用户名: 密码: 验证码:
直接乙醇燃料电池电催化剂制备及其电化学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接乙醇燃料电池(DEFC)作为一种可持续性的便携式电源,对于推动3G时代的发展具有重大意义,能够解决现有便携式电子设备电源连续使用时间短,充电时间长的问题。目前,DEFC的研究处于起步阶段,关键问题在于如何提高催化剂活性,降低成本。以往研究主要集中在对Pt进行改性,如Pt基二元,三元催化剂。Pt表面乙醇电氧化属于结构敏感型反应,受Pt-Pt键键能、d态电子轨道等催化剂表面几何和电子结构的影响。电极表面乙醇电氧化过程是一个三相反应,与传质、反应活性位、电子和质子传输等因素有关。载体对催化剂的性能有很大影响。碳载体对负载的贵金属催化剂的性质如粒子尺寸、形貌、粒径分布、合金化程度、稳定性和分散性等有较大的影响。而且,碳载体也影响负载催化剂在燃料电池中的性能,如质子传输、催化剂层导电性、电化学表面积和金属纳米颗粒的稳定性等,因此有必要对碳载体进行优化。碳载体的性质如比表面积、孔结构、形貌、表面官能团、导电性、防腐性等都必须优化以达到制备高活性催化剂的目的。因此,乙醇电氧化催化剂载体的研究对提高直接乙醇燃料电池的性能至关重要。本文系统地研究了载体的比表面积、孔结构、导电率及载体与活性组分间的相互作用对催化剂活性的影响,针对乙醇电氧化反应特点利用载体的协同作用来提高Pt的催化活性、利用率和寿命,降低成本。
     首先,利用Pt直接嵌入溶胶-凝胶法制备可调变粒径和孔结构的低Pt载量Pt/碳干凝胶(CX)催化剂。通过调节pH值制备了一系列比表面积在400m2/g-600m2/g之间,孔径分布从大孔向微孔过渡的Pt/CX-n电催化剂。研究发现,当pH值为7.05时制备的Pt/CX-7.05催化剂具有最佳的乙醇电氧化催化活性, Pt的电化学活性比表面积为134.2m2/g,约为20% Pt/C商业催化剂的1.6倍;Pt利用率可达39.7%。碳干凝胶与Pt之间较强的相互作用,使得CO起始氧化电位比20% Pt/C商业催化剂降低约60mV,增强了抗CO中毒能力。CX较高的石墨化程度明显提高了电导率;其较大的比表面积和发达的介孔结构为乙醇及其中间产物的传递提供了良好的通道,有效提高Pt的利用率。该方法在制备碳干凝胶过程中直接嵌入Pt,利用EDTA有效控制了Pt团聚,避开了传统的先制备碳载体后修饰再负载Pt的工艺。
     其次,先以WO3对碳载体进行修饰,制备了Pt/W原子比分别为2.6、5.6和7.5的Ptx/WO3-C电催化剂。实验发现,催化剂对乙醇电氧化催化活性排列如下:Pt5.6/WO3-C > Pt2.6/WO3-C > Pt7.5/WO3-C > 20% Pt/C。Ptx/WO3-C电催化剂降低了乙醇电氧化起始电位,提高了峰值电流密度,具有较高的乙醇电氧化催化活性。这是由于WO3的溢氢效应促进了乙醇及其中间产物在Pt表面的解离吸附;-OHads在WO3表面的低电位形成(又称CO溢出效应),在一定程度上减轻了COads中毒的影响,腾出更多的Pt活性位有利于乙醇电氧化反应的进行。WO3对Pt的电子调变作用,使得Ptx/WO3-C电催化剂中Pt的晶格参数增大,有利于乙醇的吸附脱氢,同时还削弱了Pt-CO键键能,降低了CO氧化电位。Ptx/WO3-C电催化剂的催化活性并不随着WO3的含量增加而提高,这是由于WO3对Pt的协同作用发生在两者的相邻界面上,因此受WO3和Pt颗粒大小及分散度的影响。
     第三,系统地研究了单壁碳纳米管(SWNT)负载Pt基催化剂在DEFC中的性能。分别以H2O2、HNO3、H2SO4+HNO3混酸对SWNT进行预处理,研究了预处理方式对SWNT及相应的负载Pt催化剂性能的影响。实验发现,经HNO3处理后的SWNT-N中原本卷曲缠绕的SWNT被拉直,杂质及非晶碳减少,比表面积为255.4m2/g,比原始SWNT略有减少,平均孔径在7nm左右。相应的Pt/SWNT-N催化剂对乙醇氧化电催化活性最佳。经H2O2处理后的SWNT-O,虽然比表面积更大(401.4 m2/g),平均孔径也为7nm,但其单位质量Pt的电化学活性面积和Pt利用率均比Pt/SWNT-N催化剂小。这与SWNT-O管子弯曲缠绕,表面结构缺陷多有关。SWNT负载Pt催化剂中的Pt晶格参数比20% Pt/C商业催化剂的小,不利于乙醇的吸附脱氢,且SWNT表面结构缺陷越多,负载的Pt晶格参数越小。但SWNT本身具有吸附氢物种的性能,因此弥补了这一不足。
     此外,还系统地比较SWNT、MWNT及VulcanXC-72炭黑为载体的负载型Pt催化剂。比较发现,MWNT由于具有多层石墨管状结构,结构缺陷多、比表面积小,使得负载的Pt平均粒径比SWNT上的大,且晶格参数更小,因此不利于氢和乙醇的吸附脱氢;部分Pt沉积在MWNT的内壁,但由于管口被Pt阻塞,导致整体Pt利用率降低。此外还利用Sn修饰制备了PtSn/SWNT电催化剂。研究发现:Sn在催化剂中以合金态和氧化态两种形式存在,前者使Pt晶格扩张,有利于乙醇及其中间产物的吸附氧化;后者能在较低电位下吸附-OHads,促进CO的氧化,增强催化剂的抗中毒能力。但SnOx是不良导体,过多添加Sn会降低催化剂导电率;且SnOx的耐腐蚀性低。
     最后,探索性研究了非贵金属Mo2C/C电催化剂。研究发现,Mo2C/C不仅具有氢的电催化氧化活性且具有氧还原电催化活性,证明Mo2C具有类Pt催化性能。XRD、TEM和XPS分析表明,Mo2C/C催化剂体相为β-Mo2C,表相存在MoOxCy和MoOz物种。MoOxCy和MoOz的氧化还原以及氧在β-Mo2C晶格中的迁移是其催化活性的根源。
