥岩遇水软化微观机理研究[J].同济大学学报(自然利学版).2007,35(7):866~870
    [115]周翠英,谭祥韶,邓毅梅,等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报.2005,24(3):394~400
    [116]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].中国水利水电出版社.2007,53~94
    [117]季福全,李维树.乌江银盘水电站页岩力学参数分析与取值[J].人民长江.2007,38(9):83~86
    [118]王在泉.复杂边坡工程工程系统稳定性研究[M].中国矿业大学出版社.2000,38(9):83~86
    [119]刘高,谌文武,梁收运,等.小观音坝址区岩体弹性波特征及其应用[J].岩石力学与工程学报.2003,22(增2): 2819~2823
    [120]熊诗湖,边智华.清江水布娅马崖高边坡岩体力学性质试验研究[J].岩土力学.2003,24(增1): 237~240
    [121]王让甲.声波岩石分级和岩石动弹性力学参数的分析研究[M] .地质出版社.1997,64~129
    [122]赵奎,金解放,赵康,等.用岩石点荷载指标确定其单轴抗压强度的试验研究[J].矿业研究与开发.2005,25(6):32~34
    [123]郭曼丽阴.试论岩石点荷载试验的适用性[J].岩土力学.2003,24(3): 488~494
    [124]李胜伟,李天斌,王兰生.边坡岩体质量分类体系的CSMR法及应用[J].地质灾害与环境保护,2001,21(2):69~72
    [125]巫德斌,徐卫亚.岩石边坡力学参数取值的GSMR法[J].岩土力学,2005,26(9):1421~1426
    [126]易顺民,唐辉明,龙星.基于分形理论的岩体工程分类初探[[J].地质科技情报,1994, 13(12):101~106
    [127]刘艳章.岩体结构面分布的分形特征及岩体质量评价研究[D].武汉科技大学,2004:175~210
    [128]朱自强,柳群义,鲁光银,等.边坡岩体质量分级的模糊层次分析[J].工程地质学报,2007,15(3):350~354
    [129]姜平,孟伟基.基于岩体质量分级的岩石力学参数研究[J].三峡大学学报(自然科学版),2004,26(5):424~427
    [130]刘洋,赵明阶.岩石损伤本构理论研究综述[J].山东交通学院学报,2005,13(4):40~44
    [131]王利,高谦.考虑尺寸效应的裂隙岩体强度损伤力学研究[J].矿冶工程,2006,26(6):20~24
    [132]谢和平,彭瑞东,周宏伟,等.基于断裂力学与损伤力学的岩石强度理论研究进展[J].自然科学进展,2004,14(10):1086~1091
    [133]谢和平.矿山岩体力学及工程的研究进展与展望[J].中国工程科学,2003,5(3):31~38
    [134]刘树新,张飞.三维岩体质量的多重分形评价及分类[J].岩土力学,2004,25(7):1116~1121
    [135]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659~2664.
    [136]邓荣贵,周德培,张悼元,等.一种新的岩石流变模型[J],岩石力学与工程学报,2001,20(6):780~784
    [137]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635~1639
    [138]陈卫忠,李术才,朱维申,年祥波.岩石裂纹扩展的实验与数值分析研究[J].岩石力学与工程学报.2003,22(1):18~23
    [139]李新平,朱瑞赓,朱维申,夏元友.非贯通节理岩体的边坡稳定变形分析[J].岩石力学与工程学报.1996,15(3):193~200
    [140]邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报.1998,17(4):358~365
    [141]李铀,朱维申,白世伟,等.风干与饱水状态下花岗岩单轴流变特性试验研究[J].岩石力学与工程学报.2003,22(10):1673~1677
    [142]邓广哲,朱维申.蠕变裂隙扩展与岩石长时强度效应实验研究[J].实验力学报.2002,17(2):177~183
    [143]金丰年,杨海杰.岩石的载荷速度效应[J].岩石力学与工程学报.1998,17(6):711~717
    [144]金丰年,范华林.岩石的非线性流变损伤模型及其应用研究[J].解放军理工大学学报.2000,2(1):1~5
    [145]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报.1995,14(1):39~47
    [146]张玉生.流变模型有限元粘塑性参数的推定与应用[J].结构工程师.2002(,1):31~35
    [147]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报.1996,24(5):498~503
    [148]赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学.2003,24(4):583~586
    [149]陈有亮,孙钧.岩石的蠕变断裂特性分析[J].同济大学学报.1996,24(5):504~508
    [150]侯宏江,沈明荣.岩体结构面流变特性及长期强度的试验研究[J].岩土工程技术.2003,(6):324~353
    [151]徐日庆,龚晓南,王明洋,杨林德.粘弹性本构模型的识别与变形预报[J].水利学报.1998,(4):75~80
    [152]易念平,蔡仕干,张信贵,钱伟文.南宁地区泥质岩试验的基本模式[J].桂林工学院学报.2002, 22(1):36~39
    [153]杨志法,王思敬,冯紫良,等.岩土工程反分析原理及其应用[M].北京:地震出版社,2002.
