用户名: 密码: 验证码:
P-TiO_2可见光光催化剂的制备及其在SiO_2质多孔材料上的负载
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了扩展TiO_2的光响应范围、抑制TiO_2由锐钛矿型向金红石型的转变,本文以磷酸为P源,使用溶胶-凝胶法在TiO_2中掺杂了非金属性很强的单一价态元素P。并考察了P的掺杂浓度、焙烧温度以及醋酸水解抑制剂对P-TiO_2结构及可见光催化活性的影响。根据掺杂浓度的不同,P在TiO_2中有两种存在状态,本文分别将其命名为“分散状态”和“富集状态”。研究表明,只有P掺杂量相对较低的“分散状态”具有可见光活性。减少P的总掺杂量、加入醋酸水解抑制剂、使TiO_2的水解过程与P的掺杂过程同时开始,这些方法都可以显著提高P-TiO_2的可见光催化活性。
     为了制备具有不同孔道结构和孔壁结晶程度的多孔SiO_2载体材料,本文向介孔分子筛的合成体系中,加入不同结构的天然SiO_2矿物作为孔壁材料,绕过了复杂而困难的孔壁晶化合成过程,在较温和的条件下制备出多种大比表面积矿物复合型多孔SiO_2材料。其中,介孔硅藻土和介孔蒙脱石都表现出十分优异的水热稳定性,在120℃水热反应数日后依然保持介孔结构和超大比表面积。
     负载过程中,P-TiO_2与多孔SiO_2载体在界面处发生相互作用,从而抑制了P-TiO_2的晶粒生长,并削弱了其体相Ti-O键红外振动。当SiO_2多孔载体自身的λg大于P-TiO_2时,复合后的光催化剂可见光活性显著下降。而使用孔壁结晶程度较高的SiO_2多孔载体,有助于提高P-TiO_2在紫外光下的催化活性。
TiO_2 photocatalytic degradation (PCD) method is one of the most promising methods in waste treatment, due to their high PCD rate of various organic compounds. However, the well-known highly photo-reactive anatase TiO_2 responds only under UV-light irradiation. In order to make better use of solar energy, many attempts have been made to sensitize TiO_2 into visible-light region. Since Asahi et al. (2001) first reported the visible-light photocatalytic activity of N-doped TiO_2, many researches have been carried out in order to dope TiO_2 with inorganic elements. It has been found that, comparing with other inorganic elements, phosphorus can significantly increase the specific surface area of TiO_2 and prevent the anatase-to-rutile phase transformation, resulting in the enhancement of photocatalytic activity of TiO_2. However, the mechanism of P doping has been subjected to a considerably smaller number of studies.
     Considering the difficulties in recycling process of fine powders, TiO_2 must be fixed on inert and ideal supports in order to be further used in large scale. Among various host materials, the porous silicates seem attractive candidates due to their high surface areas and chemical stabilities. Previous works have found that even the photo-inert porous SiO_2 supports also improved the photocatalytic activities of loaded TiO_2 to some extent, and the reasons for such enhancement are still not clear. Moreover, most of the researches only focus on a single type of SiO_2 support. While studies on the effects of porous structures, specific areas, wall components, and crystalline degrees of various SiO_2 supports on the photocatalytic activities of the loaded photocatalysts are very rear.
     In this article, by employing H3PO4 and Ti(OC4H9)4, P-doped TiO_2 nanoparticles with various phosphorus contents were synthesized by sol-gel method. The samples were calcinated at different temperatures and charactered by XRD, FTIR, Raman, UV-vis, XPS, and ICP methods, so that the effects of doping amount and the calcination temperatures on the crystalline structures, the crystal sizes, the specific areas, the bonding conditions, the dispersion of P, the adsorption edges, and the visible-light photocatalytic activities could be inspected. The results show that P species hinders the particle growth of anatase leading to remarkable increase of anatase-to-rutile phase transformation temperature. When the P content is very low, P species introduces oxygen into TiO_2 lattice and hence causes red shift of adsorption band edge of anatase, leading to the increased visible-light photocatalytic activity of P-doped TiO_2. While when the P content is very high, P species acts as the interface phase between TiO_2 clusters and strongly retards the crystal growth of anatase, resulting in the widened band gap of P-doped TiO_2. When calcined over 900 oC, a new titanyl phosphate, Ti5O4(PO4)4, was observed in P-doped TiO_2. One the basic of the above phenomena, a possible mechanism is also proposed to explain the formation of the two phases during the sol-gel process. In P-doped TiO_2, P species is likely to have two different states. One state is named as“separated state”, whose P content is very low so that the P species is surrounded by TiO_2. The other state is named as“congregated state”, whose P:Ti ratio is high enough to make the TiO_2 clusters isolated by P species. Both of the two phases hinder the crystal growth of anatase. But only the“separated state”shows visible-light photocatalytic activities and causes red-shift ofλg.