As a sustained portable power supply, direct ethanol fuel cell (DEFC) plays a significant role in promoting the development of 3G era. It can resolve some problems of portable electronic devices, such as limited continuous working time and long charging time. At present, the DEFC research just starts, the key problem is how to improve catalyst activity and reduce cost. Researchers used to focus on the Pt modification. Binary and ternary Pt-based catalysts have been systematically studied. Ethanol electrooxidation on Pt is a structure-sensitive reaction. It is influenced by the catalyst surface geometry and electronic structure, such as the Pt-Pt bond energy, d-state electronic orbital. Ethanol electrooxidation on electrode surface is a three-phase reaction, affected by combined factors of the mass transfer, reaction active site, electron and proton transfer. In this paper, we focus on supporting materials, systematically study the interaction between support and metal in order to choose suitable catalyst support for the ethanol electrooxidation. The support-metal interaction may help to improve the activity and utility of Pt, reduce the cost.
     First, Pt embedded carbon xerogel catalysts are prepared by sol-gel method. By adjusting the pH value, we could vary carbon particle size and pore size distribution. A series of differ surface area (400 m2/g-600 m2/g) catalysts are prepared. Their pore size distribution varies from macro pore to micro pore. When the pH value is 7.05, as prepared Pt/CX-7.05 catalyst has the best catalytic activity for ethanol electrooxidation. Its Pt utilization reachs 39.7%, which is more than 4 times than that of the 20% Pt/C commercial catalyst. Its electrochemical surface area of Pt is 134.2m2/g, about 1.6 times than that of the 20% Pt/C commercial catalyst. The strong interaction between carbon xerogel and Pt of Pt/CX-7.05 catalyst makes its CO oxidation onset potential lower about 60mV than that of the 20% Pt/C commercial catalyst, enhances its CO-tolerance. The large surface area and mesoporous structure of Pt/CX-7.05 catalyst is good for the transmission of ethanol and intermediates, and efficiently improves the Pt utilization. The high graphitization of carbon xerogel increases the catalyst conductivity. In addition, this method directly embeds Pt in carbon during the carbon xerogel preparation, avoiding the traditional cumbersome process (make carbon, then modified, and Pt loading). The use of EDTA could effectively protect Pt from agglomerating.
