用户名: 密码: 验证码:
聚合物荧光微球及荧光凝胶的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以4-Br-1, 8-萘酐为原料,经中间体4-Br-N-烯丙基-1, 8-萘酰亚胺合成了六种可聚合的1, 8-萘酰亚胺荧光单体,利用红外、核磁共振等技术对所合成的产物进行了结构确认,采用紫外-可见吸收光谱、荧光激发发射光谱表征了产物的荧光性质。利用无皂乳液聚合方法制备了苯乙烯与两种1, 8-萘酰亚胺荧光单体的共聚物微球。SEM照片显示共聚物的外形为表面光洁、粒径分布均匀的球形。荧光光谱和荧光显微镜照片都说明,得到的聚合物在紫外光照射下能发出蓝色荧光的微球。合成了N-苯基-4-(2-羟基乙基氨基)-1, 8-萘酰亚胺和N-(2-羟基乙基)-4-乙氧基-1, 8-萘酰亚胺两种荧光小分子化合物,通过红外光谱和核磁共振氢谱确证了其结构,测试了它们的荧光光谱。将合成的两种荧光小分子接枝到SMA的侧基上,红外、核磁共振等表征结果说明接枝是成功的。将接枝SMA溶解于氢氧化钠水溶液,以MMA为单体,在溶液中进行了乳液聚合。测试结果表明,乳液聚合得到了表面覆盖有接枝SMA的PMMA荧光微球。荧光来自苯乙烯-马来酸酐接枝荧光共聚物,说明利用合成的SMA荧光乳化剂通过乳液法制备聚合物荧光微球是可行的。进行了荧光水凝胶制备的初步研究,得到了具有荧光的PVA、PAM水凝胶。
Researches and applications of fluorescence material are one of important focus in material field nowadays. Fluorescence materials include organic or inorganic materials. Advantages of organic fluorescence materials are high fluorescence photons efficiency, widely luminescence wavelength and various varieties. Therefore, more attentions are about inorganic materials in investigation and application. Organic fluorescence materials were used as dyes and pigments for many products formerly. For instance, it acted as fluorescent brighteners for some plastic and fibre. And it often was used to dye in fibre as fluorescent dyes, for example nylon. Many new synthetic organic fluorescence materials have excellent photochemical and photophysical characteristic. They are not only used in dyes and pigments, but also are used in biology medication, electron information, engineering materials, environment protect, energy, agriculture and so on. For example, they may be used as DNA cleavers, solar cell, fluorescent probes and OLEDs. Along with studies on synthesize, relations of structure and capability, the excellent photoelectricity would be applied furthest in every fields.
     Currently, synthesize of organic fluorescence materials are organic fluorescence molecule and fluorescence polymer mostly. Fluorescence emission wavelength and intensity relate to structure of molecule. The molecules often have fluorescence groups and auxochrome. Conjugate degree of molecule and property of substitute group have many influences to fluorescence. Classify of fluorescence materials base on structure of molecule, there are aroma condensed ring compound, intramolecule charge transfer compound with conjugate structure and some metal complex compound. The research of aroma condensed ring compounds are focus on perylene and derivatives. The studies on secondly kind compound are most broad and active. They include stilbene, coumarin derivatives, pyrazolone derivatives, 1,8-naphthalimide derivatives, anthraquinone derivatives and rhodamine derivatives. 8-oxyquinoline was studied most in metal complex compounds. After the relations between structure and fluorescence performance are confirmed, fluorescence molecules are synthesized by appropriate route according to demand of luminescent structure.
     Polymer fluorescence material is one of important species in function polymer. There are obvious advantages to compare polymer fluorescence material with fluorescence molecule. The consistency of fluorescence molecule and backing is bad. Distributing of fluorescence molecules are not homogeneous, they are easy tofall off and separate from mixture. Fluorescence units are bonded to polymer chain, so they are stable and good at bearing water and organic solvent. The chromophores distributing very homogeneous and the content of chromophore is stable. There are two way to prepare fluorescence polymer. The first, responded active molecules are polymerized by free radical or condensation polymerization. The other way, fluorescence molecules are grafted on polymer chain. Physics mixing is method too. But the way have defect as above. The synthesis is according to structure and reaction condition through suit way.
     During the last few years, luminescent material has become a focus of investigation. 1,8-naphthalimide derivatives substituted at the 4 position with electron-donating groups can have high fluorescent quantum yields, they have been applied in the many fields. They are used for fluorescent dyes, sensors, organic light emitting diodes (OLEDS), fluorescent probes and photochemical DNA cleavers. With the syntheses of polymerisable 1, 8-naphthalimides, studies and applications of their copolymers are increasing. Copolymers containing fluorescent structure unit have good film forming ability, heat-durability, solvent resistance and high fluorescent quantum yields.
     In this paper, we used 4-Br-1, 8-naphthalic anhydride as raw material. 4-Br-N-allyl-1, 8-naphthalimide was synthesized by the reaction of 4-Br-1, 8-naphthalic anhydride and allylamine. Then we used 4-Br-N-allyl-1, 8-naphthalimide together with alkyl alcohol to synthesize a series of 4-Alkoxy-N-allyl-1, 8-naphthalimide fluorescence derivatives. IR and 1HNMR were used to analyze the structure of the compound in order to insure that we have obtained the target product. UV-vis spectrum and the fluorescence spectrum were used to study the fluorescence property of the product. The fluorescence properties of monomers were studied, and we also compared the fluorescence properties among monomers in acetone solution or in film-forming process.
