用户名: 密码: 验证码:
非均相酸碱催化剂协同催化Aldol反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸碱协同作用普遍存在于酶和抗体的催化过程中。生物催化剂的这个特点激励着化学工作者不断追求合成新的酸碱双功能或多功能催化剂。这类催化剂具有催化活性和立体选择性高、反应条件温和、无需引入金属等优点。从实际应用的角度考虑,为了降低成本,则希望这些多功能分子,尤其是那些需要多步合成才能得到的催化剂能够被固载,以便于回收、重复使用和方便产品纯化。不对称aldol反应是最常见的C-C键形成的反应之一,广泛应用于合成天然或非天然产物。本文以酸碱双功能化的有机-无机介孔材料为基础,以aldol反应为模型反应,系统研究了酸碱基团的类型、空间位阻、相对位置以及不同载体对催化性能的影响。主要研究内容包括:
     通过后接枝的方法将大位阻有机碱TBD(1,5,7-triazabicyclo[4.4.0]dec-5-ene,碱性与KOH相当)固载于Al-MCM-41分子筛表面,合成了一种新型的含有骨架酸性位和表面碱性位的双功能介孔催化剂。因为空间位阻的影响,骨架上的酸性中心和表面的碱性中心避免了相互中和,实现了“性质相反试剂”在同一体系内的和平共存。酸碱活性中心在表面的分布克服了彼此之间距离的限制,不会因为距离太近而相互中和。这种酸碱双功能催化剂能够有效协同催化丙酮与对硝基苯甲醛的aldol反应。
     使用接枝的方法将含有脲和氨基的有机双功能分子负载于介孔材料表面,合成了既有酸性中心又有碱性中心的双功能多相催化剂。研究发现,不同类型活性基团和它们的相对位置都会对催化活性产生很大影响。在aldol反应中,双功能催化剂的酸性基团(脲)与碱性基团(伯胺)处于一个合适的位置具有最好的催化活性。
     将烷基化的手性环己二胺使用后接枝的方法固载到多孔材料表面,通过质子酸的加入,得到了一种具有伯胺和弱质子酸的双功能多相介孔催化剂。这类双功能催化剂可以有效的催化丙酮与对硝基苯甲醛的不对称aldol反应。碱性中心的空间位阻对催化剂的对映体选择性影响较小,而酸性中心的空间位阻对于底物的手性诱导是至关重要的。将手性环己二胺通过共价键分别固载在不同孔径的分子筛孔道内,得到了一系列有机-无机混合催化剂。因为纳米孔的孔道限制效应,适当的孔径可以提高催化剂在不对称aldol反应中的对映体选择性,其中,以大孔径SBA-15分子筛为载体时,所得产物的对映体过量值最高。
Acid-base cooperativity is commonly invoked in enzymatic and catalytic antibody catalysis.This paradigm of biological catalysis has inspired the synthesis of bifunctional catalysts with superior activity and selectivity,including enantioselectivity.Small molecular bifunctional organocatalyst imitated enzyme,especially with L-proline and its derivatives has attracted extensive research activities and experienced a huge development.The main advantages of these catalysts are that the reaction can be performed with excellent stereoselectivity under mild conditions.From a practical point of view,it would be desirable to have the catalyst immobilized so that its recovery,reuse and product purification can be facilitated in order to reduce costs,especially when the catalyst is obtained after several synthetic steps.The direct catalytic asymmetric aldol reaction is a highly versatile and powerful C-C bond forming reaction and has been widely used in constructing natural and nonnatural products.
     In this dissertation,we demonstrate the synthesis of bifunctional mesoporous catalysts containing an acidic site in the framework and a basic site on the porous surface by postgrafting of 1,5,7-triazabicyclo[4.4.0]dec-5-ene(TBD,a sterically hindered organic base with comparable strength to KOH) onto Al-MCM-41 molecular sieve.Al-MCM-41 usually has relatively weaker Brφnsted acid sites and stronger Lewis acid sites.Because of the space hindrance between the acidic sites in the framework and the immobilized TBD base sites, they can cohabit independently without mutual destruction.Therefore,a cooperative catalysis originated from the acidic and basic sites of the bifunctional heterogeneous catalyst shows an acid-base cooperativity in catalyzing the aldol condensation of acetone and various aldehydes to selectively giveβ-hydroxycarbonyl compounds.
     The binary catalyst system,consisting of the double hydrogen-bonding of urea as acidic center and primary amine of phenylene diamine as basic center within same a molecule,can effectively catalyze the aldol reaction of actone with p-nitrobenzaldehyde.We have demonstrated that a general acid group,urea,can activate substrates in cooperation with a general base group,primary amine,to catalyze aldol reaction that involve carbonyl activation. By fine-tuning the relative position and proper spatial arrangement of different cooperative functional groups,the functional catalysts could effectively catalyze in the aldol reaction of actone with p-nitrobenzaldehyde catalyzed by bifunctional solid catalyst.The high TOF value indicates a genuine and superior catalytic performance in comparison with those of other bifunctional catalysts between different molecules.
     We demonstrate the synthesis of bifunctional mesoporous catalysts containing a simple chiral primary-tertiary diamine/Brφnsted acid conjugates in combination with on the porous surface by postgrafting of chiral trans-N,N-dialkylated diaminocyclohexanes onto mesoporous materials.The bifunctional catalysts can catalyze effectively the asymmetric aldol reaction of acetone with various aldehydes.A confinement effect originating from mesoporous was observed in this reaction.The organic-inorganic hybrid catalysts were synthesized by covalent anchoring of chiral diamine in the nanopores of MCM-41 and SBA-15.Modified SBA-15 catalyst obtained higher ee value than that obtained for the same catalysts anchored on the silica gel and MCM-41.Because of the confinement effect of the nanopores,the enantioselectivity increase with increasing of nanopore size in the asymmetric aldol reaction.
引文
[1] Huh S, Chen H, Wiench J W, et al. Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres [J]. Angew. Chem. Int. Ed., 2005,44: 1826-1830.
    