     In order to prevent the hydrolyzation speed of Ti(OC4H9)4, acetic acid was employed in the sol-gel process of P-doped TiO_2. The amount effects of acetic acid on the structures and visible-light photocatalytic activities of P-doped TiO_2 are examined carefully. Moreover, on the basic of our proposed doping mechanism of P species in TiO_2, reasons for the enhancement of visible-light photocatalytic activity caused by acetic acid were also deduced. The experimental results show that the addition of acetic acid leads to the lattice expansion, the increased crystal size, and slight decrease of anatase-to-rutile phase transformation temperature. It suggests that acetic acid improves the formation of“separated state”of P species in P-doped TiO_2, resulting in the red-shift ofλg and the decay of“congregated state”. With the help of acetic acid, P-doped TiO_2 could achieve very high visible-light photocatalytic activities under relatively low calcination temperatures.
     Natural SiO_2 minerals with perfect crystalline structures, such as quartz and montmorillonite, were employed as the pore-wall materials for the mesopores, in order to get various mesoporous SiO_2 supports with different crystalline degrees. Thus, the complicated crystallization process of mesoporous SiO_2 walls could be omitted. And mesoporous SiO_2 supports with various crystalline degrees could be easily synthesized by the similar synthetic method of MCM-41. The resultant compound mesoporous minerals were charactered by low-angle XRD, FTIR, TEM, and N2 adsorption/desorption isotherms, in order to check the porous structure, surface morphology, and hydrothermal stabilities of the samples. The compound mesoporous quartz exhibits mesoporous structure and its specific area is up to 600 m2/g or so. Although the vibrations of Si-O bonds vary after synthesis, the hydrothermal stabilities of mesoporous quartz are still no better than common MCM-41. Comparing with mesoporous quartz, the mesoporous montmorillonite displays high specific surface areas and extraordinary hydrothermal stabilities. Three types of silica resources, TEOS, Na2SiO3, and nano-scaled white silica, were employed during synthesis in order to reveal the effects of the type of silica resource on the specific surface areas and hydrothermal stabilities of mesoporous montmorillonite. In the best conditions, the specific surface areas of resultant mesoporous montmorillonite is up to 770 m2/g, and it keeps at 580 m2/g or so even after boiled for 10 days. In addition, natural macroporous diatomite is combined with mesoporous silica, resulting in a macro- and meso-porous hierarchical structure. The resultant mesoporous diatomite is composed of amorphous SiO_2, and its specific surface area is up to 860~1040 m2/g which is similar to the specific surface area of ordinary MCM-41. Moreover, these mesoporous diatomites display superior hydrothermal stabilities than ordinary MCM-41.
     Ten types of porous SiO_2 are employed as the supports of P-doped TiO_2, such as mesoporous quartz, mesoporous diatomite, mesoporous montmorillonite, MCM-41, SBA-15, dry gel of SiO_2, wet gel of SiO_2, montmorillonite, mordenite zeolite, and diatomite. These SiO_2 supports have various specific areas, porous structures, and crystalline degrees. During synthesis, the resultant SiO_2 supports are immersed in the sol of P-doped TiO_2 for loading, and the ratio between P-doped TiO_2 and compound photocatalyst is 25 wt%. The compound photocatalysts were charactered by XRD, FTIR, Raman, and UV-vis spectra. The results suggest that the porous structures of various SiO_2 supports are remained after loading of P-doped TiO_2, and both of the particle sizes and the crystal growth of anatase are strongly restricted by porous SiO_2 supports. Comparing with unloaded P-doped TiO_2, the Ti-O vibrations of anatase in compound photocatalysts reduce sharply, and only PT-MCM displays Ti-O-Si vibration at 960 cm-1. All of the compound photocatalysts show superior visible-light photocatalytic activities when the calcination temperature is around 500 ~ 600 oC. And PT-S displays the best photocatalytic activity, indicating the advantage of wet gel material. The specific areas, the surface charges, the porous structures, and the crystalline degrees of the pore walls show remarkable effects on the crystal sizes and photocatalytic activities of loaded P-doped TiO_2. If theλg of porous SiO_2 support is larger than P-doped TiO_2, the visible-light photocatalytic activity of resultant compound photocatalysts would drop sharply. Moreover, high crystalline degree of porous SiO_2 support benefits the UV-light photocatalytic activity of P-doped TiO_2.
引文
[1]FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238:37-38.
    [2]KARKMAZ M, PUZENAT E, GUILLARD C, et al. Photocatalytic degradation of the alimentary azo dye amaranth mineralization of the azo group to nitrogen [J].Appl. Catal. B,2004, 51:183-194.
    [3]MALATO S, BLANCO J, VIDAL A, et al. Applied studies in solar photocatalytic detoxification an overview [J].Solar Energy,2003,75: 329-336.
    [4]MAURIZIO A, VINCENZO A, AGATINO D P, et al. Preparation characterization and photoactivity of polycrystalline nanostructured TiO_2 catalysts [J].J. Phys. Chem. B,2004,108:3303-3310.