     There are several traditional methods to prepare fluorescent microsphere:emulsion polymerization, dispersion polymerization and suspension polymerization. Emulsifier-free emulsion polymerization can be used to prepare surface clean and mono-disperse microspheres. The pollution of the environment from emulsifier is eliminated. Emulsifier-free emulsion polymerization becomes a focus of research. Especially, it is used in the field of adhesives and paint. In this paper, fluorescent polystyrene microspheres were prepared by emulsifier-free emulsion polymerization. The results showed that emulsifier-free emulsion polymerization was an effective method for the preparation of uniform polystyrene microspheres in micron-size. In order to prepare the polystyrene fluorescent microspheres with controllable sizes, the factors on polystyrene microspheres diameter and size distribution have been investigated and discussed, such as monomer concentration, initiator reagent, the ionic strength of electrolyte. The polymerisable fluorescent monomer, 4-ethoxyl-N-allyl-1, 8-naphthalimide, was synthesized and characterized using FT-IR spectra, 1H-NMR and fluorescence spectra. A copolymer of styrene and 4-ethoxyl-N-allyl-1, 8-naphthalimide was prepared by emulsifier-free emulsion polymerization and characterized using fluorescence spectra.
     Fluorescent microspheres are a new type of functional polymer materials, widely used in biomedical engineering. At present, the application of the actual production of the fluorescent microspheres, all rely on imports. The study of the preparation of fluorescent microspheres method has important practical significance. Fluorescence refers to the diameter of microspheres in the nano-to micro-scope, load have fluorescent material, by an external stimulus to stimulate the energy of light solid particles. Its shape can be any shape, typical for the spherical shape. Carriers of fluorescent microsphere are organic or inorganic compound materials. In this paper, fluorescent microspheres of polymethyl methacrylate (PMMA) were prepared by emulsion preparation. Emulsifier is copolymer of styrene and maleic anhydride (SMA), which grafted with fluorescent monomer (1, 8 naphthalimide fluorescent units). The temperature was controlled around 78℃, potassium persulfate acted as initiator for emulsion polymerization, reaction time was 12 hours. The degree of hydrolysis of SMA was changed by adding different amount of alkali (NaOH). The best degree of hydrolysis of SMA was studied. Fluorescent nano-microspheres were obtained. The microspheres were confirmed and measured by FT-IR, fluorescence spectra, SEM and hondrometer. The same way was used to prepare polystyrene fluorescent nanospheres. The result shows that PMMA are microspheres and the surfaces of microspheres are not smooth. Particle size is about 100nm. The polymer mic0rosphere can emit an intense fluorescence.
引文
[1]王艳忠,黄素萍.新型荧光材料的应用及其发展趋势[J].化工新型材料,2000, 11(28):13-15.
    [2] Takaaki Sakamoto, Chyongjin Pac. A“Green”Route to Perylene Dyes: Direct Coupling Reactions of 1,8-Naphthalimide and Related Compounds under Mild Conditions Using a“New”Base Complex Reagent, t-BuOK/DBN[J]. J. Org. Chem., 2001, 66: 94-98.
    [3] Zhaochao Xu, Xuhong Qian, Jingnan Cui. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission: Cu(II)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore[J]. Org. Lett., 2005, 14(7):3029-3032.
    [4] Jia-An Gan, Qun Liang Song, Xiao Yuan Hou, Kongchang Chen, He Tian. 1,8-Naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162: 399–406.
    [5] M. Eugenio Vázquez, Juan B. Blanco, Severo Salvadori et.al. 6-N, N-Dimethylamino-2,3-naphthalimide: A New Environment-Sensitive Fluorescent Probe inδ- andμ-Selective Opioid Peptides[J]. J. Med. Chem., 2006, 49:3653-3658
    [6] Zhi-Fu Tao, Xuhong Qian. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis [J]. Dyes and Pigments, 1999, 43:139-145.
    [7] Ivo Grabchev, Jean-Marc Chovelon, Vladimir Bojinov. New green fluorescent polyvinylcarbazole copolymer with 1,8-naphthalimide side chains as chemosensor for iron cations[J]. Polym. Adv. Technol., 2004, 15: 382–386.
    [8] H.B. Zheng, W. Lu, Z.Y. Wang. Electrochemical and electrochromic properties of poly (ether naphthalimide) s and related model compounds[J]. Polymer, 2001, 42: 3745-3750.
    [9] Yunqi Liu, Gui Yu, Hongyu Li, He Tian, Daoben Zhu. Electroluminescence properties of new multi-functional copolymers containing carbazole, naphthalimideand oxadiazole[J]. Thin Solid Films, 2002, 417:107-110.
    [10] T. Konstantinova, R. Lazarova, V. Bojinov. On the photostability of some naphthalimide dyes and their copolymers with methyl methacrylate[J]. Polymer Degradation and Stability, 2003, 82: 115-118.
    [11] Guoli Tu, Chongyu Mei, Quanguo Zhou et al. Highly Efficient Pure-White-Light-Emitting Diodes from a Single Polymer: Polyfluorene with Naphthalimide Moieties [J]. Adv. Funct. Mater, 2006, 16:101-106.
    [12]赵同丰,赵德丰,于华云,程侣柏. 1,8-萘酰亚胺类荧光材料的进展[J].染料工业, 1997, 34(1):8-15.
    [13] Shao-Chieh Chang, Ronald E. Utecht, David E. Lewis. Synthesis and bromination of 4-alkylamino-N-alkyl-1,8-naphthalimides[J]. Dyes and Pigments, 1999, 43:83-94.
    [14] Bindu Abraham, Sun McMasters, Mellisa A. Mullan, Lisa A. Kelly. Reactivities of Carboxyalkyl-Substituted 1, 4, 5, 8-Naphthalene Diimides in Aqueous Solution[J]. J. Am. Chem. Soc., 2004, 126: 4293-4300.
    [15] Seher Sali, Sylvie Guittonneau, Ivo Grabchev. A novel blue fluorescent chemosensor for metal cations and protons, based on 1,8-naphthalimide and its copolymer with styrene[J]. Polym. Adv. Technol. 2006, 17: 180–185.