     Secondly, WO3 modified VulcanXC-72 is used as composite support to prepare a series of Ptx/WO3-C catalysts, the atomic rate of Pt and W varies from 2.6:1,5.6:1 to 7.5:1. We find that WO3 not only has the―hydrogen spillover‖effect, but also has electronic modulation effect on Pt. The Pt lattice constants of the Ptx/WO3-C catalysts are enlarged, which is good for ethanol adsorption and dehydrogenation. It also weakens the Pt-CO bond, lowering the onset potential of the CO electrooxidation reaction. The Pt5.6/WO3-C catalyst shows the highest catalytic activity. Because the synergetic effect between WO3 and Pt occurs on their adjacent interface, it is affected by the distribution and size of the WO3 and Pt particles.
     We systematically study the performance of SWNT supported Pt-based catalysts in DEFC. SWNTs are pretreated by H2O2, HNO3 and the mixture acid (made of H2SO4 and HNO3), respectively. The effect of differ pretreatments is studied. After treated by HNO3, the winding original SWNT is straightened, its surface area decreases slightly from 292.0m2/g to 255.4m2/g, and its average pore size decreases to 7nm. As prepared Pt/SWNT-N catalyst has the best electrocatalytic activity for the ethanol oxidation reaction. The SWNT-O, treated by H2O2, has the largest surface area (401.4m2/g). Its average pore size is around 7nm. But the EAS of the Pt/SWNT-O catalyst is smaller than that of the Pt/SWNT-N catalyst. Because SWNT-O has more winding tubes, which means SWNT-O has more structure defects than SWNT-N. The Pt lattice constants of the SWNT supported Pt catalysts are smaller than that of the 20% Pt/C commercial catalyst, which is unfavorable for the hydrogen and ethanol absorption. However, the SWNT itself could adsorb hydrogen species, so to make up for the shortage.
     Additionally, SWNT-N, MWNT-N and VulcanXC-72 supported Pt catalysts are compared. We find the Pt/SWNT-N catalyst has the highest catalytic activity, and the Pt/MWNT-N catalyst has the lowest. Because MWNT-N has lots of structure defects and its surface area only is 49.7m2/g. Some Pt particles are deposited on the inner wall of the MWNT-N and blocked by the Pt particles loading on the tube mouth. The addition of Sn in Pt/SWNT-N is studied as well. There are both alloyed and oxidized Sn in PtSn/SWNT-N catalyst. The alloyed Sn enlarged the Pt lattice constant, which could improve the ethanol adsorption and weaken the Pt-CO bond. The Sn oxides adsorb–OHads at low potential, which would accelerate the oxidation of COads and improve the CO-tolerance. However, the SnOx are insulator. Too much addition of Sn would increase the resistance. Worse, SnOx has low corrosion resistance.
     Mo2C/C is used as oxygen reduction electrocatalyst for PEM fuel cell. The electrocatalytic activity for oxygen reduction is evaluated by single cell testing and cyclic voltammetry technique. Combined with the results gained by X-ray diffraction and X-ray photoelectron spectroscopy, respectively, its electrocatalytic mechanism is primarily analyzed. Mo2C/VC has electrocatalytic activity for oxygen reduction. The catalytic activity should be contributed to the redox of surface passivated species (MoOxCy and MoOz) and the oxygen migration in the crystal lattice of bulkβ- Mo2C.
引文
[1]毛宗强主编.燃料电池.北京:化学工业出版社, 2005:212-241.
    [2] S. Song, P. Tsiakaras. Recent Progress in Direct Ethanol Proton Exchange Membrane Fuel Cells (DE-PEMFCs). Applied Catalysis B: Enviromental. 2005, 63: 187-193.
    [3] AntoliniErmete. Catalysts for Direct Ethanol Fuel Cells. J. Power Sources. 2007, 170: 1-12.
    [4] W.J. Zhou, S.Q.Song, W.Z. Li, et al. Direct Ethanol Fuel Cells Based on PtSn Anode: the Effect of Sn Content on the Fuel Cell Performance. J. Power Sources. 2005, 140: 50-58.
    [5]宋树芹,陈利康,刘建国等.直接乙醇燃料电池初探.电化学. 2002, 8:105-110.
    [6] W.Zhou, Z. Zhou, S. Song, et al. Pt Based Anode Catalysts for Direct Ethanol Fuel Cells. Applied Catalysis B: Environmental. 2003, 46: 273-285.
