用户名: 密码: 验证码:
粘弹性聚合物驱提高驱油效率机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于多孔介质中聚合物驱的驱油机理,得到广泛认可的理论是对于一定的液体-岩石系统,驱油效率由驱替液的粘滞压力梯度和残余油上滞留力的比值决定,前者与驱替液的粘度和流速成正比,后者主要取决于界面张力,二者的比值定义为毛管数。根据该理论,聚合物溶液与原油间的界面张力与水驱相近,宏观压力梯度相同,两种驱替液的毛管数相近,因此聚合物驱的驱油效率与水驱相同,这与聚合物驱的室内和现场实验数据不符。此时,无法用宏观力解释聚合物溶液粘弹性对驱油效率的影响,聚合物驱时驱油效率的提高只能是不增加宏观压力梯度的微观力引起的。本文通过对不同种类聚合物溶液粘弹性的测试,系统的对比了不同聚合物溶液的粘弹特性,找出了适合本实验的定量表征聚合物溶液粘度和弹性的方法;从残余油的微观受力分析出发,提出了驱替液的弹性性质会改变孔隙中的微观流线,从而增加作用于残余油团突出部位的微观作用力,使突出部位移动这一微观驱油机理;通过宏观岩心驱替实验验证了微观力对不同类型残余油的作用,及粘弹性和毛管数对驱油效率的影响。
     本研究中采用的聚合物包括聚丙烯酰胺类聚合物、梳形聚合物和缔合聚合物三种。通过动态力学实验和稳态剪切实验分别测试了三种聚合物溶液的粘弹特性,分析了聚合物相对分子质量、质量浓度等对溶液粘弹性的影响。通过测试结果的对比分析,揭示了三种不同分子结构的聚合物溶液的粘弹性特点。结果显示,聚丙烯酰胺类聚合物溶液的粘度和弹性随分子量和聚合物质量浓度的增加而增加,在动态力学试验和稳态剪切实验中都观察到了相同的结果,粘度对质量浓度更为敏感而弹性对分子量更为敏感;与同分子量的聚丙烯酰胺类聚合物相比,梳形聚合物溶液在质量浓度相同时具有更高的粘度,但弹性较低,当聚合物种类不同时,动态力学实验的结果在粘弹性的对比中往往不如稳态剪切实验的结果准确,利用稳态剪切实验中第一法向应力差随剪切速率变化直线的斜率可以定量表征不同聚合物体系的弹性大小;缔合聚合物在低浓度时体现出的粘弹性质与普通聚丙烯酰胺相同,浓度达到一定程度后溶液的粘度急剧上升,该浓度为缔合聚合物溶液的临界缔合浓度,实验结果显示,高于临界缔合浓度后的缔合聚合物溶液具有比高分子量聚丙烯酰胺溶液更高的粘度,缔合作用对弹性贡献不大,弹性仍然取决于聚合物的分子量。
     分析了不同孔隙介质条件下微观残余油的状态及分步,对稳定状态下残余油团的应力分步进行了分析,研究发现,残余油团在综合驱动力的作用下必然会在沿流动方向的后段形成一个突起部位以提供足够的毛管力平衡前方的驱动力,使残余油团平衡。因此驱替液的流线在突起部位变化最大,微观流速的改变会产生微观的惯性力,对残余油团的突出部位产生推动力。粘弹性流体由于具有法向应力效应,流线改变的幅度大于牛顿流体;另外,粘弹性流体在毛细管中的速度剖面更均匀,靠近残余油团处的流速更大,所以粘弹性流体可以产生更大的微观驱动力,并且弹性越高,微观力越大。微观力是粘弹性流体提高驱油效率的主要原因。
     在亲油和亲水人造均质岩心上研究了不同聚合物溶液驱时粘弹性及毛管数对驱油效率和残余油饱和度的影响。利用驱替过程中岩心两端的压力梯度计算毛管数值,有效的避免了驱替液粘度和渗透率等因素的影响。对于聚丙烯酰胺类聚合物、梳形聚合物和缔合聚合物等不同类型的聚合物驱,增加体系的毛管数和增加溶液的弹性都可以有效的提高驱油效率、降低残余油饱和度。对具有不同粘弹性特点的聚合物溶液的驱油效果进行对比,发现驱油效率与聚合物溶液弹性的对应关系具有很好的规律性,证明了弹性对驱油效率的作用。梳形聚合物和缔合型聚合物由于弹性低于同分子量的聚丙烯酰胺溶液,所以驱油效率较低,粘度对驱油效率没有影响。合理的提高驱替液的弹性,可以获得与超低界面张力同样的驱油效果。高浓度聚合物驱的现场试验结果显示,提高驱油效率的幅度达到20%OOIP以上,为普通聚合物驱的二倍,且聚合物溶液前缘更加平缓,波及效率更高。
     综上所述,聚合物溶液的弹性性质,在不增加驱替压力梯度的情况下,可以提高多孔介质中的驱油效率。粘弹性驱替液提高驱油效率的主要机理是:驱替液的弹性性质会改变孔隙中的微观流线,从而增加作用于残余油团突出部位的微观作用力,使突出部位移动。这一机理可以比较好地解释聚合物驱在微观实验和宏观试验中所见到的现象,有助于化学驱化学剂的设计、合成与筛选,有助于化学驱驱油方案的设计和优选、化学驱数模的发展和微观渗流力学的发展。
About the researches in polymer flooding mechanism, the most accepted mechanism is: for certain fluid-reservoir system, the displacement efficiency is determined by the viscous pressure gradient of the driving fluid and the restrain force of the residual oil, the former is proportional to the viscosity and velocity of the fluid, the latter is proportional to the interfacial tension, the ratio of them is defined as capillary number. According to this theory, the interfacial tension between polymer solution and oil is equal to that of water, and the macro pressure gradient is equal either, then the capillary numbers of polymer flooding and water flooding are near, the displacement efficiency of them should be equal, this is not agree with the results of polymer flooding lab tests and field