    [2] Constantino E, Xavier S, Mariona S, et al. Basic and acidic bifunctional catalysis: application to the tautomeric equilibrium of formamide [J]. Chem. Phys., 2003, 295: 151-158.
    
    [3] Miller S In Search of Peptide-Based Catalysts for Asymmetric Organic Synthesis [J]. J. Acc.Chem. Res., 2004, 37: 601-610.
    
    [4] 陶泳,高滋.化学工业中的新酸碱催化过程[J].化学世界, 2004, 1:28-31.
    
    [5] Tanabe K, Holderich W F. Industrial application of solid acid-base catalysts [J]. Appl. Catal. A:General, 1999, 181:399-434.
    
    [6] Huh S, Wiench J W, Trewyn B G, et al. Tuning of particle morphology and pore properties in mesoporous silicas with multiple organic functional groups [J]. Chem. Commun., 2003: 2364-2365.
    
    [7] Machajewski T D, Wong C H. The Catalytic Asymmetric Aldol Reaction [J]. Angew. Chem.Int. Ed., 2000, 39: 1352-1374.
    
    [8] Fersht A. Enzyme Structure and Mechanism, Freeman [M], New York, 2nd edn, 1985.
    
    [9] Ema T, Tanida D, Matsukawa T, et al. Biomimetic trifunctional organocatalyst showing a great acceleration for the transesterification between vinyl ester and alcohol [J]. Chem. Commun., 2008:957-959.
    
    [10] Brunel J M, Holmes I P. Chemically Catalyzed Asymmetric Cyanohydrin Syntheses [J].Angew. Chem. Int. Ed., 2004, 43: 2752-2778.
    
    [11] Ryu D H, Corey E J. Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by a Chiral Oxazaborolidinium Ion [J]. J. Am. Chem. Soc, 2004, 126: 8106-8107.
    