    [7] L. Jiang, G. Sun, S. Sun, et al. Structure and Chemical Composition of Supported Pt-Sn Electrocatalysts for Ethanol Oxidation. Electrochim. Acta. 2005, 50:5384-5389.
    [8] Q. Wang, G.Q. Sun, L. Cao, et al. High Performance Direct Ethanol Fuel Cell with Double-layered Anode Catalyst Layer. J.Power Sources. 2008, 177:142-147.
    [9] C. Lamy, E.M. Belgsir, J.-M. Leger. Electrocatalytic Oxidation of Aliphatic Alcohols: Application to Direct Alcohol Fuel Cell (DAFC). J. Electroanal. Chem. 2001, 31: 799-809.
    [10] J.M. Perez, B.Beden, F. Hahn et al. "In Situ" Infrared Reflectance Spectroscopic Study of The Early Stages of Ethanol Adsorption at A Platinum Electrode in Acid Medium. J. Electroanal. Chem. 1989, 262: 251-261.
    [11] T. Iwasita, E. Pastor. A DEMS and FTIR Spectroscopic Investigation of Adsorbed Ethanol on Polycrystalline. Electrochim. Acta. 1994, 39: 531-537.
    [12] H. Hitmi ,E.M. Belgsir, J.-M. Leger, et al. A kinetic Analysis of The Electro-oxidation of Ethanol at A Platinum Electrode in Acid Medium. Electrochim. Acta. 1994, 39: 407-415.
    [13] S.C. Chang, L.W. Leung, M.J. Weaver. Metal Crystallinity Effects in Electrocatalysis as Probed by Real-time FTIR Spectroscopy: Electrooxiation of Formic Acid Methanol, and Ethanol on orderedLow-index Platium Surfaces. J. Phys. Chem. 1990, 94: 6013-6021.
    [14] N. Fujiwara, K.A.Friedrich, U. Stimming. Ethanol Oxidation on PtRu Electrode Studied by Differential Electrochemical Mass Spectrometry. J. Electroanal. Chem. 1999, 472: 120-125.
    [15] V.M. Schmidt, R.Ianniello, E. Pastor, et al. Electrochemical Reactivity of Ethanol on Porous Pt and PtRu: Oxidation/Reduction Reaction in 1M HClO4. J. Phys. Chem. 1996, 100: 17901-17908.
    [16] N.R.de Tacconi, R.OLezna, B. Beden, et al. In-situ FTIR Study of The Electrocatalytic Oxiation Ethnaol at Iridium and Rhodium Electrodes. J. Electroanal. Chem. 1994, 379: 329-337.
    [17] G.Tremiliosi-Filho, E.R.Gonzalez, A.J. Motheo, et al. Electro-oxidation of Ethanol on Gold: Analysis of The Reaction Products and Mechanism. J. Electroanal. Chem. 1998, 444: 31-39.
    [18] R.P. Holroyd, R.A.Bennett, I.Z. Jones, et al. High-resolution X-ray Photoelectron Spectroscopy Study of The Ethanol Oxidation Reaction on Pd(110). J. Chem. Phys. 1999, 110: 8703-8713.
    [19]章冬云,马紫峰,原鲜霞.乙醇电催化氧化反应动力学分析与研究进展.化工进展. 2005, 24: 126-131.
    [20] Y.L. Lo, B.J Hwang. Kinetics of Ethanol Oxiation on Electroless Ni-P/SnO2/Ti electrodes in KOH solutions. J. Electrochem. Soc. 1995, 142: 445-450.
    [21] M. Bowker, R.P.Holroyd, R.G. Sharpe, et al. Molecular Beam Studies of Ethanol Oxiation on Pd(110). Surf. Sci. 1997, 370: 113-124.
    [22] A.F. Lee, D.E. Gawthrope, N.J. Hart, et al. A Fast XPS Study of the Surface Chemistry of Ethanol Over Pt{111}. Surf. Sci. 2004, 548: 200-208.
    [23] A. Cassuto, D.A.King. Rate Expression for Adsorption and Desorption Kinetics with Precursor States and Lateral Interactions. Surf. Sci. 1981, 102:388-404.
    [24] E. Pastor, T.Iwasita. D/H Exchange of Ethanol at Platinum Electrodes. Electrochim. Acta. 1994, 39: 547-552.
    [25] U. SchmiemannMuller, U.H. Baltruschat. The influence of The Surface Structure on The Adsorption of Ethane, Ethanol and Cyclohexene as Studied by DEMS. Electrochim. Acta. 1995, 40: 90-107.