tests. Then the macro forces can not explain the increase in displacement efficiency in polymer flooding, the increase in displacement efficiency of polymer flooding can only be caused by micro forces which do not increase the macro pressure gradient. In this paper, the rheological properties of different kinds of polymer solutions are tested, the viscoelasticity of different polymer solutions are compared systemically, methods in characterizing the viscosity and elasticity of polymer solutions are found; the analyzes of forces on residual oil show that the elasticity of driving fluid can change the micro flow lines in porous media, then increase the micro force which acting on the protruding part of residual oil blob and mobilize the protruding part; through flooding experiments on artificial cores, the influences of micro force on different types of residual oil, and the influences of capillary number and viscoelasticity on displacement efficiency are verified.
     Three kinds of polymers are studied in this research, they are polyacrylamide, comb polymer and associative polymer. Through dynamic mechanics test and steady state shear test, the viscoelasticity of different polymer solutions are measured, and the viscoelastic features of different polymer solutions are studied through comparison of the test results. The results show that, the viscosity and elasticity of polyacrylamide solutions increase with molecular weight and concentration both in dynamic mechanics test and steady state shear test, the viscosity is more sensitive to concentration while the elasticity is more sensitive to molecular weight; compared with polyacrylamide with equal molecular weight, comb polymer solution has higher viscosity but lower elasticity, when comparing different kinds of polymers, the results from dynamic mechanics test are not as precise as the results from steady state shear test, the slope of first normal stress difference vs. shear rate can characterize the elasticity which influences the displacement efficiency of different polymer solutions; when the concentration is low, the viscoelasticity of associative polymer solution is the same as that of polyacrylamide solution, with the increase of concentration, the viscosity of associative polymer solution starts to increase sharply, the concentration when this increase occurs is the critical associative concentration (CAC), the test results show that, when the concentration is higher than CAC, the viscosity of associative polymer solution can be greater than polyacrylamide with larger molecular weight, the association has no contribute to elasticity, which is still mainly determined by the molecular weight of polymer.