    [12] Corey, E J, Helal, C J. Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method [J]. Angew. Chem. Int. Ed., 1998, 37:1986-2012.
    
    [13] Noyori, R, Kitamura, M. Enantioselective Addition of Organometallic Reagents to Carbonyl Compounds: Chirality Transfer, Multiplication, and Amplification [J]. Angew. Chem. Int. Ed. Engl.,1991, 30:49-69.
    
    [14] Hamashima Y, Sawada D, Kanai M, et al. A New Bifunctional Asymmetric Catalysis AnEfficient Catalytic Asymmetric Cyanosilylation of Aldehydes [J]. J. Am. Chem. Soc., 1999, 121:2641-2642.
    
    [15] a) Kanai M, Kato N, Ichikawa E, et al. Power of Cooperativity Lewis Acid-Lewis Base Bifunctional Asymmetric [J]. Synlett., 2005, 10: 1491-1508. b) Shibasaki M, Kanai M, Funabashi K. Recent progress in asymmetric two-center catalysis [J]. Chem. Commun., 2002,1989-1999.
    
    [16] Yamashita Y, Ishitani H, Shimizu H, et al. Highly anti-Selective Asymmetric Aldol Reactions Using Chiral Zirconium Catalysts. Improvement of Activities, Structure of the Novel Zirconium Complexes, and Effect of a Small Amount of Water for the Preparation of the Catalysts [J]. J. Am.Chem. Soc, 2002, 124: 3292-3302.
    [17] Nogami H, Kanai M, Shibasaki M. Application of the Lewis Acid-Lewis Base Bifunctional Asymmetric Catalysts to Pharmaceutical Syntheses: Stereoselective Chiral Building Block Syntheses of Human Immunodeficiency Virus (HIV) Protease Inhibitor and β_3-Adenergic Receptor Agonist [J].Chem. Pharm. Bull., 2003, 51: 702-709.
    
    [18] Sawada D, Kanai M, Shibasaki M. Enantioselective Total Synthesis of Epothilones A and B Using Multifunctional Asymmetric Catalysis [J]. J. Am. Chem. Soc, 2000,122: 10521-10532.
    
    [19] Seckar J A, Thayer J S. Normal-iso rearrangement in cyanotrialkylsilanes [J]. Inorg. Chem.,1976, 15: 501-504.
    
    [20] Takamura M, Hamashima Y, Usuda H, et al. A Catalytic Asymmetric Strecker-Type Reaction Interesting Reactivity Difference between TMSCN and HCN [J]. Angew. Chem. Int. Ed.,2000,39: 1650-1652.
    
    [21] Nogami H, Matsunaga S, Kanai M, et al. Enantioselective Strecker-type reaction promoted by polymer-supported bifunctional catalyst [J]. Tetrahedron Lett., 2001, 42: 279-283.
    
    [22] McEwen W E, Cobb R L. The Chemistry of N-Acyldihydroquinaldonitriles and N-Acyl-dihydroisoquinaldonitriles (Reissert Compounds) [J]. Chem. Rev., 1955, 55: 511-549.
    
    [23] Hamza A, Schubert G, Soos T, et al. Theoretical Studies on the Bifunctionality of Chiral Thiourea-Based Organocatalysts Competing Routes to C-C Bond Formation [J]. J. Am. Chem. Soc.,2006,128: 13151-13160.
    
    [24] List B, Lerner R A, Barbas C F. Proline-Catalyzed Direct Asymmetric Aldol Reactions [J]. J.Am. Chem. Soc, 2000,122: 2395-2396.
    
    [25] Yamada Y M, Yoshikawa N, Sasai H, et al. Direct Catalytic Asymmetric Aldol Reactions of Aldehydes with Unmodified Ketones [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 1871-1873.
    
    [26] Yamada Y M A, Shibasaki M. Direct catalytic asymmetric aldol reactions promoted by a novel barium complex [J]. Tetrahedron Lett., 1998, 39: 5561-5564.
    