    [26] Z.F. Ma, D.Y. Zhang, B. Lonovel, et al. Electrocatalytic Oxiation Reaction Kinetics of Ethanol on Pt Electrode[C]. 206nd meeting of the ECS. Oct.3-8, USA, 2004.
    [27] G.A. CamaraLima, R.B.de, T. Iwasita. Catalysis of Ethanol Electrooxidation by PtRu: the Influence of Catalyst Composition. Electrochem. Commun. 2004, 6: 812.
    [28] E.V. SpinaceNeto, T.R.R. Vasconcelos, A.O.M. Linardi. Electro-oxidation of Ethanol Using PtRu/C Electrocatalysts Prepared by Alcohol-Reduction Process. J. Power Sources. 2004, 137: 17-23.
    [29] C. LamyRousseau, E.M. Belgsir, S.C. Coutanceau, et al. Recent Progress in the Direct Ethanol Fuel Cell: Development of New Platinum-Tin Electrocatalysts. Electrochim. Acta. 2004, 49: 3901-3908.
    [30] K.I. GursahaniAlcala, R.D. Cortright, J.A. DumesicR. Reaction Kinetics Measurements and Analysis of Reaction Pathways for Conversions of Acetic Acid, Ethanol, and Ethyl Acetate Over Silica-Supported Pt. Appl. Catal. A. 2001, 222: 369-392.
    [31] S. RousseauCoutanceau, C.C. Lamy, et al. Direct Ethanol Fuel Cell (DEFC): Electrical Performances and Reaction Products Distribution under Operating Conditions with Different Platinum-Based Anodes. J. Power Sources. 2006, 158:18-24.
    [32] W.J. ZhouLi, W.Z.S.Q. Song, et al. Bi- and Tri-metallic Pt-based Anodes Catalysts for Direct Ethanol Fuel Cells. J. Power Sources. 2004, 131: 217-223.
    [33] S.S. Gupta, J.Datta. A Comparative Study on Ethanol Oxidation Behavior at Pt and PtRh Electrodeposits. J. Electroanal. Chem. 2006, 594: 65-72.
    [34] H. SongQiu, X.F. Li, et al. Ethanol Electro-oxidation on Catalysts with TiO2 Coated Carbon Nanotubes as Support. Electrochem. Conmmun. 2007, 9:1416-1421.
    [35] Y. Bai, J. Wu, X. Qiu, et al. Electrochemical Characterization of Pt-CeO2/C and Pt-CexZr1-xO2/C Catalysts for Ethanol Electro-oxidation. Appl. Catal. B: Environ. 2007, 73: 144.
    [36] W. Zhou, Z.Zhou, S. Song, et al. Pt Based Anode Catalysts for Direct Ethanol Fuel Cells. Appl. Catal. B: Environ. 2003, 46: 273-285.
    [37] E. Antolini, F.E.Colmati, R. Gonzalez. Effect of Ru Addition on the Structural Characteristics andthe Electrochemical Activity for Ethanol Oxidation of Carbon Supported Pt-Sn Alloy Catalysts. Electrochem. Commun. 2007, 9: 398-404.
    [38] Z. Wang ,G.Yin, J. Zhang, et al. Investigation of Ethanol Electrooxidation on A Pt-Ru-Ni/C Catalyst for A Direct Ethanol Fuel Cell. J. Power Sources. 2006, 160: 37-43.
    [39] A.Oliveira Neto, E.G.Franco, E. Arico, et al. Electro-oxidation of Methanol and Ethanol on Pt-Ru/C and Pt-Ru-Mo/C Electrocatalysts Prepared by Bonnemann's Method. J. Eur. Ceram. Soc. 2003, 23: 2987-2992.
    [40] G. Li, P.G.Pickup. The Promoting Effect of Pb on Carbon Supported Pt and Pt/Ru Catalysts for Electro-oxidation of Ethanol. Electrochim. Acta. 2006, 52: 1033-1037.
    [41] X. Zhao, W.Li, L. Jiang, et al. Multi-wall Carbon Nanotube supported Pt-Sn Nanoparticles as An Anode Catalyst for the Direct Ethanol Fuel Cell. Carbon. 2004, 42: 3251-3272.
    [42] G.R. Salazar-Banda, H.B.Suffredini, M.L. Calegaro, et al. Sol-gel-modified Boron-doped Diamond Surfaces for Methanol and Ethanol Electro-oxidation in Acid Medium. J. Power Sources. 2006, 162: 9-20.