     The micro states and distributions of residual oil in different porous media are studied in this research, and the stress distribution of residual oil blobs under steady state are analyzed, the results show that, under the driving forces, there will be a protruding part along the flow direction which provide enough capillary force to counter the driving forces, the changes in micro velocity will influence the micro force acting on the protruding part of residual oil blob. The normal stress effects of viscoelastic fluids is stronger than that of Newtonian fluid, which make the change in flow lines stronger too; otherwise, the velocity profile of viscoelastic fluid in porous media is more uniform, the velocity of fluid near the residual oil blobs is greater, so the micro force of viscoelastic fluid is much more bigger than that of Newtonian fluid, and the higher the elasticity, the higher the micro force. The micro force is the main reason which makes the displacement efficiency of viscoelastic fluid flooding greater.
     Through polymer flooding experimtnes on both oil wet and water wet heterogeneous artificial cores, the influences of viscoelasticity and capillary number on displacement efficiency and residual oil saturation are studied. The pressure gradient of core is used in calculating the capillary number, which avoids the influences of viscosity of driving fluid and permeability of porous media. For polyacrylamide, comb polymer and associative polymer flooding, the increases in capillary number and elasticity of solutions are all effective in increasing the displacement efficiency and decreasing the residual oil saturation. The comparison of flooding results with different polymer solutions which have specific viscoelastic features show that, the changes in displacement efficiency and the changes in elasticity of polymer solutions match regularly. The elasticity of comb polymer and associative polymer is lower than that of polyacrilymide solution, and the displacement efficiency is lower, the viscosities of polymer solutions do not influence the displacement efficiency. Rationally increase the elasticity of the driving fluid can achieve the same effect of ultra low interfacial tension. The field test results of high concentration polymer flooding show that, the increase in recovery ratio is more than 20%OOIP, which is nearly two times than conventional polymer flooding, and the front of polymer solution is more uniform, the sweep efficiency is greater.
     In conclusion, the elasticity of polymer solution can increase the displacement efficiency in porous media and maintain the macro pressure gradient constant. The mechanism of viscoelastic fluid increases the displacement efficiency is: the elastic fearures of the fluid can change the flow line in pores, then increase the micro force on the protruding part of the residual oil blob and make it mobile. This mechanism can explain the phenomena of polymer flooding in micro and macro scale, it is helpful in designing, synthesizing and screening the chemical agents, in designing and optimizing the plans, and in developing the micro fluid mechanics of chemical flooding,
引文
1.朱恩灵.国外三次采油新技术水平调查[M].中国石油天然气总公司情报研究所,1992
    2.王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(上)[M].大庆石油地质与开发,2001,29(3):1-5
    3.胡博仲等.聚合物驱采油工程.第1版[M].北京:石油工业出版社,1997.
    4.王启民,廖广志,牛金刚.聚合物驱油技术的实践与认识[M].大庆石油地质与开发,1999,18(4):1-5
    5.高树棠,苏树林,张景纯等编译.聚合物驱提高石油采收率[M].北京:石油工业出版社,1996
    6. W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991,2-3
    7. W. Littmann,杨普华,杨育森译. Polymer flooding.第1版[M].北京:石油工业出版社,1991.
    8. Larry W Lake,李宗田,侯高文,赵百万译. Enhanced oil recovery. Prentice Hall.第1版[M].北京:石油工业出版社,1992.
    9.胡博仲等.聚合物驱采油工程.第1版[M].北京:石油工业出版社,1997.
    10.杨承志.化学驱提高石油采收率.第1版[M].北京:石油工业出版社,1999.