    [16] Vladimir B. Bojinov, Temenushka N. Konstantinova. Fluorescent 4-(2, 2, 6, 6-tetramethylpiperidin-4-ylamino)-1, 8-naphthalimide pH chemosensor based on photoinduced electron transfer [J]. Sensors and Actuators B, 2006, 123(2):869-876.
    [17] Zhe Li, Jingping Zhang. An efficient theoretical study on host-guest interactions of a fluoride chemosensor with F-, Cl- and Br- [J]. Chemical Physics, 2006, 331:159–163.
    [18] Thorfinnur Gunnlaugsson, Paul E. Kruger, T. Clive Lee et al. Dual responsive chemosensors for anions: the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule[J]. Tetrahedron Letters, 2003, 44: 6575–6578.
    [19] Zhaochao Xu, Xuhong Qian, Jingnan Cuia, Rong Zhang. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+fluorescent chemosensor with a large red-shift in emission[J]. Tetrahedron 2006, 62:10117–10122.
    [20] Frederick M. Pfeffer, Marianne Seter, Naomi Lewcenko Neil W. Barnett. Fluorescent anion sensors based on 4-amino-1,8-naphthalimide that employ the 4-amino N–H[J]. Tetrahedron Letters, 2006, 47:5241–5245.
    [21] Qiong-Qiong Chen, Lin Lin, Hong-Mei Chen et. al. A polyamidoamine dendrimer with peripheral 1,8-naphthalimide groups capable of acting as a PET fluorescent sensor for the rare earth cations[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180: 69–74.
    [22] Dawei Cui, Xuhong Qian, Fengyu Liu, Rong Zhang. Novel Fluorescent pH Sensors Based on Intramolecular Hydrogen Bonding Ability of Naphthalimide[J]. Org. Lett., 2004, 6(16):2757-2760.
    [23] Vladimir B. Bojinov, Danail B. Simeonov, Nikolai I. Georgiev. A novel blue fluorescent 4-(1, 2, 2, 6, 6-pentamethylpiperidin-4-yloxy)-1, 8-naphthalimide pH chemosensor based on photoinduced electron transfer [J]. Dyes and Pigments, 2008,76: 41- 46.
    [24] Zhaochao Xu, Yi Xiao, Xuhong Qian et al. Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT)[J]. Org. Lett., 2005, 7 (5):889-892.
    [25]Hirayama F. Intermolecular excimer formation. I Diphenyl and triphenyl alkanes[J]. J. Chem. Phys., 1965, 42:3163-3171.
    [26] Konstantinova, T., Draganov, A. Konstantinov, Hr..über die polymerisation von styrol in anwesenheit von farbstoff-derivaten des 1, 3, 5-triazins[J]. Die Angewandte Makromolare Chemie, 1975, 43: 29-35.
    [27] Peters AT, Bide MJ. Amino derivatives of 1,8-naphthalic anhydride and derived dyes for synthetic-polymer fibers[J]. Dyes and Pigments, 1985, 6(5):349-375.
    [28] Peters AT, Bide MJ. Intermediates and dyes for synthetic-polymer fibers. Benzo [b]naphtho [3, 2-d] thiophene-6, 7-dicarboxylic acid imides and benzimidazo dibenzothio[J]. Dyes and Pigments, 1985, 6(6):417-433.
    [29] Konstantinova T, Meallier P, Grabchev I. The synthesis of some 1,8-naphthalicanhydride derivatives as dyes for polymeric materials[J]. Dyes and Pigments, 1993, 22(3):191-198.
    [30] J. T. Guthrie, T. Konstantinova, E. Ginova. Polymers of Acrylonitrile and the Naphthalimide Derivatives of some Fluorescent Dyes[J]. Dyes and Pigments, 1997, 34(4): 287~296.
    [31] Grabchev I, Meallier P, Konstantinova T, Popova M. Synthesis of some unsaturated 1, 8-naphthalimide dyes[J]. Dyes and Pigments, 1995:28(1):41-46.
    [32] Iva Grabchev. Photophysical Characteristics of Polymerizable 1,8-Naphthalimide Dyes and their Copolymers with Styrene or Methylmethacrylate[J]. Dyes and Pigments, 1998, 38(4): 219-226.
    [33] F. Cacialli, C.-M. Bouche, P. Le Barny et al. Naphthalimide polymers for organic light-emitting diodes[J]. Optical Materials, 1998, 9:163-167.
    [34] Weihong Zhu, Yongbo Hu, He Tian. Synthesis and luminescent properties of novel condensed copolymers[J]. Synthetic Metals, 2000, 111–112:477–479.
    [35] T. Konstantionva, I. Grabchev. On the Copolymerization of Styrene with Some Dyes that are Naphthalimide Derivatives[J]. Journal of Applied Polymer Science, 1996, 62:447-449.
    [36] Ivo Grabchev, Desislava Staneva, Rositza Betcheva. Sensor activity, photodegradation and photostabilisation of a PAMAM dendrimer comprising 1,8-naphthalimide functional groups in its periphery[J]. Polymer Degradation and Stability, 2006, 91:2257-2264.
    [37] Edin Nuhiji, Paul Mulvaney. Detection of Unlabeled Oligonucleotide Targets Using Whispering Gallery Modes in Single, Fluorescent Microspheres[J]. Small, 2007, 3(8):1408–1414.
    [38] Pope A J, Haupts U, Moore K J. Homogeneous Fluorescence Readouts for Miniaturized High-throughput Screening: Theory and Practice[J]. Drug Discov Today, 1999, 4:350 - 362.
    [39]于淼,邹明强,何昭阳.高分子荧光微球在生物医学领域中的某些应用[J].分析测试学报, 2006, 25(3):115-119.