    [5]YU J G, YU H G, CHENG B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO_2 thin films prepared by liquid phase deposition [J].J. Phys. Chem. B,2003,107: 13871-13879.
    [6]HURUM D C, AGRIOS A G, GRAY K A, Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO_2 using EPR [J].J. Phys. Chem. B,2003,107:4545-4549.
    [7]TERUHISA O, KOJI S, MICHIO M, Photocatalytic activities of pure rutile particles isolated from TiO_2 powder by dissolving the anatase component in HF solution [J].J. Phys. Chem. B,2001,105:2417-2420.
    [8]MIAO L, TANEMURA S, TOH S, et al. Heating-sol-gel template process for the growth of TiO_2 nanorods with rutile and anatase structure [J].Appl. Surf. Sci.,2004,238:175-179.
    [9]KOELSCH M, CASSAIGNON S, GUILLEMOLES J F, et al. Comparison of optical and electrochemical properties of anatase and brookite TiO_2 synthesized by the sol-gel method [J].Thin Solid Films,2002,403:312-319.
    [10]DOCTERS T, CHOVELON J M, HERRMANN J M, et al. Syntheses of TiO_2photocatalysts by the molten salts method application to the photocatalytic degradation of prosulfuron [J].Appl. Catal. B,2004,50:219-226.
    [11]KOLENKO Y V, CHURAGULOV B R, KUNST M, et al. Photocatalytic properties of titania powders prepared by hydrothermal method [J].Appl. Catal. B,2004,54:51-58.
    [12]ZHU Y, ZHANG L, GAO C, et al. The synthesis of nanosized TiO_2 powder using a Sol-Gel method with TiCl4 as a precursor [J].J. Mater. Sci.,2000,35:4049-4054.
    [13]ZHANG Y, ZHANG H, XU Y, et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO_2 [J].J. Solid State Chem.,2004,177:3490-3498.
    [14]ARA?A J, PE?A ALONSO A, DO?A RODRíGUEZ J M, et al. Comparative study of MTBE photocatalytic degradation with TiO_2 and Cu-TiO_2 [J].Appl. Catal. B,2008,78:355-363.
    [15]WANG W, ZHANG J, CHEN F, et al. Preparation and photocatalytic properties of Fe3+-doped Ag@TiO_2 core-shell nanoparticles [J].J. Colloid and Interface Sci.,2008,323:182-186.
    [16]GRACIEN E B, SHEN J, SUN X, et al. Photocatalytic activity of manganese, chromium and cobalt-doped anatase titanium dioxide nanoporous electrodes produced by re-anodization method [J].Thin Solid Films,2007,515: 5287-5297.
    [17]SAYILKAN F, ASILTüRK M, TATAR P, et al. Photocatalytic performance of Sn-doped TiO_2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights [J].Mater. Res. Bull.,2008, 43:127-134.
    [18]CHU S Z, INOUE S, WADA K, et al. Highly porous (TiO_2-SiO_2-TeO2) /Al2O3/TiO_2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and Sol-Gel process [J].J. Phys. Chem. B,2003,107: 6586-6589.
    [19]HIROSHI Y, SHIGEO H. Photocatalytic activities of microcrystalline TiO_2 incorporated in sheet sillicates of clay [J].J. Phys. Chem.,1989,93: 4833-4837.
    [20]BOZZI A, GUASAQUILLO I, KIWI J. Accelerated removal of cyanides from industrial effluents by supported TiO_2 photo-catalysts [J].Appl. Catal. B,2004,51:203-211.
    [21]SHIMIZU K I, KANEKO T, FUJISHIMA T, et al. Selective oxidation of liquid hydrocarbons over photoirradiated TiO_2 pillared clays [J].Appl. Catal. A,2002,225:185-191.
    [22]BOUZAZA A, LAPLANCHE A. Photocatalytic degradation of toluene in the gas phase: comparative study of some TiO_2 supports [J].J. Photochem. Photobio. A,2002,150:207-212.
    [23]CARL A, ALLEN J B. Improved photocatalytic activity and characterization of mixed TiO_2/SiO_2 and TiO_2/Al2O3 materials [J].J. Phys. Chem. B,1997,101:2611-2616.
    [24]CORRENT S, COSA G, SCAIANO J C, et al. Photophysical properties of nanosized TiO_2 clusters included in zeolites Y, ? and mordenite [J].Chem. Mater.,2001,13:715-722.
    [25]STEFAN H B, CLAUDIA T, CLAUDIA S, et al. Ru(bpy)32+/TiO_2-codoped zeolites: synthesis, characterization, and the role of TiO_2 in electron transfer photocatalysis [J].J. Phys. Chem. B,2001,105:5374-5382.
    [26]XU Y, LANGFORD C H. Photoactivity of titanium dioxide supported on MCM-41, zeolite X and zeolite Y [J].J. Phys. Chem. B,1997,101:3115-3121.