    11.王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51
    12. Wang Demin, Cheng Jiecheng, Xia Huifen, et al. Viseous-elastic fluids can mobilize oil remaining after water-flood by force parallel to the oil-water interface[R],SPE72123,2001
    13.夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65
    14.夏惠芬.粘弹性聚合物溶液在油藏中的流动及提高微观驱油效率的机理[D]. :大庆石油学院博士论文, 2001
    15. C. D. Han. Rheology in polymer proeessing, Academic Press,1976.徐喜等译.聚合物加工流变学[M],北京:科学出版社,1955,P37-80
    16. W. B. Gogarty. Rheological properties of pseudoplastic fluids in porous media [J]. Society of Petroleum Engineers Journal,1967,(2):148-159
    17. L. G. Savins .Non-Newtonian flow through porous media [J]. Industrial and Engineer Chemistry.1969,(10):17-47
    18. R. R. Jennings, J. H .Rogers, T. J. West. Factors influencing mobility contro1 by po1ymer solution [J]. JPT,1971,(3);391-401
    19. D. Camilleri, S. Engelsen, L. W. Lake, et a1. Description of an improved compositionmicellar/polymer simulator[R]. SPE RE,1987,2(4):26-432
    20. K. S. Sorbie, L. J. Roberts. A model for calculating polymer injectivity including the effects of shear degradation[R]. SPE/DOE 12654,SPE/DOE Fourth Symposium on Enhanced Oil Recovery held in Tulsa,Oklahoma,15-18APril,1984
    21.张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及提高驱油效率的机理[J].大庆石油地质与开发,2002,26(1):47-51
    22.张宏方,王德民,王立军.不同类型聚合物溶液在多孔介质中的渗流规律研究[J].新疆石油地质,2002,23(5):72-75
    23. F. G. de Gennes. Coil-Stretch Transition of Dilute Flexible Polymers Under Ultrahigh Velocity Gradients[J]. J. Chem. Phys.,1974,60:5030-5037
    24. R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol.1, Fluid Mechanics, 2nd edn[M], J. Wiley, New York, 1987
    25. S. Rodriguez, C. Romero, M. L. Sargenti, et al. Flow of Polymer Solutions through Porous Media[J]. Journal of Non-Newtonian Fluid Mechanics,1993,49:63-85
    26. L. I. Berge, J. Feder, T. Jossang. Rheology of Particles in Xanthan Solutions Flowing Through a Single Pore[J]. Journal of Colloid and Interface Science,1990,133(1):295-297
    27. R. J. Marshall, A. B. Metzner. Flow of Viscoelastic Fluids Through Porous Media[J]. I&EC Fundamentals, 1967, 6(3):393-400
    28. R. Hass, F Durst. Viscoelastic Flow of Dilute Polymer Solutions in Regularly Packed Beds[J]. Rheol Acta, 1982,21(4/5):565-571
    29. Lehrstuhl fur strmungsme chanik. Porous Medium Flow of The Fluid A1: Effects of Shear and Elongation[J]. Journal of Non-Newtonian Fluid Mechanics, 1994, 50:118-131
    30. Hongjun Yin, Demin Wang, Huiying Zhong. Study of Flow Behavior of Viscoelastic Polymer Solution in Micropore with Dead End[R], SPE 101950
    31.刘振宇,许元泽.聚丙烯酰胺溶液微观流变特性的研究[J].油田化学,19,V01.13(2):145-148
    32. P. E. Ren, S. Blake, O. J. Arntzen. Extending predictive capabilities to network models[R]. SPE38880, SPE Annual Technical Conference and Exhibition held in San Antonio,Texas,5-8Oetober1987