    [27] Fujimura O. Platinum-Catalyzed Enantioselective Aldol Addition of Ketene Silyl Acetals to Aldehydes [J]. J. Am. Chem. Soc, 1998,120: 10032-10033.
    
    [28] Yoshikawa N, Kumagai N, Matsunaga S, Moll G, Ohshima T, Suzuki T, Shibasaki M. Direct Catalytic Asymmetric Aldol Reaction Synthesis of Either syn- or anti-a,p-Dihydroxy Ketones [J]. J.Am. Chem. Soc, 2001, 123: 2466-2467.
    
    [29] Shibasaki M, Kanai M, Funabashi K. Recent progress in asymmetric two-center catalysis [J].Chem. Commun.,2002: 1989-1999.
    
    [30] Takemoto Y. Recognition and activation by ureas and thioureas stereoselective reactions using ureas and thioureas as hydrogen-bonding donors [J]. Org. Biomol. Chem., 2005, 3: 4299-4306.
    
    [31] Dalko P I, Moisan L. Enantioselective Organocatalysis [J]. Angew. Chem. Int. Ed., 2001, 40:3726-3748.
    
    [32] Curran D P, Kuo L H. Altering the Stereochemistry of Allylation Reactions of Cyclic .alpha.-Sulfinyl Radicals with Diarylureas [J]. J. Org. Chem., 1994, 59: 3259-3261.
    
    [33] Curran D P, Kuo L H. Synthesis of a sterically congested diazirine 2-azi-camphane [J].Tetrahedron Lett., 1995, 37: 6647-6650.
    
    [34] Okino T, Hoashi Y, Takemoto Y. Thiourea-catalyzed nucleophilic addition of TMSCN and ketene silyl acetals to nitrones and aldehydes [J]. Tetrahedron Lett., 2003, 44: 2817-2821.
    [35] Okino T, Hoashi Y, Takemoto Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts [J]. J. Am. Chem. Soc., 2003, 125:12672-12673.
    
    [36] Vakulya B, Varga S, Csampai A, et al. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts [J]. Org. Lett., 2005, 7:1967-1969.
    
    [37] Hiemstra H, Wynberg H. Addition of aromatic thiols to conjugated cycloalkenones, catalyzed by chiral .beta.-hydroxy amines. A mechanistic study of homogeneous catalytic asymmetric synthesis [J]. J. Am. Chem. Soc, 1981, 103: 417-430.
    
    [38] Sera A, Takagi K, Katayama H, et al. High-pressure asymmetric Michael additions of thiols,nitromethane, and methyl oxoindancarboxylate to enones [J]. J. Org. Chem., 1988, 53:1157-1161.
    
    [39] Wang J, Li H, Duan W, et al. Organocatalytic Asymmetric Michael Addition of 2,4-Pentandione to Nitroolefins [J]. Org. Lett., 2005, 7: 4713-4716.
    
    [40] Misumi Y, Bulman R, Matsumoto A K. Synthesis of a sterically congested diazirine 2-azi-camphane [J]. Heterocycles, 2002, 56: 599-605.
    
    [41] Marcelli T, Haas R N S, Maarseveen J H, et al. Asymmetric Organocatalytic Henry Reaction [J]. Angew. Chem. Int. Ed., 2006, 45: 929-931.
    
    [42] Fuerst D E, Jacobsen E N, Thiourea-Catalyzed Enantioselective Cyanosilylation of Ketones [J]. J. Am. Chem. Soc, 2005, 127: 8964-8965.
    
    [43] Bahmanyar S, Houk K N, Martin H J, et al. Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions [J]. J. Am. Chem.Soc., 2003,125:2475-2479.
    
    [44] Sakthivel K, Notz W, Bui T, et al. Amino Acid Catalyzed Direct Asymmetric Aldol Reactions- A Bioorganic Approach to Catalytic Asymmetric Carbon-Carbon Bond-Forming Reactions [J]. J. Am. Chem. Soc, 2001, 123: 5260-5267.
    