    [40]曲会英,杨黄浩,林鹏等.荧光团杂化纳米SiO2微球作为生物标记探针的应用研究[J].高等学校化学学报, 2003, 24(3):422-424.
    [41] Mark Bradley, Lois Alexander, Karen Duncan et al.. pH sensing in living cells using fluorescent microspheres[J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18:313–317.
    [42] ChaoWang, Qiang Ma, Wenchao Dou et al.. Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as fluorescence probes[J]. Talanta, 2009, 77:1358–1364.
    [43]汪地强等.荧光微球的制备及应用[J].高分子材料科学与工程, 2004, 20(4):42-45.
    [44]张容容,徐自力.荧光微球的制备技术及其应用进展[J].高分子通报,2009,1:63-70.
    [45] Campbell A I ,Bartlett P. Fluorescent hard-sphere polymer colloids for confocal microscopy [J]. J Colloid Interface Sci., 2002, 256:325-330.
    [46] Schwartz A, W illiam s J, Stevens R D. Method of preparing fluorescently labeled microbeads. U. S. Pat. , 4609689, 1986-09-02[1985-01-28]. http://www.patentstorm.us/patents/4609689.html.
    [47] Guang-Ming Qiu, You-Yi Xu, Bao-Ku Zhu et al. Novel, Fluorescent, Magnetic, Polysaccharide-Based Microsphere for Orientation, Tracing, and Anticoagulation: Preparation and Characterization [J]. Biomacromolecules, 2005, 6:1041-1047
    [48] Rembaum A. Protein specific fluorescent microspheres for labelling a protein.U.S.Pat, 4326008. 1982-04-20[1980-04-25]. http://www.patentstorm.us/ patents/4326008/description.html.
    [49] S.H. Qin,H.S. Bomer,K. Matyjaszewski,S. Sheiko. Densoly grafted molecular brushe swith high molecular weight backbone by ATRP and graft techniques [J]. polym. PrePr., 2002, 43:237-23.
    [50]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].北京,化学工业出版社,1997.
    [51] W.D. Harkins. A general theory of the mechanism emulsion polymerization[J].J. Am. Chem. Soc., 1947, 69(6): 1428-1444.
    [52] W. D. Harkins. A general theory of the reaction loci in emulsion polymerization [J]. J Chem Phys, 1945, 13: 381-382.
    [53] W. V. Smith, R. H. Ewart. Kinetics of emulsion polymerization[J]. J Chem Phys. 1948, 16(6): 592
    [54] W.V. Smith. The Kinetics of Styrene Emulsion Polymerization[J]. J Am Chem Soc, 1948, 70(11): 3695-3702.
    [55]C.P. Roe. Surface chemistry aspects of emulsion polymerization [J]. Ind. Eng. Chem., 1968, 60(9): 20-33.
    [56]R. M. Fitch, C. H. Tsai et al. polymer colloids [C]. New York, plenum press, 1971, 73-103.
    [57]R. M. Fitch, Y. K. Kamath. Coagulation—control of particle number during nonaqueous emulsion polymerization of methyl methacrylate [J]. J. Colloid Interface Sci., 1976, 54(1): 6-12.
    [58] Pichot, Christian; Charleux, Bernadette; Charreyre, Marie-Therese; Revilla, Javier. Recent developments in the design of functionalized polymeric microspheres[J]. Macromolecular Symposia J., 1994, 88:71-87.
    [59] K.H. van Streun, W.J. Belt, Pieter Piet, Anton L.. Synthesis, purification and characterization of cationic latices produced by the emulsion copolymerization of styrene with 3-(methacrylamidinopropyl)trimethylammonium chloride[J]. Eur. Polym. J, 1991, 27:931-938.
    [60] Guillaume JL, Pichot C, Guillot J. Emulsifier-free emulsion copolymerization of styrene and butyl acrylate. II. Kinetic studies in the presence of ionogenic comonomers Journal of Polymer Science Part A: Polymer Chemistry, 1988, 26:1937-1959.
    [61] T. Delair, V. Marguet, C. Pichot, B. Mandrand. Synthesis and characterization of cationic amino functionalized polystyrene latexes[J]. Colloid Polym Sci, 1994, 272:962-970.
    [62] Sauzedde F, Ganachaud F, Elaissari A, Pichot C. Emulsifier-free emulsion copolymerization of styrene with two different amino-containing monomers: II. Surface and colloidal characterization[J]. J Appl. Polym. Sci., 1997, 65:2331-2342.
    [63] Sakota K, Okaya T. Preparation and Characterisation of Carboxylated Isoprene/Styrene Copolymer Latexes[J]. J Appl Polym Sci, 1976, 20(3):1735-1744.
    [64] Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW. Preparation of Highly Sulfonated Polystyrene Model Colloids[J]. J Polym Sci. Polym Chem 1989, 27:3187-3199.
    [65] Ganachaud F, Mouterde G, Delair T, Elaissari A, Pichot C. Preparation and characterization of cationic polystyrene latex particles of different aminated surface charges [J]. Polym Adv Technol, 1995, 6:480-488.
    [66] Chonde Y, Krieger IM. Emulsion polymerization of styrene with ionic comonomer in the presence of methanol [J]. J Appl Polym Sci, 1981, 26:1819-1827.
    [67] Stefan A. F. Bon, Henno Van Beek, Pieter Piet, Anton L. German. Emulsifier-free synthesis of monodisperse core-shell polymer colloids containing chloromethyl groups[J]. J Appl Polym Sci, 1995, 58:19-29.
    [68] Twigt F, Piet P, German AL. Preparation and co-catalytic properties of functionalized latices [J]. J Eur Polym, 1991, 27:939-945.