    33. K. S. Sorbie, P. J. Clifford. Investigation of the rheology and transport of polymers in porous media using network models[R]. Symposium on Advances in Oil Field Chemistry Presented before the Division of Petroleum Chemistry, Inc., American Chemical Society, Toronto Meeting, Jnun 5-11, 1988
    34. K. S. Sorbie, P. L. Clifford, E. R. W. Jones. The rheology of pseudoplastic fluid in porous media using network modeling[J]. Journal of Colloid and Interface Science, 1989, 130(2):507-534
    35. J. Kamath, B. Xu, S. H. Lee, Y. C. Yortsos. Pore network modeling of laboratory experiments on heterogeneous carbonates[R]. SPE36681, SPE Annual Technical Conference and Exhibition held in Denver, Colorado, 5-9 October 1996
    36. B. Xu, J. Kamath, Y. C. Yortsos, S. H. Lee. Use of pore network models to simulate laboratory core floods in a heterogeneous carbonate sample[R]. SPE38879, SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 5-8 October 1997
    37. D. H. Fenwick, M. J. Blunt. Use of network modeling to predict saturation paths relative permeabilities and oil recovery for three phase flow in Porous Media[R]. SPE38881, SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 5-8 October 1997
    38. B. J. Suchomel, B. M. Chen, M. B. Allen. Network model of now, transport and biofilm effects in porous media[J]. Transport in Porous Media, 1998, 30:1-23
    39. E. J. Kolodziej. Mechanism of microgel formation in xanthan biopolymer solutions[R]. SPE16730, SPE Annual Technical Conference and Exhibition held in Dallas, Texas, 26-30 September 1987
    40. E. J. Kolodziej. Transport mechanisms of xanthan biopolymer solutions in porous media[R]. SPE18090, SPE Annual Technical Conference and Exhibition held in HOUSTON, Texas, 2-5 October 1988
    41. S. Hejri, G. P. Willjite, D. W. Green. Development of correlations to predict flocon 4800 biopolymer mobility in porous media[R]. SPE/DOE17396, SPE/DOE Enhanced Oil Recovery sytoposinm held in Tulsa, Oklahoma, April 16-20, 1988
    42. W. J. Cannella, C. Huh, R. S. Seright. Prediction of xanthan rheology in porous media[R]. SPE18089, SPE Annual Technical Conference and Exhibition held in Houston, Texas, 2-5 October 1988
    43. M. Bagassi, G. Chauveteau, J. Lecourtier, J. Englert, M. Tirrell. Behavior of adsorbed polymer layer in shear and elongation flows[J]. Macromolecules, 1989, 22(1):262-266
    44. L. I. Berge, L. Feder, T. Jossang. Rheology of particles in xanthan solutions flowing through a single pore[J]. Journal of Colloid and Interface Science, 1990, 133(1):295-297
    45. G. Chauveteau. Rodlike polymer solution flow through fine pores: influence of pore size on rhelogical behavior[J]. Journal of Rheology, 1982, 26(2): 111-142