    [27]KIM Y, YOON M. TiO_2/Y-zeolite encapsulating intramolecular change transfer molecules: a new photocatalyst for photoreduction of methyl orange in aqueous medium [J].J. Mol. Catal. A,2001,168:257-263.
    [28]王鲁燕.不同结构TiO_2-SiO_2纳米复合氧化物的制备、表征和比较研究[D].太原:太原理工大学化学学院,2008.
    [29]邓捷,吴立峰.钛白粉应用手册[M].北京:化学工业出版社,2004.
    [30]IRMAK S, KUSVURAN E, ERBATUR O. Degradation of 4-chloro-2- methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide [J].Appl. Catal. B,2004,54:85-91.
    [31]WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surfaces [J].Nature,1997,388:431-432.
    [32]FUJISHIMA A, RAO T N, TRYK D A. Titanium dioxide photo catalysis [J].J. Photochem. Photobio. C,2000,1:1-21.
    [33]SAKAI H, BABA R, HASHIMOTO K, et al. Selective killing of a single cancerous T24 cell with TiO_2 semiconducting micro electrode under irradiation [J].Chem.Lett, 1995, 24 (2):185-186.
    [34]WANG R, SAKAI N, FUJISHIMA A, et al. Studies of surface wettability conversion on TiO_2 single crystal surfaces [J].J. Phys. Chem. B,1999,103: 2188-2194.
    [35]SAKAI N, WANG R, FUJISHIMA A, et al. Effect of ultrasonic treatment on highly TiO_2 surfaces [J].Langmuir,1998,14:5918-5920.
    [36]DIEBOLD U. The surface science of titanium dioxide [J].Surf. Sci. Rep.,2003,48:53-229.
    [37]NOZIK A J, MEMMING R. Physical chemistry of semiconductor-liquid interfaces [J].J. Phys. Chem.,1996,100:13061-13078.
    [38]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2005.
    [39]余锡宾,王桂华,罗衍庆,等.二氧化钛纳米微粒的制备与光催化活性[J].化学研究与应用,2000,12(1):17-19.
    [40]高伟,吴凤清,罗臻,等.TiO_2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4):660-662.
    [41]JULIUS M M, TORBJOM L, ESTEBAN A, et al. Structure, composition, and morphology of photo electrochemically active TiO_2-XNX thin films deposited by reactive DC magnetron sputtering [J].J. Phys. Chem. B,2004, 108:20193-20198.
    [42]LIN J, YU J C. An investigation on photo catalytic activities of mixed TiO_2-rare earth oxides for the oxidation of acetone in air [J].J. Photochem. Photobio. A,1998,116:63-67.
    [43]张青红,高廉,郭景坤.四氯化钛水解法制备纳米二氧化钛纳米晶的影响因素[J].无机材料学报,2000,15(6):992-997.
    [44]袁志好,孙永昌,王玉红,等.铁酸锌掺杂对二氧化钛结构相变及光催化性能的影响团[J].高等学校化学学报,2004,25(10):1875-1878.
    [45]BICKLEY R, GONZALEA C T, LEES J, et al. A structural investigation of titanium dioxide photocatalysts [J].J. Solid State Chem.,1991,92: 178-190.
    [46]ZHANG H, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO_2 [J].J.Phys.Chem.B,2000,104:3481-3487.
    [47]王国宏.多孔二氧化钛光催化材料的水热制备[D].武汉:武汉理工大学材料学院,2008.
    [48] LI F, SUN S, JIANG Y, et al. Photodegradation of an azo dye using immobilized nanoparticles of TiO_2 supported by natural porous mineral [J].J. Hazard. Mater., 2008,152:1037-1044.
    [49]LI F, JIANG Y, XIA M, et al. A high-stability silica-clay composite: synthesis, characterization and combination with TiO_2 as a novel photocatalyst for Azo dye [J].J. Hazard. Mater.,2009,165:1219-1223.
    [50]COZZOLINO M, SERIO M D, TESSER R, et al. Grafting of titanium alkoxides on high-surface SiO_2 support: An advanced technique for the preparation of nanostrucrured TiO_2/SiO_2 catalysts [J].Appl. Catal. A, 2007,325:256-262.
    [51]谢毅.非金属掺杂TiO_2粉体及薄膜的低温制备、结构与性能表征[D].武汉:武汉理工大学材料学院,2008.
    [52]陈代梅.非金属元素掺杂纳米TiO_2的制备和光催化特性研究[D].天津:天津大学化工学院,2007.
    [53]SATO S. Photocatalytic activity of NOx-doped TiO_2 in the visible light region [J].Chem. Phys. Lett.,1986,123:126-128.
    [54]ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J].Science,2001,293:269-271.
    [55]HO W, YU J C, LEE S. Low-temperature hydrothermal synthesis of S-doped TiO_2 with visible light photocatalytic activity [J].J. Solid State Chem.,2006,179:1171-1176.