    [69] Z. Liu, H. Xiao. Soap-free emulsion copolymerisation of styrene with cationic monomer: effect of ethanol as a cosolvent [J]. Polymer, 2000, 41:7023–7031.
    [70] Y. Xia, B. Gates, Y. Yin, Y. Lu. Monodispersed Colloidal Spheres: Old Materials with New Applications [J]. Adv. Mater., 2000, 12:693-713.
    [71] A. Kosiorek, W. Kandulski, H. Glaczynska, M. Giersig. Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks [J]. Small, 2005, 1(4):439-444.
    [72] L.M. Goldenberg, J.Wagner, J. Stumpe et al. Ordered Arrays of Large Latex Particles Organized by Vertical Deposition [J]. Langmuir, 2002, 18:3319-3323.
    [73] C. López. Materials aspects of photonic crystals[J]. Adv. Mater, 2003, 15:1679-1704.
    [74] F. Schuth. Endo- and Exotemplating to Create High-Surface-Area InorganicMaterials [J]. Angew. Chem. Int. Ed., 2003, 42:3604-3622.
    [75] H. Lee, J.M. Lee, S.E. Shim, B.H. Lee, S. Choe. Synthesis of carboxylic acid functionalized nanoparticles by reversible addition–fragmentation chain transfer (RAFT) miniemulsion polymerization of styrene [J]. Polymer, 2005, 46:3661-3668.
    [76] K. Ishizu, N. Tahara. M icrosphere synthesis by emulsion copolymerization of methyl methacrylate with poly (methacrylic acid) macromonomers [J]. Polymer, 1996, 37:2853-2856.
    [77] J. Liu, C.H. Chew, L.M. Gan, W.K. Teo, L.H. Gan. Synthesis of monodisperse polystyrene microlatexes by emulsion polymerization using a polymerizable surfactant [J]. Langmuir, 1997, 13:4988-4994.
    [78] D. Duracher, A. Elaissari, C. Pichot. Preparation of poly (N-isopropylmethacrylamide) latexes kinetic studies and characterization[J]. J. Polym. Sci. A, 1999, 37(12):1823-1837.
    [79] M.A. Awan, V.L. Dimonie, M.S. El-Aasser. Anionic dispersion polymerization of styrene. I. Investigation of parameters for preparation of uniform micron-size polystyrene particles with narrow molecular weight distribution [J]. J. Polym. Sci. A, 1996, 34:2633-2649.
    [80] S. Zhou, B. Chu. Synthesis and Volume Phase Transition of Poly(methacrylic acid-co-N-isopropylacrylamide) Microgel Particles in Water[J]. J. Phys. Chem. B, 1998, 102:1364-1371.
    [81] F. Meseguer. Colloidal crystals as photonic crystals[J]. Colloids Surf. A, 2005, 270-271: 1-7.
    [82] L. Boguslavsky, S. Baruch, S. Margel. Synthesis and characterization of polyacrylonitrile nanoparticles by dispersion/emulsion polymerization process[J]. J. Coll. Inter. Sci., 2005, 289(1):71-75.
    [83] J.W. Goodwin, J. Hearn, C.C. Ho, R.H. Ottewill. Studies on the preparation and characterisation of monodisperse polystyrene laticee[J]. Colloid Polym. Sci., 1974, 252: 464-471.
    [84] J.W. Goodwin, J. Hearn, C.C. Ho, R.H. Ottewill. The preparation and characterisation of polymer latices formed in the absence of surface active agents [J].Br. Polym. J., 1973, 5:347-362.
    [85] T.R. Aslamazova. Emulsifier-free latexes and polymers on their base [J]. Prog. Org. Coating, 1995, 25:109-167.
    [86] Y.S. Papir, M.E. Woods, I.M. Krieger. Packing of spheres and its effect on the viscosity of suspensions [J] J. Paint Technol., 1970, 42(550):579-587.
    [87] Zhong-Ze Gu, Haihua Chen, Shuai Zhang et al.. Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 302: 312–319.
    [88]沈一丁.高分子表面活性剂[M].北京,化学工业出版社,2002.
    [89] Dennis Miller, Matthias Lóffler. Rheological effects with a hydrophobically modified polymer[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 288:165–169.
    [90] Chuzo Fujimoto, Yutaka Fujise, Seigou Kawaguchi. Macromolecular surfactant as a pseudo-stationary phase in micellar electrokinetic capillary chromatography[J]. Journal of Chromatography A, 2000, 871:415–425
    [91] Matthew R. Hammond, Chaoxu Li, Constantinos Tsitsilianis, Raffaele Mezzenga. Hierarchical self-organization in polyelectrolyte-surfactant complexes based on heteroarm star block copolyampholytes[J]. Soft Matter, 2009, 5:2371–2377.
    [92] H. Q. Xie, G. C. Xu et al. Synthesis and properties of poly (acrylic Acid) with uniform poly (methyl methacrylate) side chains [J]. J. Macromol. Sci. Part A: Pure and Applied Chemistry, 1992, 29(3): 263-276.
    [93] A. Hill, F. Candau, and J. Selb. Properties of hydrophobically associating polyacrylamides: influence of the method of synthesis [J]. Macromolecules, 1993, 26(17): 4521-4532.
    [94]杨向荣.影响聚丙烯酸盐增稠性的因素[J].印染助剂, 2000, 17(4): 11-13.
    [95]孙芳等.增稠性丙烯酸类多元共聚物的研究[J].化学与粘合, 2000, 2: 66-68.
    [96]严瑞瑄.水处理剂中间体的现状和发展[J] .精细与专用化学品, 1999 , 13:10-15.
    [97]陈永春,程时远,曹红燕等.两亲接枝共聚物PMMA-g-PEO溶液性质及在反相乳液聚合中的应用[J].高分子材料科学与工程, 2003, 19(3):182-186.