    [45] Hartikka A. Arvidsson P I. Rational design of asymmetric organocatalysts-increased reactivity and solvent scope with a tetrazolic acid [J]. Tetrahedron: Asymmetry, 2004, 15: 1831-1834.
    
    [46] Torii H, Nakadai M, Ishihara K, et al. Asymmetric Direct Aldol Reaction Assisted by Water and a Proline-Derived Tetrazole Catalyst [J]. Angew. Chem. Int. Ed., 2004, 43: 1983-1986.
    
    [47] Sato K, Kuriyam M, Shimaza W, et al. Direct asymmetric aldol reactions catalyzed by L-proline-2,4,6-trinitroanilide [J]. Tetrahedron Lett., 2008, 49: 2402-2406.
    
    [48] Chen J, An X, Zhu X, et al. Rational combination of two privileged chiral backbones- Highly efficient organocatalysts for asymmetric direct aldol reactions between aromatic aldehydes and acylic ketones [J]. J. Org. Chem., 2008, 73: 6006-6009.
    
    [49] Chen J, Lu H, Li X, et al. Readily Tunable and Bifunctional L-Prolinamide Derivatives Design and Application in the Direct Enantioselective Aldol Reactions [J]. Org. Lett., 2005, 7:4543-4545.
    
    [50] Nakadai M, Saito S, Yamamoto H. Diversity-based strategy for discovery of environmentally benign organocatalyst-diamine-protonic acid catalysts for asymmetric direct aldol reaction [J].Tetrahedron, 2002, 58: 8167-8177.
    [51] Mase N, Nakai Y, Ohara N, Y et al. Organocatalytic Direct Asymmetric Aldol Reactions in Water [J]. J. Am. Chem. Soc, 2006,128: 734-735.
    
    [52] Tang Z, Jiang F, Yu L, et al. Novel Small Organic Molecules for a Highly Enantioselective Direct Aldol Reaction [J]. J. Am. Chem. Soc, 2003,125: 5262-5263.
    
    [53] Tang Z, Jiang F, Cui X, et al. Asymmetric Catalysis Special Feature Part II- Enantioselective direct aldol reactions catalyzed by L-prolinamide derivatives [J]. Proc. Natl. Acad. Sci. U.S.A., 2004,101:5755-5760.
    
    [54] Tang Z, Yang Z, Chen X, et al. A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes [J]. J. Am. Chem. Soc, 2005, 127: 9285-9289.
    
    [55] Arno M, Domingo L R. Density functional theory study of the mechanism of the proline-catalyzed intermolecular aldol reaction [J]. Theor. Chem. Acc., 2002,108: 232-239.
    
    [56] Hoang L, Bahmanyar S, Houk K N, et al. Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions [J]. J. Am. Chem. Soc, 2003, 125: 16-17.
    
    [57] Rankin K N, Gauld J W, Boyd R J. Density Functional Study of the Proline-Catalyzed Direct Aldol Reaction [J]. J. Phys. Chem. A., 2002, 106: 5155-5159.
    
    [58] Bahmanyar S, Houk K N, Martin H J, et al. Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions [J]. J. Am. Chem.Soc, 2003,125:2475-2479.
    
    [59] Luo S, Xu H, Li J, et al. A Simple Primary-Tertiary Diamine-Brnsted Acid Catalyst for Asymmetric Direct Aldol Reactions of Linear Aliphatic Ketones [J]. J. Am. Chem. Soc, 2007, 129:3074-3075
    
    [60] Luo S, Xu H, Zhang L, et al. Highly enantioselective direct syn- and anti-aldol reactions of dihydroxyacetones catalyzed by chiral primary amine catalysts [J]. Org. Lett., 2008, 10: 653-656.
    