    [56]OHNO T, AKIYOSHI M, UMEBAYASHI T, et al. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light [J].Appl. Catal. A,2004,265:115-121.
    [57]VALENTIN C D, PACCHIONI G, SELLONI A. Theory of carbon doping of titanium dioxide [J].Chem. Mater.,2005,17:6656-6665.
    [58]HATORI A, YAMAMOTO M, TADA H, et al. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO_2 films [J].Chem. Lett.,1998,27:707-708.
    [59]YU J C, YU J, HO W, et al. Effect of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders [J].Chem. Mater.,2002,14:3808-3816.
    [60]WEI Z, MA W, CHEN C, et al. Efficient degradation of toxic organic pollution with Ni2O3/TiO_2-xBx under visible irradiation [J].J. Am. Chem. Soc.,2004,126:4782-4783.
    [61]EVEERTT D H. IUPAC manual of symbols and terminology [J].J. Pure App. Chem.,1972,31:578-638.
    [62]KRESGE C T, LEONOWICE M E, ROTH W J, et al. Liquid-crystalline phases as templates for the synthesis of mesporous silica [J].Nature,1992, 359:710-713.
    [63]BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular sieve prepared with liquid crystal templates [J].J. Am. Chem. Soc.,1992,114:10834-10843.
    [64]FENG X, FRYXELL F, WANG L Q, et al. Functiontionalized monolayers on ordered mesoporous supports [J].Science,1997,267:923-929.
    [65]INAGAKI S J, GUAN S Y, OHSUNA T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure [J].Nature,2002,416:304-307.
    [66]TIAN B Z, LIU X Y, Tu B. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs [J].Nature Mater.,2003,2:159-163.
    [67]RYOO R, KIM J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium [J].J. Chem. Soc., Chem. Commun.,1995, 711-712.
    [68]LIN W Y, CAI Q, PANG W Q, et al. New mineralization agents for the synthesis of MCM-41 [J].Microporous Mesoporous Mater.,1999,33:187-196.
    [69]RYOO R, JUN S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process [J].J. Phys. Chem. B,1997,101:317-320.
    [70]YU J, SHI J L, CHEN H R, et al. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica [J]. Microporous Mesoporous Mater.,2001,46:153-162.
    [71]CAI Q, LIN W Y, XIAO F S, et al. The preparation of highly ordered MCM-41 with extremely low surfactant concentration [J]. Microporous Mesoporous Mater.,1999,32:1-15.
    [72]LIN H P, MOU Y C, Salt effect in post-synthesis hydrothermal treatment of MCM-41 [J]. Microporous Mesoporous Mater., 2002,55:69-80.
    [73]YE Z, WU D, SUN Y H. Synthesis of more stable MCM-41 under high-pressurized conditions [J]. Mater. Lett.,2002,55:17-19.
    [74]KIM W J, YOO J C, DAVID T H. Synthesis of hydrothermally stable MCM-41 with initial adjustment of pH and direct addition of NaF [J].Microporous Mesoporous Mater.,2000,39:177-186.
    [75]KOYANO K A, TATSUMIL T. Stabization of mesoporous molecular sievesby trimethylsilylation [J]. J. Phys. Chem. B,1997,101:9436-9440.
    [76]YU J, SHI J L, WANG L Z, et al. Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ration synthesis systems [J].J. Mater. Sci. Lett.,2001,20:289-291.
    [77]YU J, SHI J L, WANG L Z, et al. Synthesis of MCM-48 under low surfactant/silicon molar ratio condition [J].J. Mater. Sci. Lett.,2000,9: 1461-1464.
    [78]ZHAO D Y, NIE C, ZHOU Y M, et al. Comparison of disordered mesoporous aluminosilicates with highly ordered Al-MCM-41 on stability, acidity and catalytic activity [J]. Microporous Mesoporous Mater.,2001,68:11-20.
    [79]孙敬姝.α-石英-石墨的纳米非晶和中间亚稳相的制备及其高压合成和相变的研究[D].长春:吉林大学物理学院,2006.
    [80]吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社, 2004:3-19.
    [81]YU J C, ZHANG L, ZHENG Z, et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity [J].Chem. Mater.,2003,15:2280-2286.
    [82]SHI Q, YANG D, JIANG Z, et al. Visible-light photocatalytic regeneration of NADH using P-doped TiO_2 nanoparticles [J].J. Mol. Catal. B,2006,43:44-48.
    [83]LIN L, LIN W, XIE J L, et al. Photocatalytic properties of phosphor-doped titania nanoparticles [J].Appl. Catal. B,2007,75:52-58.
    [84]K?R?SI L, PAPP S, BERTóTI I, et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO_2 [J].Chem. Mater.,2007,19:4811-4819.
    [85]K?R?SI L, DéKáNY I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide [J].Colloids Surf. A,2006,280:146-154.