    [43] S. Tanaka, M.Umeda, H. Ojima, et al. Preparation and Evaluation of a Multi-component Catalyst by Using a Co-sputtering System for Anodic Oxidation of Ethanol. J. Power Sources. 2005, 52: 34-39.
    [44] W. Yang, S.Yang, J. Guo, et al. Comparison of CNF and XC-72 Carbon Supported Palladium Electrocatalysts for Magnesium Air Fuel Cell. Carbon. 2007, 45: 397-401.
    [45] G. Girishkumar, K. Vinodgopal, K. Kumar, et al. Carbon Nanostructures in Portable Fuel Cells: Single-Walled Carbon Nanotubes for fuel cell applications. J. Phys. Chem. B. 2004, 108: 19960-19966.
    [46] G. Girishkumar, M. Rettker, R. Underhile, et al. Single Wall Carbon Nanotube based Proton Excharge Membrane Assembly for Hydrogen Fuel Cells. Langmuir. 2005, 21: 8487-8494.
    [47] C.A. Bessel, K. Laubernds, N.M. Rodriguez, et al. Graphite Nanofibers As An Electrode for Fuel Cell Applications. J. Phys. Chem. B. 2001, 105: 1115-1118.
    [48] J. Marie, R.Chenitz, M. Chatenet, et al. Highly Porous PEM Fuel Cell Cathodes Based on LowDensity Carbon Aerogels as Pt-support: Experimental Study of the Mass-transport Losses. J. Power Sources. 2009, 190: 423-434.
    [49] H. Du, B.Li, F. Kang, et al. Carbon Aerogel Supported Pt-Ru Catalysts for Using as the Anode of Direct Methanol Fuel Cells. Carbon. 2007, 45: 429-435.
    [50] H.A. Gasteiger, N.Markovic, P.N. Ross Jr, et al. Electro-oxidation of Small Organic Molecules on Well-characterized Pt-Ru Alloys. Electrochim. Acta. 1994, 39: 1825-1832.
    [51] C. Lamy, A.Lima, V. LeRhun, et al. Recent Advances in the Development of Direct Alcohol Fuel Cells (DAFC). J. Power Sources. 2002, 105: 283-296.
    [52] T. Lopes, E.Antolini, F. Colmati, et al. Carbon Supported Pt-Co (3:1) Alloy as Improved Cathode Electrocatalyst for Direct Ethanol Fuel Cells. J. Power Sources. 2007, 164: 111-114.
    [53] T. Lopes, E.Antolini, E.R. Gonzalez Carbon Supported Pt-Pd Alloy as An Ethanol Tolerant Oxygen Reduction Electrocatalyst for Direct Ethanol Fuel Cells. International Journal of Hydrogen Energy. 2008, 33: 5563-5570.
    [54]周建平,何建平,计亚军等.碳材料中多层次孔对负载铂电催化活性的影响.物理化学学报. 2008, 24: 839-843.
    [55]沈军,王琴,周斌等.碳气凝胶的充放电性能研究.材料导报. 2004, 18: 273-274.
    [56] N. Job, R. Pirard, J. Marien, et al. Porous Carbon Xerogels with Texture Tailored by pH Control During Sol-gel Process. Carbon. 2004, 42: 619-628.
    [57] N. Job, A.Thery, R. Pirard, et al. Carbon Aerogels, Cryogels and Xerogels: Influence of the Drying Method on the Textural Properties of Porous Carbon Materials. carbon. 2005, 43: 2481-2494.
    [58] N. Job, F.Sabatier, J.-P. Pirard, et al. Towards the Production of Carbon Xerogel Monoliths by Optimizing Convective Drying Conditions. Carbon. 2006, 44: 2534-2542.
    [59] B. Xu, X.Yang, X. Wang, et al. A Novel Catalyst Support for DMFC: Onion-like Fullerences. J. Power Sources. 2006,162: 160164.
    [60] J.J. Wang, G.P.Yin, J. Zhang, et al. High Utilization Platinum Deposition on Single-walled Carbon Nanotubes as Catalysts for Direct Methanol Fuel Cell. Electrochim. Acta. 2007,52:7042-7050.
    [61]王鈺,张拴勤,朱基千等.用碳气凝胶作电极材料制作双电层电容器.功能材料与器件学报.1998, 4: 263-267.