    [98] Yuh-Lang Lee, Anna Dudek, Tai-Nian Ke et al. Mixed Polyelectrolyte-Surfactant Langmuir Monolayers at the Air/Water Interface[J]. Macromolecules, 2008, 41:5845-5853.
    [99] Tang QW, Lin JM, Wu JH. Preparation and water absorbency of a novel poly(acrylate-co-acrylamide)/ vermiculite superabsorbent composite[J]. J Appl Polym Sci, 2007, 104:735-739
    [100] Ju H.-K., Kim S.-Y., Lee Y.-M. pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide)[J]. Polymer, 2001, 42: 6851-6857.
    [101] Kaneko Y., Sakai K., Kikuchi A., et al. Influence of Freely Mobile Grafted Chain Length on Dynamic Properties of Comb-Type Grafted Poly(N-isopropylacrylamide) Hydrogels[J]. Macromolecules, 1995, 28: 7717-7723.
    [102] Cai H., Zhang, Z.-P., Sun, P.-C., et al. Synthesis and characterization of thermo- and pH- sensitive hydrogels based on Chitosan-grafted N-isopropylacrylamide viaγ-radiation[J]. Radiat. Phys. Chem., 2005, 74, 26-30.
    [103] Annaka, M.; Matsuura, T.; Kasai, M.; Nakahira, T.; Hara, Y.; Okano, T. Preparation of Comb-Type N-Isopropylacrylamide Hydrogel Beads and Their Application for Size-Selective Separation Media[J]. Biomacromolecules, 2003, 4:395-403.
    [104]刘守信等.温度/pH敏感性接枝共聚物水凝胶P(DMAEMA-g-NIPAM)的合成及性质研究[J].化学学报,2009, 67(16):1910-1916.
    [105]袁丛辉等.大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究[J].化学学报,2009, 67(16):1929-1935.
    [106] Hong Li, Ping Zhang, Long Zhang et al. Composite microspheres with PAM microgel core and polymerisable surfactant/polyoxometalate complexes shell[J]. J. Mater. Chem., 2009, 19, 4575–4586.
    [107] R. Yoshida, K. Uchida, Y. Kaneko, et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes[J]. Nature, 1995, 374:240-242.
    [108] Y. Kaneko, S. Nakamura, K. Sakai, et al. Rapid Deswelling Response ofPoly(N-isopropylacrylamide) Hydrogels by the Formation of Water Release Channels Using Poly (ethylene oxide) Graft Chains[J]. Macromolecules, 1998, 31:6099-6105.
    [109] J.T. Zhang, S.W. Huang, Y.N. Xue, R.X. Zhuo. Poly(N-isopropylacrylamide) Nanoparticle-Incorporated PNIPAAm Hydrogels with Fast Shrinking Kinetics[J]. Macromol. Rapid Commun., 2005, 26:1346-1350.
    [110] X. Zhang, R. Zhuo. A novel method to prepare a fast responsive, thermosensitive poly(N-isopropylacrylamide) hydrogel[J]. Macromol. Rapid Commun., 1999, 20:229-231.
    [111] N. Kato, Y. Sakai, S. Shibata. Wide-Range Control of Deswelling Time for Thermosensitive Poly(N-isopropylacrylamide) Gel Treated by Freeze-Drying[J]. Macromolecules, 2003, 36:961-963.
    [112] K. Haraguchi, T. Takehisa. Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties[J]. Adv. Mater., 2002, 14:1120-1124.
    [113] K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay[J]. Macromolecules, 2003, 36:5732-5741.
    [114] X. Hou, K.S. Siow. Novel interpenetrating polymer network electrolytes[J]. Polymer, 2001, 42:4181-4188.
    [115] D. Kaneko, T. Tada, J.P. Kurokawa, et al. Mechanically Strong Hydrogels with Ultra-Low Frictional Coefficients[J]. Adv. Mater., 2005, 17:535-538.
    [116] Qunwei Tang, Xiaoming Sun, Qinghua Li, et al. A simple route to interpenetrating network hydrogel with high mechanical strength[J]. Journal of Colloid and Interface Science, 2009, 339:45–52.
    [117] Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., et al. . Novel injectable neutral solutions of chitosan form biodegradable gels in situ [J]. Biomaterials, 2000, 21: 2155–2161.
    [118] Gariepy, E. R., Leroux, J. C. In situ-forming hydrogels-review of temperature-sensitive systems[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58: 409–426.
    [119] Hoemann, C. D., Sun, J., Legare, A., McKee, M. D., Ranger, P., Buschmann, M. D.. A thermosensitive polysaccharide gel for cell deliveryin cartilage repair[J]. Transactions Orthopedics Research Society, 2001, 26: 626.
    [120] Bhattaraim, N., Ramay, H. R., Gunn, J., et al. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release[J]. Journal of Controlled Release, 2005, 103: 609–624.
    [121] Dang, J. M., Sun, D. N., Ya, Y. S., Sieber, A. N., Kostuik, J. P., Leong, K. W.. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells[J]. Biomaterials, 2006, 27: 406–418.
    [122] Martien, F. L.. Encyclopedia of polymer science and engineer. 1986, New York: Wiley, 17, 167.
    [123] Koyanoa, T., Koshizakib, N., Umeharab, H., Nagurac, M., & Minourab, N.. Surface states of PVA/chitosan blended hydrogels[J]. Polymer, 2000, 41: 4461–4465.
    [124] Minoura N., Koyano T., Koshizaki N., et al. Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogel[J]. Materials Science and Engineering C, 1998, 6:275–280.
    [125] Yu-Feng Tang, Yu-Min Du, Xian-Wen Hu, et al. Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel[J]. Carbohydrate Polymers, 2007, 67: 491–499.
    [126]姚日生,懂岸杰,刘永琼.药用高分子材料[M].北京,化学工业出版社,2003.