    [86]YU H F, Zhang Z W, HU F C. Phase stabilities and photocatalyticactivities of P/Zn-TiO_2 nanoparticles able to operate under UV-vis light irradiation [J].J. Alloys Compd.,2008,465:484-490.
    [87]YU H F. Photocatalytic abilities of gel-derived P-doped TiO_2 [J].J. Phys. Chem. Solids,2007,68:600-607.
    [88]ORENDORZ A, BRODYANSKI A, L?SCH J, et al. Phase transformation and particle growth in nanocrystalline anatase TiO_2 films analyzed by X-ray diffraction and Raman spectroscopy [J].Surf. Sci.,2007,601:4390-4394.
    [89]COLóN G, SáNCHEZ-ESPA?A J M, HIDALGO M C, et al. Effect of TiO_2 acidic pre-treatment on the photocatalytic properties for phenol degradation [J].J. Photochem. Photobiol. A,2006,179:20-27.
    [90]REINAUER F, GLAUM R. Ideal and real structure of Ti5O4(PO4)4: X-ray and HRTEM investigations [J].Acta Cryst. B,1998,54:722-731.
    [91]REINAUER F, GLAUM R, GRUEHN R. Preparation and chemical vapor transport of mixed valent titanium(III,IV) phosphates. With a note on the crystal structure of titanium(IV)-orthophosphate Ti5P4O20 [J].Eur. J. Solid State Inorg. Chem.,1994,31:779-791.
    [92]DING X Z, LIU X H, HE Y Z. Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders [J].J. Mater. Sci. Lett.,1996,15:1789-1791.
    [93]ZHANG H, BANFIELD J F. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles [J].Am. Mineral.,2009,84:528-535.
    [94]KELLY S, POLLAK F H, TOMKIEWICZ M. Raman spectroscopy as a morphological probe for TiO_2 aerogels [J].J. Phys. Chem. B,1997,101: 2730-2734.
    [95]王建强,辛柏福,于海涛,等.二氧化钛系列光催化剂的拉曼光谱[J].高等学校化学学报,2003,24(7):1237-1240.
    [96]BENMOKHTAR S, JAZOULI A E, CHAMINADE J P, et al. New process of preparation, structure, and physicochemical investigations of the titanylphosphate Ti2O(H2O)(PO4)2 [J].J. Solid State Chem.,2007,180:2713-2722.
    [97]BENMOKHTAR S, JAZOULI A E, CHAMINADE J P, et al. Synthesis, structure, magnetic susceptibility and M?ssbauer and Raman spectroscopies of the new oxyphosphate Fe0.50TiO(PO4) [J].J. Solid State Chem.,2006,179: 3709-3717.
    [98]TIAN G, FU H, JING L, et al. Synthesis and photocatalytic activity of stable nanocrystalline TiO_2 with high crystallinity and large surface area [J].J. Hazard. Mater.,2009,161:1122-1130.
    [99]秦旭,井立强,薛连鹏,等.磷酸对TiO_2纳米粒子光催化剂的改性[J].无机化学学报,2008,24(7):1108-1112.
    [100]RYU H S, SONG W, HONG S. Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment [J].Surf. Coat. Technol.,2008,202:1853-1858.
    [101]CONNOR P A, MCQUILLAN A J. Phosphate adsorption onto TiO_2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study [J]. Langmuir,1999,15:2916-2921.
    [102]GONG W. A real time in situ ATR-FTIR spectroscopic study of linear phosphate adsorption on titania surfaces [J].Int. J. Miner. Process.,2001, 63:147-165.
    [103]RIBEIRO C C, GIBSON I, BARBOSA M A. The uptake of titanium ions by hydroxyapatite particles—structural changes and possible mechanisms [J].Biomaterials,2006,27:1749-1761.
    [104]HUANG Z, SHI W. Thermal degradation behavior of hyperbranched polyphosphate acrylate/tri(acryloyloxyethyl) phosphate as an intumescent flame retardant system [J].Polym. Degrad. Stab.,2007,92:1193-1198.
    [105]YE L, QU B. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends [J].Polym. Degrad. Stab.,2008,93:918-924.
    [106]KUO D H, TSENG W C. Amorphous Ti-P-O films grown withfour-component chemical vapor deposition [J].Mater. Chem. Phys.,2005,93: 361-367.
    [107]ZHANG M, SHI L, YUAN S, et al. Synthesis and photocatalytic properties of highly stable and neutral TiO_2/SiO_2 hydrosol [J].J. Colloid Interface Sci.,2009,330:113-118.
    [108]WILHELM P, STEPHAN D. Photodegradation of rhodamine B in aqueous solution via SiO_2@TiO_2 nano-spheres [J].J. Photochem. Photobio. A,2007,185: 19-25.
    [109]ARAI Y, TANAKA K, KHLAIFAT A L. Photocatalysis of SiO_2-loaded TiO_2 [J].J. Mol. Catal. A,2006,243:85-88.