    46. G. Chauveteau, M. Tirrell, A. Omarl Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls[J]. Journal of Colloid and Interface Science, 1984, 100(1): 41-45
    47. K. S. Sorbie. Depleted layer effects in polymer flow through porous media-I. single capillary calculations[J]. Journal of Colloid and Interface Science, 1990, 139(1): 298-314
    48. K. S. Sorbie, Yaduo Huang. Rheological and transport effects in the flow oflow-concentration xanthan solution through porous media[J]. Journal of Colloid and Interface Science, 1991, 145(1): 74-89
    49. A. J. P. Fletcher, S. R. G. flew, S. P. Lanb, et al. measurements of polysaccharide polymer properties in porous media[R]. SPE21018, SPE International Symposium on Oilfield Chemistry held in Anaheim, California, February 20-22, 1991
    50. A. Zaitoun, K. Kohler. The role of adsorption in polymer propagation through reservoir rocks[R]. SPE16274, SPE International Symposium on Oilfield Chemistry held in San Antonio, Texas, February 4-6, 1987
    51. A. Omari, M. Moan, G. Chauveteau. Wall effects in the flow of flexible polymer solution through small pores[J]. Rheological Acta, 1989, 28(6):520-526
    52. Yaduo Huang, K. S. Sorbie. The adsorption and in-site rheological behavior of xanthan solution flowing through porous media[R], SPE/DOE24153, SPE/DOE Eight Symposium on EOR held in Tulsa, Oklahoma, April 22-24, 1992
    53. J. H. Aubert, M. Tirrell. Effective viscosity of dilute polymer solution near confining boundaries[J]. Journal of Chemical Physics, 1982, 77(1): 553-561
    54. L. H. Aubert. Interfacial properties of dilute polymer solutions[J]. Journal of Colloid and Interface Science, 1983, 96(1):135-149
    55. W. Stasiak, C. Cohen. Dilute solutions of macro molecules in a rectilinear Poiseuille flow[J]. Journal of Chemical Physics, 1983, 78(1): 553-559
    56. Yoram Cohen, A. B. Metzner. Flow of viscoelastic fluids through porous media[J]. I&EC Fundamentals, August 1967, 393-400
    57.李梅高聚物和离聚物在溶液中的缔合与聚集行为的研究[D].复旦大学博士论文, 1996
    58.李季,吕茂森,刘建江,王志鹏,王中华.驱油用耐温抗盐三元共聚物ZYS性能评价[J].油田化学,1999,16(3):255-260
    59.罗健辉,卜若颖,王平美.国内外水溶性抗温抗盐聚合物研制方向分析[A]. 2000工业表面活性剂技术经济文集[C].大连出版社,2000:370
    60.王玉普,罗健辉,卜若颖,等.三次采油用抗温抗盐聚合物研究方向分析[J].化工进展,2003,22(3): 271—274
    61.罗健辉,卜若颖,王平美,等.驱油用抗盐聚合物KYPAM的应用性能[J].油田化学,2002,19(1): 64—67
    62.王玉普,罗健辉,卜若颖,等.梳形KYPAM抗盐聚合物在油田中的应用[J].化工进展,2003,22(5): 509—511
    63.曹宝格,驱油用疏水缔合聚合物溶液的流变性及粘弹性实验研究[D],西南石油大学博士学位论文,2006
    64.姜海峰,等.梳形聚合物溶液的流变性及驱油效果分析[J].大庆石油学院学报,2008
    65.李振泉,胜利油田污水配制梳形抗盐聚合物KYPAM驱油试验初步结果[J],油田化学,2004,21(2): 165-167
    66.程杰成,罗健辉,李振乾,袁士义,沈平平,沈兴海,梳形抗盐聚合物的应用与研究进展[J],精细与专用化学品, 2004,12(6): 10-12
    67.程杰成沈兴海袁士义等,新型梳形抗盐聚合物的流变性[J],高分子材料科学与工程,2004,20(4): 118-121
    68.王玉普,罗健辉,卜若颖,王平美,刘玉章,梳形KYPAM抗盐聚合物在油田中的应用[J],化工进展, 2003,22(5): 508-511
    69.姜言里等.聚合物驱油最佳技术条件优选[M].北京:石油工业出版社,1994,51-60