    [62] E.A. Ticianelli , C.R.Derouin, S. Srinivassan. Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells. J. Electroanal. Chem. 1988,251: 275-295.
    [63] J. Wang, G.Yin, Y. Shao, et al. Effect of Carbon Black Support Corrosion on the Durability of Pt/C Catalyst. J. Power Sources. 2007,171: 331-339.
    [64]叶青,武刚,李莉,等. Pt/C催化剂的硅钼酸电化学修饰.物理化学学报. 2006,22: 419-423.
    [65]陈胜洲,林维明,董新法. PtRuMo/C催化甲醇氧化的交流阻抗谱研究.广州大学学报(自然科学版). 2005,4:119-121.
    [66] P.E.Tsiakaras. PtM/C (M=Sn, Ru, Pd, W) Based Anode Direct Ethanol-PEMFCs: Structural Characteristics and Cell Performance. J. Power Sources. 2007,171: 107-112.
    [67] A.C.C. Tseung, P.K. Shen, K.Y. Chen. Precious Metal/Hydrogen Bronze Anode Catalysts for the Oxidation of Small Organic Molecules and Impure Hydrogen. J. Power Sources. 1996, 61: 223-225.
    [68] A.C.C. Tseung, K.Y. Chen.Hydrogen Spill-over Effect on Pt/WO3 Anode Catalysts. Catal. Today. 1997, 38: 439-443.
    [69] Z. Hou, B. Yi, H. Yu, et al.CO Tolerance Electroatalyst of PtRu-HxMeO3/C (Me = W, Mo) Made by Composite Support Method. J. Power Sources. 2003,123: 116-125.
    [70]姜鲁华,周振华,周卫江等.直接乙醇燃料电池PtSn/C电催化剂的合成表征和性能.高等学校化学学报. 2004,25: 1511-1516.
    [71] R. Mancharan, J.B. Goodenough. Methanol Oxidation in Acid on Ordered NiTi. J. Mater. Chem. 1992, 2: 875-888.
    [72] S. Song, S. Douvartzides, P. Tsiakaras. Exergy Analysis of An Ethanol Fueled Proton Exchange Membrane (PEM) Fuel Cell System for Automobile Applications. J. Power Sources. 2005, 145(2): 502-514.
    [73]赵新生,孙公权,王素力等. DMFC阳极催化层离子电阻的测定和优化.电源技术. 2004,28: 771-789.
    [74] J.T. Muller, P.M. Urban, W.F. Holderich. Impedance Studies On Direct Methanol Fuel Cell Anodes. J. Power Sources. 1999, 84: 157-160.
    [75]陈盛洲,林维明,董新法. PtRuMo/C催化甲醇氧化的交流阻抗谱研究.广州大学学报. 2005, 4: 119-121.
    [76]赵新生,姜鲁华,孙公权等.新型Pt-Sn/C阳极催化剂对乙醇的电催化氧化性能.催化学报. 2004,25: 983-988.
    [77] J. Shim, C.-R. Lee, H.-K. Lee, et al. Electrochemical Characteristics of Pt-WO3/C and Pt-TiO2/C Electrocatalysts in A Polymer Electrolyte Fuel Cell. J. Power Sources. 2001, 102: 172-177.
    [78] G. Wu, B.-Q. Xu. Carbon Nanotube Supported Pt Electrodes for Methanol Oxidation: A Comparison Between Multi- and Single-walled Carbon Nanotubes. J. Power Sources. 2007 ,174: 148-158.
    [79] M. Carmo, V.A. Paganin, J.M. Rosolen, et al. Alternative Supports for the Preparation of Catalysts for Low-temperature Fuel Cells: the Use of Carbon Nanotubes. J. Power Sources. 2005, 142: 169-176.
    [80]李瑞芳,尚贞锋,王贵昌等.扶手椅型单壁碳纳米管的理论研究.高等学校化学学报. 2002, 23: 1356-1359.
    [81]吴小利,岳涛,陆荣荣等.碳纳米管的表面修饰及FTIR,Raman和XPS光谱表征.光谱学与光谱分析. 2005,25: 1595-1598.
    [82]陈小华,陈传盛,孙磊等.碳纳米管的表面修饰及其在水中的分散性能研究.湖南大学学报. 2004,31: 18-21.
    [83] B. Beden, C. Lamy. The Electrooxidation of CO: A Test Reaction in Electrocatalysis. Electrochim. Acta. 1990, 35: 691-704.