    [110]李谦,祝迎春,毛立群,等.TiO_2纳米薄膜的微结构控制[J].无机材料学报,2003,18(4):951-954.
    [111]殷竟洲,杨文澜,毛广秀.纳米TiO_2的低温制备及晶相控制研究[J].应用化工,2009,38(2):252-255.
    [112]杨驰,罗望华.纳米TiO_2抗菌陶瓷材料的研究[J].江西化工,2008,6(2):81-84.
    [113]安太成,袁建梅,陈嘉鑫,等.不同酸催化剂对有机-钛柱撑蒙脱石复合材料光催化活性的影响[J].功能材料,2006,37(4):597-600.
    [114]KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,352:710-712.
    [115]ZHAO D, FENG J, HOU Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J].Science,1998, 279:548-552.
    [116]刘雷,张高勇,董晋湘,等.硅源对纯硅MCM-41介孔分子筛结构性能的影响[J].精细化工,2004,21(2):95-97.
    [117]CASSIERS K, LINSSEN T, MATHIEU M, et al. A detailed study of thermal, hydrothermal, and mechanical stabilities of wide range of surfactant assembled mesoporous silicas [J].Chem. Mater.,2002,14:2317-2324.
    [118]IGARASHI N, KOYANO K A, TANAKA Y, et al. Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves [J].Microporous Mesoporous Mater.,2003,59:43-52.
    [119]BLIN J L, BLETA R GHANBAJA J, et al. Fluorinated emulsions: Templates for the direct preparation of macroporous–mesoporous silica with a highly ordered array of large mesopores [J].Microporous Mesoporous Mater.,2004,94:74-80.
    [120]NAKAO T, NOGAMI M. Preparation of silica-pillared clays with micro- and meso-pores using aminopropyltriethoxysilane and tetraethoxysilane [J].Mater. Lett.,2005,59:3221-3225.
    [121]JIA Y, HAN W, XIONG G, et al. Layer-by-layer assembly of TiO_2 colloids onto diatomite to build hierarchical porous materials [J].J. Colloid Interf. Sci.,2008,323:326-331.
    [122]ZHAO Y, ZHENG M B, CAO J M, et al. Easy synthesis of ordered meso/macroporous carbon monolith for use as electrode in electrochemical capacitors [J].Mater. Lett.,2008,62:548-551.
    [123]SEL O, KUANG D, THOMMES M, et al. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating [J].Langmuir,2006,22:2311-2322.
    [124]SUN Y W, WANG Y J, GUO W, et al. Triblock copolymer and poly(ethylene glycol) as templates for monolithic silica material with bimodal pore structure [J].Microporous Mesoporous Mater.,2006,88:31-37.
    [125]ISHII R, NAKATSUJI M, OOI K. Preparation of highly porous silica nanocomposites from clay mineral: a new approach using pillaring method combined with selective leaching [J].Microporous Mesoporous Mater.,2005, 79:111-119.
    [126] YANG J, ZHANG J, ZHU L, et al. Synthesis of nano titania particles embedded in mesoporous SBA-15: Characterization and photocatalyticactivity [J].J. Hazard. Mater.,2006,137:952-958.
    [127]HRACHOVáJ, KOMADEL P, FAJNOR V ?. The effect of mechanical treatment on the structure of montmorillonite [J].Mater. Lett,2007,61: 3361-3365.
    [128]KHRAISHEH M A M, AL-GHOUTI M A, ALLEN S J, et al. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite [J].Water Res.,2005,39:922-931.
    [129]EDLER K J, WHITE J W. Further improvements in the long-range order of MCM-41 materials [J].Chem. Mater.,1997,9:1226-1233.
    [130]LINDLAR B, KOGELBAUER A, PRINS R. Chemical, structural, and catalytic characteristics of Al-MCM-41 prepared by pH-controlled synthesis [J].Microporous Mesoporous Mater.,2000,38:167-176.
    [131]RYOO R, JUN S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process [J].J. Phys. Chem. B,1997,101:317-320.
    [132]KOSUGE K, SATO T, KIKUKAWA N, at el. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate [J].Chem. Mater.,2004,16:899-905.
    [133]孙继红,巩雁军,范文浩,等.SiO_2-PEG凝胶体系织构特性的研究[J].高等学校化学学报,2000,21(1):95-98.
    [134]梁燕,张军旗,张劲松.表面活性剂对纳米MCM-41分子筛分散性的影响[J].材料研究学报,2005,19(1):23-27.
    [135]余锡宾,王华林,訾振华,TEOS-PEG无机-有机杂化复合材料的研究[J].高分子材料科学与工程,1999,15(1):87-89.
    [136]AL-GHOUTI M A, KHRAISHEH M A M, ALLEN S J, et al. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth [J].J. Environ. Manage.,2003, 69:229-238.