    [61] Cohen B J, Kraus M A, Patchornik A. Wolf and Lamb reactions equilibrium and kinetic effects in multipolymer systems [J]. J. Am. Chem. Soc, 1981, 103: 7620-7629.
    
    [62] Motokura K, Fujita N, Mori K, et al. An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions [J]. J. Am. Chem. Soc, 2005, 127: 9674-9675.
    
    [63] Ebitani K, Motokura K, Mori K, et al. Reconstructed Hydrotalcite as a Highly Active Heterogeneous Base Catalyst for Carbon-Carbon Bond Formations in the Presence of Water [J]. J. Org.Chem., 2006, 71: 5440-5447.
    
    [64] Avnir D. Organic Chemistry within Ceramic Matrixes-Doped Sol-Gel Materials [J]. Acc.Chem. Res., 1995,28:328-334.
    
    [65] Pittman C U, Smith L R. Sequential multistep reactions catalyzed by polymer- anchored homogeneous catalysts [J]. J. Am. Chem. Soc, 1975, 97: 1749-1754.
    
    [66] Pittman C P, Smith L R, Hanes R M. Catalytic reactions using polymer-bound vs.homogeneous complexes of nickel, rhodium, and ruthenium [J]. J. Am. Chem. Soc, 1975, 97:1742-1748.
    
    [67] Helms B, Guillaudeu S J, Xie Y, et al. One-Pot Reaction Cascades Using Star Polymers with Core-Confined Catalysts [J]. Angew. Chem. Int. Ed., 2005, 44: 6384-6387.
    
    [68] Voit B. Sequential One-Pot Reactions Using the Concept of Site Isolation [J]. Angew. Chem. Int. Ed., 2006,45: 4238-4240.
    
    [69] Kraut J. Serine Proteases: Structure and Mechanism of Catalysis [J]. Annu. Rev. Biochem.,1977,46:331-358.
    
    [70] Margelefsky E L, Zeidanb R K, Davis M E. Cooperative catalysis by silica-supported organic functional groups [J]. Chem. Soc. Rev., 2008, 37: 1118-1126.
    
    [71] Zeidan R K, Hwang S J, Davis M E. Multifunctional Heterogeneous Catalysts-SBA-15-Containing Primary Amines and Sulfonic Acids [J]. Angew. Chem. Int. Ed., 2006,45: 6332-6335.
    
    [72] Zeidan R K, Davis M E. The effect of acid-base pairing on catalysis An efficient acid-base functionalized catalyst for aldol condensation [J]. J. Catal., 2007,247: 379-382.
    
    [73] Huh S, Chen H, Wiench J W, P et al. Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres [J]. Angew. Chem. Int. Ed., 2005, 44: 1826-1830.
    
    [74] Alauzun J, Mehdi A, Reye C, et al. Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation [J]. J. Am. Chem. Soc, 2006,128: 8718-8719.
    
    [75] Jaroniec M. Materials science Organosilica the conciliator [J]. Nature, 442: 638-640.
    
    [76] Notestein J M, Katz A. Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic- Inorganic Interfaces [J]. Chem. Eur. J., 2006,12: 3954-3965.
    
    [77] Bass J D, Solovyov A, Pascall A J, et al. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis-A Comparative Investigation of Model Primary Amine Catalysts [J]. J. Am. Chem. Soc, 2006, 128: 3737-3747.
    
    [78] Sharma K K, Asefa T. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials [J]. Angew. Chem. Int. Ed., 2007, 46:2879-2882.
    
    [79] Motokura K, Tomita M, Tada M, et al. Acid-Base Bifunctional Catalysis of Silica- Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions [J]. Chem. Eur. J., 2008, 14:4017-4027.
    
    [80] Motokura K, Tada M, Iwasawa Y. Heterogeneous Organic Base-Catalyzed Reactions Enhanced by Acid Supports [J]. J. Am. Chem. Soc, 2007, 129: 9540-9541.
    