    [154]李云鹏,王芝银.固体力学有限单元法及程序设计[M].西安:西安地图出版社,1994.
    [155]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科学技术出版社,1993.
    [156]王芝银,郭书太,李云鹏,等.地下储油岩库围岩力学参数的正交设计[J].中国石油大学学报(自然科学版),2007,31(1):100~103
    [157]李云鹏,郭书太,王芝银,等.地下储油岩洞数值模拟的正交试验设计[J].油气储运,2006,25(9):33~35
    [158]杨圣奇,徐伟亚.岩石尺寸效应及其机理的研究[J].任青文.岩土力学前沿2004.河海大学出版社,2004
    [159]王学滨,潘一山,宋维源.岩石试件尺寸效应的塑性剪切应变梯度模型[J].岩土工程学报,2001,23(6):711~713
    [160]杨圣奇,苏承东,明平美,等.岩石强度尺寸效应的研究方法和机理的研究[J].焦作工学院学报,2002,21(5):324~326
    [161]周火明,盛谦,程殊伟,等.层状复合岩体变形试验尺寸效应的数值模拟[J] .岩石力学与工程学报,2004, 23(2):289~292
    [162]卢增木.顺层岩石高边坡的稳定性研究[D].武汉:中国科学院武汉岩土力学研究所博士研究生论文,2005.
    [163]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学.2002,23(6):695~701
    [164]周翠英,刘祚秋,董立国,等.边坡变形破坏过程的大变形有限元分析[J].岩土力学.2003, 24(4):644~652
    [165]王汉辉,王均星,王开治.边坡稳定的有限元塑性极限分析[J].岩土力学.2003, 24(5):732~738
    [166]杜太亮,张永兴,谢强,等.岩体基本参数对岩质边坡变形的影响[J].中国地质灾害与防治学报,2006,17(1):22~27.
    [167]程谦恭,胡厚田,彭建兵,等.高边坡岩体渐进性破坏粘弹塑性有限元数值模拟[J].工程地质学报, 2000,8(1):25~30
    [168]徐平,甘军,丁秀丽.三峡工程船闸高边坡岩体长期变形及稳定性有限元分析[J].长江科学院院报, 1999,16(21):31~34
    [169]徐平,周火明.高边坡岩体开挖卸荷效应流变数值分析[J].岩石力学与工程学报.2000,l9(4):481~485
    [170]缪荣辉,刘光东,赵德志,曾进群.某隧道进口段边坡三维弹塑性有限元分析[J].地下空间,2001,21(5):432~435
    [171]李桂荣,佘成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析[J].岩石力学与工程学报,1997,16(4):305~311
    [172]张丹.路基高陡边坡稳定性有限元分析[J].长春工程学院学报(自然科学版),2002,3(2):22~25
    [173]贾洪彪,马淑芝,唐辉明,等.巴东长江公路大桥桥址区斜坡稳定性有限元分析[J].水文地质工程地质[J],2003,(2):46~49
    [174]《工程地质手册》编写委员会.工程地质手册.北京:中国建筑工业出版社,1990.
    [175]交通部第二公路勘察设计院主编.公路设计手册《路基》(第二版).北京:人民交通出版社,1997.
    [176]铁道部第一勘察设计院主编.铁路工程设计手册《路基》.中国铁道出版社,1992.
    [177]崔政权.边坡工程—理论与实践最新发展[M].北京:中国水利水电出版社,1999.
    [178]黄润秋,许强,陶连金,林峰.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [179]杜时贵.小浪底边坡工程地质[M].北京::地震出版社,1999.