    [137]李惠云,孙渝,乐英红,等.水解对MCM-41分子筛的结构破坏作用[J].高等学校化学学报,1999,20(2):272-276.
    [138]ABDELHAMID S, IGOR M, JALE S R, et al. Synthesis of mesostructured lamellar aluminophosphates using supramolecular templates [J].Chem. Mater.,1996,8:2080-2088.
    [139]张存满,徐政,刘茜,等.气氛对Al-MCM-41热稳定性的影响[J].无机材料学报,2003,18(4):861-866.
    [140]KIM J M, JUN S, RYOO R. Improvement of hydrothermal stability of mesoporous silica using salts: reinvestigation for time-dependent effects [J].J. Phys. Chem. B,1999,103:6200-6205.
    [141]肖丰收,韩宇,裘式纶.介孔分子筛的酸性和水热稳定性[J].高等学校化学学报,2002,23(10):1847-1853.
    [142]蒋引珊,刘见芬,王安平.蒙脱石原位合成有序介孔材料[J].高等学校化学学报,2003,24(11):1956-1958.
    [143]JIANG T, ZHAO Q, YIN H. Synthesis of highly stabilized mesoporous molecular sieves using natural clay as raw material [J].Appl. Clay Sci., 2007,35:155-161.
    [144]NAKATSUJI M, ISHII R, WANG Z M, et al. Preparation of porous clay minerals with organic-inorganic hybrid pillars using solvent-extraction route [J].J. Colloid Interface Sci.,2004,272:158-166.
    [145]BENJELLOUN M, COOL P, LINSSEN T, et al. Acidic porous clay heterostructures: study of their cation exchange capacity [J].Microporous Mesoporous Mater.,2001,49:83-94.
    [146]BELESSI V, LAMBROPOULOU D, KONSTANTINOU I, at al. Structure and photocatalytic performance of TiO_2/clay nanocomposites for the degradation of dimethachlor [J].Appl. Catal. B,2007,73:292-299.
    [147]LUCKHAM P F, ROSSI S. The colloidal and rheological properties of bentonite suspensions [J].Advs. Colloid Interface Sci.,1999,82:43-92.
    [148]GUO Q, ZHANG Z, ZHANG X, et al. Preparation and characterization of mesoporous silica-pillared montmorillonite [J].J. Porous Mater.,2009,16:209-213.
    [149]ZHU H Y, DING Z, BARRY J C. Porous solids from layered clays by combined pillaring and templating approches [J].J. Phys. Chem. B,2002,106: 11420-11429.
    [150]CATIVIELA C, FIGUERAS F, FRAILE J M, et al. Comparison of the catalytic properties of protonic zeolites and exchanged clays for Diels-Alder synthesis [J].Appl. Catal. A,1993,101:253-267.
    [151]LI F, JIANG Y, XIA M, et al. A novel mesoporous silica-clay composite and its thermal and hydrothermal stabilities [J].J. Porous Mater.,2009,DOI: 10.1007/s10934-009-9283-6.
    [152]PANAYOTOV D, YATES J J T. Electron exchange on TiO_2-SiO_2 photocatalysts during O2 and organic molecule adsorption– the role of adsorbate electrophilicity [J].Chem. Phys. Lett.,2003,381:154-162.
    [153]TANAKA T, TERAMURA K, YAMAMOTO T, et al. TiO_2/SiO_2 photocatalysts at low levels of loading: preparation, structure and photocatalysis [J].J. Photochem. Photobio. A,2002,148:277-281.
    [154]HSIUNG T L, WANG H P, WANG H C. XANES studies of photocatalytic active species in nano TiO_2-SiO_2 [J].Radiation Phys. Chem.,2006,75: 2042-2045.
    [155]JUNG K Y, PARK S B. Photoactivity of SiO_2/TiO_2 and ZrO2/TiO_2 mixed oxides prepare by sol-gel method [J].Mater. Lett.,2004,58:2897-2900.
    [156]YAO N, CAO S, YEUNG K L. Mesoporous TiO_2-SiO_2 aerogels with hierarchal pore structures [J].Microporous Mesoporous Mater.,2009,117: 570-579.
    [157]ZHU H Y, ORTHMAN J A, LI J Y, et al. Novel composite of TiO_2 (anatase) and silicate nanoparticles [J].Chem. Mater.,2002,14:5037-5044.
    [158]LI F, JIANG Y, YU L, et al. Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO_2 [J].Appl. Surf. Sci.,2005,252:1410-1416.
    [159]YAN X, HE J, EVANS D, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO_2 from mesoporous precursors [J]. Appl. Catal. B,2005,55:243-252.
    [160]NOTARI B, WILLEY R J, PANIZZA M, et al. Which sites are the active sites in TiO_2-SiO_2 mixed oxides? [J].Catal. Today,2006,116:99-110.
    [161]桑丽霞.负载型复合半导体的制备及光催化甲烷和水反应性能研究[D].天津:天津大学化工学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700