    [81] Calderon F, Fernandez R, Sanchez F, Ferna'ndez-Mayoralas A. Asymmetric Aldol Reaction Using Immobilized Proline on Mesoporous Support [J]. Adv. Synth. Catal., 2005, 347: 1395-1403.
    
    [82] Gruttadauria M, Giacalone F, Marculescu A M, et al. Novel Prolinamide-Supported Polystyrene as Highly Stereoselective and Recyclable Organocatalyst for the Aldol Reaction [J]. Adv.Synth. Catal., 2008, 350: 1397-1405.
    
    [83] Dhar D, Beadham I, Chandrasekaran S. Proline and benzylpenicillin derivatives grafted into mesoporous MCM-41 Novel organic-inorganic hybrid catalysts for direct aldol reaction [J]. Proc.Indian Acad. Sci. (Chem. Sci.), 2003,115: 365-372.
    
    [84] Liu Y, Sun Y, Tan H, et al. Asymmetric Aldol Reaction Catalyzed by New Recyclable Polystyrene- supported L-proline in the Presence of Water [J]. Catal. Lett., 2008, 120: 281-287.
    
    [85] Zhong L, Xiao J, Li C. Direct Asymmetric Aldol Reactions on Heterogeneous Bifunctional Catalyst [J]. Chin. J. Catal., 2007, 28: 673-675.
    [86] Luo S, Li J, Xu H, et al. Chiral Amine-Polyoxometalate Hybrids as Highly Efficient and Recoverable Asymmetric Enamine Catalysts [J]. Org. Lett., 2007, 9: 3675-3678.
    
    [87] Baleizao C, Gigante B, Garci H, et al. Chira) vanadyl Schiff base complex anchored on silicas as solid enantioselective catalysts for formation of cyanohydrins- optimization of the asymmetric induction by support modification [J]. J. Catal., 2003, 215: 199-207.
    
    [88] Heckel A, Seebach D. Enantioselective Heterogeneous Epoxidation and Hetero-Diels-Alder Reaction with Mn- and Cr-salen Complexes Immobilized on Silica Gel by Radical Grafting [J]. Helv.Chim.Acta., 2002, 85:913-926.
    
    [89] Hultman H M, Lang M, Nowotny M, et al. Chiral catalysts confined in porous hosts 1.Synthesis [J]. J. Catal., 2003, 217: 264-274.
    
    [90] Thomas J M, Maschmeyer T, Johnson B F G, et al. Constrained chiral catalysts [J]. J. Mol.Catal. A: Chem., 1999, 141: 139-144.
    
    [91] Li C. Chiral Synthesis on Catalysts Immobilized in Microporous and Mesoporous Materials [J]. Catal. Rev., 2004, 46: 419-492.
    
    [92] Zhang H D, Li C. Asymmetric epoxidation of 6-cyano-2,2-dimethylchromene on Mn(salen) catalyst immobilized in mesoporous materials [J]. Tetrahedron, 2006, 62: 6640-6649.
    
    [93] Zhang H D, Zhang Y M, Li C. Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials [J]. J.Catal., 2006,238:369-381.
    
    [94] Yang H, Zhang L, Su W, et al. Asymmetric ring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16 through the "ship in a bottle" strategy [J]. J. Catal., 2007, 248: 204-212.
    
    [95] Yang H, Zhang L, Zhong L, et al. Enhanced Cooperative Activation Effect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] Catalysts Confined in Nanocages [J]. Angew. Chem. Int.Ed., 2007, 46: 6861-6865.
    
    [96] Yang Q, Han D, Yang H, et al. Asymmetric Catalysis with Metal Complexes in Nanoreactors [J]. Chem. Asian. J., 2008, 3: 1214-1229.
    
    [97] Rao Y V S, Vos D E D, Jacobs P A. l,5,7-Triazabicyclo[4.4.0]dec-5-ene Immobilized in MCM-41: A Strongly Basic Porous Catalyst [J]. Angew. Chem. Int. Ed. Engl., 1997, 36: 2661-2663.
    