    [180]孙玉科.边坡岩体稳定性分析[M].北京:科学出版社,1988.
    [181]张有天,周维垣.岩石高边坡的变形与稳定[M].北京:中国水利水电出版社,1999.
    [182]孙玉科,扬志法,丁恩保,等.中国露天矿边坡稳定性研究[M].北京:中国科学技术出版社,1999.
    [183]刘杰.简单边坡的稳定性分析[J].岩土力学,2002,23(6): 714~716
    [185]袁金荣,高国强.岩质边坡稳定性综合评价方法及其在工程中的应用[J].岩土工程技术.2002,(2):114~117
    [186]杨新安,黄宏伟,张禹.软弱岩体分类及其变形规律的研究[J].上海铁道大学学报(自然科学版).1997,18(4):113~118
    [187]袁大祥,陈稚.页岩边坡稳定的定性分析[J].三峡大学学报(自然科学版),2001,23(1):28~31
    [188]陈有亮.岩体高边坡滑移与失稳的力学分析[J].煤炭学报,2000,25(6):598~601
    [189]王在泉.岩石高边坡岩体结构特征及其工程控制研究[J].中国矿业大学学报.1997,26(3):79~83
    [190]刘立平.边坡稳定性分析方法的最新进展[J].重庆大学学报(自然科学版), 2000,23(3):5~7
    [191]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报.2003, 22(5):691~696
    [192]李林第.圆弧形滑坡反分析技术研究[J].地质灾害与环境保护,2001,12(4):53~55
    [193]陈祖煜.岩石边坡倾倒稳定分析的简化方法[J].岩土工程学报,1996,18(6): 92~95
    [194]陈沅江.层状岩质边坡蠕变破坏及其影响因素分析[J].勘察科学技术,2001,(6): 43~48
    [195]范文.层状岩体边坡变形破坏模式及滑坡稳定性数值分析[J].岩石力学与工程学报(增),2000. 6.:983~986
    [196]黄洪波.层状岩质边坡的屈曲破坏分析[J]..山地学报,2003,(2):96~100
    [197]芮勇勤.高大顺层蠕动边坡稳定性分析方法[J].露天采煤技术,1996,(4):2~7
    [198]阎平凡等.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000.
    [199]杨天鸿,芮勇勤,李连崇,等.顺层蠕动边坡变形破坏机理及稳定性动态分析[J].工程地质学报,2003,11(02):155~161
    [200]时卫民,叶晓明,郑颖人.阶梯形边坡的稳定性分析[J].岩石力学与工程学报,2002,21(5):698~704
    [201]张勤,陈志坚,朱代洪,等.层状裂隙岩体稳定性分析的主要问题[J].岩土工程学报.2001, 23(6):753~756
    [202]黄洪波,符文熹,尚岳全,等.层状岩质边坡的屈曲破坏分析[J].山地学报.2003, 21(1):96~100
    [203]陈志坚,李筱艳,孙英学,等.基于剪切位移的层状岩质边坡稳定性预测预报模型[J].岩石力学与工程学报.2003, 22(8):1315~1319
    [204]陆晓敏,任青文,盛芳.裂隙岩质边坡的弹粘塑性变形及稳定性分析[J].岩石力学与工程学报,2002.21(4):493~497
    [205]杨挺青,张晓春,刚芹果.黏弹性薄板蠕变屈曲的载荷一时间特性研究[J].力学学报.2000,32(3):319~325
    [206]张晓春.中厚软岩板静载弯曲时中面特性的时间相关分析[J].岩石力学与工程学报.2004,23(9):1424~1427
    [207]杨天鸿,芮勇勤,李连崇,等.顺层蠕动边坡变形破坏机理及稳定性动态分析[J].工程地质学报.2003, 11(02):155~166
    [208]邓荣贵,周德培,李安洪,王科.顺层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报.2002, 24(02):178~182
    [209]陈志伟,何江达,张小平.顺坡向单层岩体板裂结构模型粘弹塑性弯曲稳定分析[J].四川大学学报(工程科学版).2001, 33(3):21~25
    [210]张天军,李树刚,张志沛.煤岩体稳定性的突变理论研究[C].西安科技大学科研大学论文集.2007, 33~37
    [211]黄润秋.岩石高边坡的时效变形分析及其工程地质意义[J].工程地质学报.2000, 08(02):148~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700