    [127] C.M. Schilli, M. Zhang, et al. A new double-responsive blockcopolymer synthesized via RAFT polymerization: poly(Nisopropylacrylamide)-block- poly(acrylicacid) [J]. Macromolecules, 2004, 37: 7861-7866.
    [128]罗彦凤,屈晟,孙姣霞,王远亮.新型pH敏感水凝胶的合成及表征[J].重庆大学学报,2009, 32(7):854-858.
    [129] V. Butun, N.C. Billingham, S.P. Armes. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: formation of micelles and reverse micelles in aqueous solution[J]. J.Am.Chem.Soc., 1998,120(45): 11818-11819.
    [130] G.H. Chen, W.G. Weng, D.J. Wu, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42:753-759.
    [131] S. Yang, X. Chen, S. Motojima. Coiling-chirality changes in carbon microcoils obtained by catalyzed pyrolysis of acetylene and its mechanism[J]. Appl. Phys. Lett., 2002, 81:3567-3569.
    [132] S. Yang, X. Chen, S. Motojima, M. Ichihara. Morphology and microstructure of spring-like carbon micro-coils/nano-coils prepared by catalytic pyrolysis of acetylene using Fe-containing alloy catalysts[J]. Carbon, 2005, 43:827-834.
    [133] J.F. Feller Y. Grohens. Electrical response of Poly(styrene)/carbon black conductive polymer composites (CPC) to methanol, toluene, chloroform and styrene vapors as a function of filler nature and matrix tacticity[J]. Synthetic. Met., 2005, 154:193-196.
    [134] S. Jia, P. Jiang, Z. Zhang, et al. Effect of carbon-black treatment by radiation emulsion polymerization on temperature dependence of resistivity of carbon-black-filled polymer blends[J]. Radiat. Phys. Chem., 2006, 75:524-531.
    [135] J. Loos, A. Alexeev, N. Grossiord, C.E. Koning, O. Regev. Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging[J]. Ultramicroscopy, 2005, 104:160-167.
    [136] X.T. Zhang, J. Zhang, Z.F. Liu. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte[J]. Carbon, 2005, 43:2186-2191.
    [137] J.H. Wu, J.M. Lin, M. Zhou. Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite[J]. Macromol. Rapid Commun., 2000, 21:1032-1034.
    [138] J.M. Lin, J.H. Wu, Z.F. Yang, et al. Synthesis and Properties of Poly(acrylic acid)/Mica Superabsorbent Nanocomposite[J]. Macromol. Rapid Commun., 2001, 22:422-424.
    [139] X.C. Xiao, R.X. Zhuo, J. Xu. Effects of reaction temperature and reaction time on positive thermosensitivity of microspheres with poly(acrylamide)/poly(acrylic acid)IPN shells[J]. Eur. Polym. J., 2006, 42:473-478.
    [140] P. Pissis, A. Kyritsis. Electrical conductivity studies in hydrogels [J]. Solid State Ionic, 1997, 97:105-113.
    [141] A. Lewandowski, M. Zajder, E. Frackowiak. Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte [J]. Electrochimic Acta, 2001, 46: 2777-2780.
    [142] Y. Saito, T. Azechi, T. Kitamura, Coordin. Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors [J]. Coordination Chemistry Reviews, 2004, 248:1469-1478.
    [143] Q.W. Tang, J.M. Lin, J.H. Wu, et al. Two-steps synthesis of a poly(acrylate-aniline) conducting hydrogel with an interpenetrated networks structure[J]. Carbohyd. Polym., 2007, 67:332-336.
    [144] Jianming Lin, Qunwei Tang, Jihuai Wu, et al. Two Steps Synthesis and Conductivity of Polyacrylamide/Cu Conducting Hydrogel[J]. Polymer Composites, 2009, 1132-1137.
    [145] Arvind Awadhia, S.L. Agrawal. Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes[J]. Solid State Ionics, 2007, 178:951–958.
    [146] Ichikawa, H., Fukumori, Y. A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly (Nisopropylacrylamide) gel dispersed in ethylcellulose matrix[J]. Journal of Controlled Release, 2000, 63:107–119.
    [147] Matsumoto, A., Ikeda, S., Harada, A., et al. Glucoseresponsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions[J]. Biomacromolecules, 2003, 4:1410–1416.
    [148] Choi, Y. S., Hong, S. R., Lee, Y. M., et al. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge[J]. Biomaterials, 1999, 20:409–417.
    [149] Yannas, I. V., Lee, E., Orgill, D. P., Skrabut, E. M., & Murphy, G. F.. Synthesis and characterization of a model extracellular matrix that induces partial regenerationof adult mammalian skin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86:933–937.
    [150] Lim, F., Sun, A. M.. Microencapsulated islets as bioartificial pancreas[J]. Science, 1980, 210:908–910.
    [151] Uludag, H., Vos, P. D., Tresco, P. A. Technology of mammalian cell encapsulation[J]. Advanced Drug Delivery Reviews, 2000, 42:29–64.
    [152] Pan LJ, Ren YJ, Cui F Z, et al. Viability and Differentiation of Neural Precursors on Hyaluronic Acid Hydrogel Scaffold [J]. Journal of Neuroscience Research. 2009, 87:3207–3220.
    [153] Tateishi, T., Chen, G., & Ushida, T.. Biodegradable porous scaffolds for tissue engineering[J]. Journal of Artificial Organs, 2002, 5:77–83.
    [154] Griffith, L. G. Polymeric biomaterials[J]. Acta materialia, 2000, 48:263–277.
    [155] Hoffman, A. S. Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2002, 54:3–12.
    [156] Lee, K. Y., & Mooney, D. J.. Hydrogels for tissue engineering[J]. Chemical Reviews, 2001, 101:1869–1880.