    [84] S. Mukerjee, J. McBreen. Effect of Particle Size on the Electrocatalysis by Carbon-supported Pt Electrocatalysts: An In Situ XAS Investigation. J. Electroanal. Chem. 1998, 448: 163-171.
    [85] Y. Liang, J. Li, Q.-C. Xu, et al. Characterization of Composite Carbon Supported PtRu Catalyst and Its Catalytic Performance for Methanol Oxidation. J. Alloys and Compounds. 2008, 465: 296-304.
    [86]董昆明,林国栋,张鸿斌.碳纳米管负载Mo-Co-S基HDS/HDN催化剂的制备及其表征研究.厦门大学学报. 2006,45: 63-68.
    [87] K. Balakrishnan, J. Schwank. A Chemisorption And XPS Study of Bimetallic Pt-Sn/Al2O3 Catalysts. J. Catal. 1991, 127: 287-306.
    [88] Y.J. Li, C.C. Chang, T.C. Wen. A Mixture Design Approach to Thermally Prepared Ir-Pt-Au Ternary Electrodes for Oxygen Reduction in Alkaline Solution. J. Appl. Electrochem. 1997, 27: 227-234.
    [89] M.-K. Min, J. Cho, K. Cho, et al. Particle Size and Alloying Effects of Pt-based Alloy Catalysts for Fuel Cell Applications. Electrochim. Acta. 2000, 45: 4211-4217.
    [90] T. Toda, H. Igarashi,H. Uchida, et al. Enhancement of The Electroreduction of Oxygen on Pt Alloys With Fe, Ni And Co. J. Electrochem. Soc. 1999, 146: 3750-3756.
    [91] G. Tamizhmani, G.A. Capuano. Improved Electrocatalytic Oxygen Reduction Performance of Platinum Ternary Alloy-Oxide in Solide-Polymer-Electrolyte Fuel Cells. J. Electrochem. Soc. 1994, 141: 968-975.
    [92] R.B. Levy, M. Boudart. Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis . Science. 1973, 181: 547-549.
    [93] D.R. McIntyre, G.T.Burstein, A. Vossen. Effect of Carbon Monoxide on the Electrooxidation of Hydrogen by Tungsten Carbide. J. Power Sources. 2002,107: 67-73.
    [94] S.T. Oyama, J.C. Schlatter, J.E. Metcalfe, et al. Preparation And Characterization of Early Transition-Metal Carbides And Nitrides. Ind. Eng. Chem. Res. 1988, 27: 1639-1648.
    [95] B. Rajesh, V. Karthik, S. Karthikeyan, et al. Pt-WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells. Fuel. 2002, 81: 2177-2190.
    [96] G. Bronoel, E. Museux, G. Leclercq, et al. Study of Hydrogen Oxidation on Carbides. Electrochim. Acta. 1991, 36: 1543-1547.
    [97] T. Matsumoto, Y. Nagashima, T. Yamazaki, et al. PEMFC Anode Composed of Mo2C Catalyst And Carbon Nanotube Electrodes. Electrochem. Solid-State Lett. 2006, 9: A160-A162.
    [98]靳广州,樊秀菊,孙桂大等.碳化钼的制备与表征.无机材料学报. 2007, 22: 504-508.
    [99] P. Perez-Romo, C. Potvin, J.-M. Manoli, et al. Phosphorus-Doped Molybdenum Oxynitrides And Oxygen-Modified Molybdenum Carbides: Synthesis, Characterization, And Determination of Turnover Rates for Propene Hydrogenation. J. Catal. 2002, 208: 187-196.
    [100] P. Delporte, F. Meunier, C. Pham-Huu, et al. Physical Characterization of Molybdenum Oxycarbide Catalyst: TEM, XRD And XPS. Catal. Today. 1995, 23: 251-267.
    [101] H. Zhong, H.Zhang, G. Liu, et al. A Novel Non-Noble Electrocatalyst for PEM Fuel Cell Based on Molybdenum Nitride. Electrochem. Commun. 2006, 8: 707-712.
    [102] S. Izhar, M.Yoshida, M. Nagai. Characterization And Performances of Cobalt-Tungsten And Molybdenum-Tungsten Carbides As Anode Catalyst for PEFC. Electrochim. Acta. 2009, 54: 1255-1262.
    [103]田立朋,李伟善,李红. Pt/HxMoO3电极上甲醇的催化氧化.精细化工. 2000,17: 107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700