    [98] Simoni D, Rondanin R, Morini M, et al. 1,5,7-Triazabicyclo [4.4.0]dec- 1-ene (TBD),7-methyl-TBD (MTBD) and the polymer-supported TBD (P-TBD) three efficient catalysts for the nitroaldol (Henry) reaction and for the addition of dialkyl phosphites to unsaturated systems [J].Tetrahedron Lett., 2000, 41: 1607-1610.
    
    [99] Ye W, Xu J, Tan C T, et al. l,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) catalyzed Michael reactions [J]. Tetrahedron Lett., 2005, 46: 6875-6878.
    
    [100] Ballini R, Bosica G, Fiorini D, et al. MCM-41-TBD as a new, efficient, supported heterogeneous catalyst for the synthesis of thioureas [J]. Tetrahedron Lett., 2002, 43: 8445-8447.
    
    [101] Fringuelli F, Pizzo F, Vittoriani C, et al. Polystyryl-supported TBD as an efficient and reusable catalyst under solvent-free conditions [J]. Chem. Comm., 2004: 2756-2757.
    
    [102] Carloni S, Vos D E D, Jacobs P A, et al. Catalytic Activity of MCM-41-TBD in the Selective Preparation of Carbamates and Unsymmetrical Alkyl Carbonates from Diethyl Carbonate [J].J. Catal., 2002, 205: 199-204.
    [103]Luo Q,Deng F,Yuan Z,et al.Using Trimethylphosphine as a Probe Molecule to Study the Acid Sites in Al-MCM-41 Materials by Solid-State NMR Spectroscopy[J].J.Phys.Chem.B,2003,107:2435-2442.
    [104]Lu X B,Zhang W H,Xiu J H,et al.Removal of the Template Molecules from MCM-41with Supercritical Fluid in a Flow Apparatus[J].Ind.Eng.Chem.Res.,2003,42:653-656.
    [105]格雷格J S著.高敬琮等译.吸附、比表面积与孔隙率[M].北京:化学工业出版社.1989.
    [106]庄建勤.TS-1分子筛的酸性及其催化苯乙烯氧化反应的固体核磁研究[D].(博士学位论文).大连:大连化学物理研究所,2003.
    [107]a) Zhang W,Ratcliffe C I,Moudrakovski I L,et al.Characterization of the location and interfacial states of gallium in gallium/MCM-41 composites[J].Micropor.Mesopor.Mater.,2005,79:195-203;
    b) Haake M,Pines A,Reimmer J A,Seydoux R.Surface- Enhanced NMR Using Continuous-Flow Laswe-Polarized Xenon[J].J.Am.Chem.Soc.,1997,119:11711-11712.
    [108]Man P P.Measurement of quadrupolar spin population of by solid-state NMR[J].J.Magn.Reson.,1988,77:148-155.
    [109]王桂茹著.催化剂与催化作用[M].大连:大连理工大学出版社.2004.
    [110]唐卓.有机小分子催化的不对称直接Aldol反应[D].(博士学位论文).成都:中科院成都有机所.2007.
    [111]Lindoy L F,Meehan G V,Svenstrup N.Mono- and diformylation of 4-substituted phenols.A new application of the Duff reaction[J].Synthesis,1998,7:1029-1032.
    [112]Larrow J F,Jacobsen E N,Gao Y,et al.A practical process for the large-scale preparation of (R,R)-N,N'-Bis(3,5-di-tert-butyl-salicylidene)-1,2-cyclohexanediamino manganese(Ⅲ) chloride,a highly enantioselective epoxidation catalyst[J].J.Org.Chem.,1994,59:1939-1942.
    [113]Kim Y K,Lee S J,Ahn K H.New Hybrid Ligands with a trans-1,2-Diaminocyclohexane Backbone Competing Chelation Modes in Palladium-Catalyzed Enantioselective Allylic Alkylation [J].J.Org.Chem.,2000,65:7807-7813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700