    [157] Chih-Ta Lee, Po-Han Kung, Yu-Der Lee. Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering[J]. Carbohydrate Polymers, 2005, 61:348–354.
    [158] Dmitri A. Ossipov, Karin Bra¨nnvall, Karin Forsberg-Nilsson. Formation of the First Injectable Poly(vinyl alcohol) Hydrogel by Mixing of Functional PVA Precursors[J]. Journal of Applied Polymer Science, 2007, 106:60–70.
    [159] R. Langer. Drugs delivery and targeting[J]. Nature, 1998, 392 (6679 suppl.):5-10.
    [160] S.W Kim. Hydrogels as drug delivery system[J]. Pharm. Int., 1983: 90–91.
    [161] K. Morimoto, A. Nagayasu, S. Fukanoki, et al. Evaluation of polyvinyl alcohol hydrogel asa sustained-release vehicle for rectal administration of in domethacin[J]. Pharm. Res., 1989, 6 (4):338–341.
    [162] Sharif M. Shaheen, Kazuo Yamaura. Preparation of theophylline hydrogels of atactic poly(vinyl alcohol) /NaCl/H2O system for drug delivery system[J]. Journal ofControlled Release. 2002, 81:367–377.
    [163] CHENG Jing, WANG Jun. Syntheses of amphiphilic biodegradable copolymers of poly(ethyl ethylene phosphate) and poly(3-hydroxybutyrate) for drug delivery[J]. Sci China Ser B-Chem. 2009, 52(7):961-968.
    [164] A. Gupta, R. Kumar, N. K. Upadhyay. Synthesis, Characterization and Efficacy of Chemically Crosslinked PVA Hydrogels for Dermal Wound Healing in Experimental Animals[J]. Journal of Applied Polymer Science, 2009, 111:1400–1408.
    [165] I. Grabchev, T. Konstantinova. Synthesis of some polymerisable 1,8-naphthalimide derivatives for use as fluorescent brighteners[J]. Dyes and Pigments, 1997, 33: 197-203.
    [166] Hai Shi Cao, Virginia Chang, Randy Hernandez, Michael D. Heagy. Matrix screening of substituted N-aryl-1,8-naphthalimides reveals new dual fluorescent dyes and unusually bright pyridine derivatives[J]. Journal of Organic Chemistry, 2005, 70: 4929-4934.
    [167] Zhao Chao Xu, Xu Hong Qian, Jing Nan Cui. Colorimetric and ratiometric fluorescent chemosensor with a large red-shift in emission: Cu (II)-only sensing by deprotonation of secondary amines as receptor conjugated to naphthalimide fluorophore[J]. Organic Letters, 2005, 7: 3029-3032.
    [168] Dmitry Kolosov, Vadim Adamovich, Peter Djurovich, et al. 1, 8-naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission[J]. Journal of the American Chemical Society, 2002, 124: 9945-9954.
    [169] Hui Qing Li, Zhi Qin Jiang, Xin Wang, et al. Electron transfer laser flash photolysis between nucleosides and probe triplet N - (2’-Hydroxyethyl) -1, 8-naphthalimide. Chemical Journal of Chinese Universities, 2004, 25(11): 2134-2136.
    [170] Zhi Fu Tao, Xu Hong Qian. Naphthalimide hydroperoxides as photonucleases: substituent effects and structural basis[J]. Dyes and Pigments, 1999, 43: 139-145.
    [171] Ivo Grabchev, Christo P, Vladimir B. 1,8-naphthalimides as blue emitting fluorophores for polymer materials[J]. Macromolecular Materials and Engineering, 2002, 287: 904-908.
    [172] Abbas Alli G. Shaikh, Antisar R. Hlil, Parvin A. Shaikh et al. Poly (aryleneether)s containing 1,2,4-triazole and phthalimide or naphthalimide moieties joined by a N-N linkage[J]. Macromolecules, 2002, 35: 8728-8737.
    [173] Chong Yu Mei, Guo Li Tu, Quan Guo Zhou, Yan Xiang Cheng. Green electroluminescent polyfluorenes containing 1,8-naphthalimide moieties as color tuner[J]. Polymer, 2006, 47: 4976-4984.
    [174] Takuo Sugioka, Allan S. Hay. Synthesis of novel poly(thioether-naphthalimide) s that utilize hydrazine as the diamine[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2001, 39: 1040–1050.
    [175] Jia An Gan, He Tian, Kong Chang Chen. Photoacid-induced fluorescent imaging by copolymer containing naphthalimide[J]. Polymers for Advanced Technologies, 2002, 13: 584-588.
    [176] Ivo Grabchev, Xu hong Qian, Yi Xiao, et al. Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide[J]. New Journal of Chemistry, 2002, 26: 920-925.
    [177] Fu Sheng Du, Yan Zhou, Zi Chen Li, Fu Mian Li. Vinyl monomers bearing chromophore moieties and their polymers. XII. Synthesis and fluorescence behavior of vinyloxy monomers having 1,8-naphthalimide moiety with different spacer lengths and their polymers[J]. Polymers for Advanced Technologies, 2000, 11: 798-804.
    [178] Hai Bin Zheng, Zhi Yuan Wang. Synthesis and characterization of poly (ethernaphthalimide) s[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 1999, 37: 3227–3231.
    [179] Shi Yi Xu, Guo Li Tu, Xiao Zu Han. Water-soluble fluorescent nanospheres as fluorosensor for detection of Cu2+[J]. Chemistry Letters, 2003, 32(10): 916-917.
    [180] Quangang Peng, Jin Zhai, Wenlong Wang et al. Fabrication of Organic/Inorganic Hybrid Nanocomposite of 1, 8-Naphthalimide and CdS in Self-Assembly Film[J]. Crystal Growth & Design, 2003, 3(5):623-626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700