    70.姜言里等.聚合物驱油经济最佳用量的优选[J].大庆石油地质与开发,1995,14(3),46-51
    71.韩培慧,董志林,张庆茹.聚合物驱油合理用量的选择[J].大庆石油地质与开发,1999,18(1),40-41
    72.隋军,廖广志,牛金刚.大庆油田聚合物驱油动态特征及驱油效果影响因素分析[J].大庆石油地质与开发,1999,18(5),16-20
    73.程杰成,王德民,吴军政,李群等.驱油用聚合物的分子量优选[J].石油学报,2000,21(1),102-106
    74. R. S. Seright. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions[R]. SPE,June 1983
    75. Dunleavy, et al. Process for Restoring the Permeability of a Subterranean Formation[M]. US5,038,864
    76. Ferrell, et al. Polymer Flood Filtration Improvement[M]. US4,212,748
    77. Miller, et al. Surfactant Enhanced Injectivity of Xanthan Mobility Control Solutions for Tertiary Oil Recovery[M]. US4,406,798
    78. Yang. Process for Reducing Polymer Plugging during Polymer Injection into Oil Reservoir[M]. US4,662,444
    79.韩冬,韩大匡,杨普华.一种提高油藏聚合物注入能力的方法[M].CN1144256A
    80.杨付林,聚合物驱油机理及高质量浓度聚合物驱油方法的研究[D],大庆石油学院博士学位论文,2004年
    81. F H.波特曼,二次和三次采油.石油工业出版社[M],1984年
    82. F.H.波特曼等,提高原油采收率技术.石油工业出版社[M],1985年
    83. Poettmann F. H., Improved oil Recovery[J], Interstate Oil Compact Com. Mission, 1983, Oklahoma
    84.王立军.聚合物溶液粘弹性对提高驱油效率的作用[D].大庆石油学院博士论文,2003
    85.岳湘安,张立娟,刘中春等.聚合物溶液在油藏孔隙中的流动及微观驱油机理[J].油气地质与采收率.2002,9(3):4-6
    86.夏惠芬,王德民,侯吉瑞,辛全刚,刘义坤,聚合物溶液的粘弹性对驱油效率的影响田[J].大庆石油学院学报,2002,21(2):108-111
    87.汪伟英.利用聚合物粘弹效应提高驱油效率闭[J].断块油气田.1995, (5) 2:26-29
    88. Hna Xinaqnig, Wang Weiying, Xu Ying. The viscoelastic behavior of HPAM solutions in porous media and it’s effection displacement efficiency[R], SPE30013, Society of Petroleum Engineer, 1995
    89.王德民,程杰成,夏惠芬等.粘弹性流体平行于界面的力可以提高驱油效率[J].石油学报,2002,23(5):47-52
    90.张立娟,岳湘安,刘中春等.粘弹性流体在盲端孔隙中的流场[J].水动力学研究与进展.2002,17(6):747-755
    91.黄延章,于大森,张桂芳.聚合物微观驱油机理研究[J].油田化学,1900, (7)l:56-60
    92.郭尚平.微观驱油物理化学机理[M].北京:科技出版社,1990
    93.孙焕泉,张以根,曹绪龙著聚合物驱油技术[M].石油大学出版社2002年4月第-版
    94. Wang, D., et al: The Influence of Viscoelasticity on Displacement Efficiency -From Micro to Macro Scale [R], SPE 109016,2008
    95.王德民,王刚,吴文祥,等.黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,23(1):43-55
    96.郑晓松.聚合物溶液的弹性粘度理论及应用[D].大庆石油学院博士论文,2004
    97. Southwick J. G, and Mank, C. W. Molecular degradation, injectivity and elastic properties of polymer solutions[R], SPE15652
    98. R. S. Seright. The effects of mechanical degradation and viscoelastic behavior on injectivity of polyacrylamide solutions[R]. SPE, Exxon Production Research Co. June 1983
    99.张宏方.衰竭层效应和粘弹性效应对聚合物波及系数的作用研究[D].大庆石油学院博士论文,2003
    100.韩显卿,高有瑞.孔隙介质中滞留聚合物粘弹性的测定方法研究[J].西南石油学院学报.1992,2:145-150
    101.佟曼丽,郭小莉.聚合物稀溶液流经孔隙介质时的粘弹效应及其表征[J].油田化学.1992,2:145-150
    102.S. K.拜佳,张贵孝译,秦同洛校.聚合物在多孔介质中的流动[M],石油工业出版社,1986
    103.H. A.巴勒斯, J. H.赫顿, K.瓦尔特斯.流变学导引[M],中国石化出版社, 1989
    104.许元泽,高分子结构流变学[M],四川教育出版社, 1988
    105.王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(下) [M].大庆石油地质与开发.2001(8):1
    106.佟曼丽.流经孔隙介质时聚合物稀溶液德博拉数的确定[J].油田化学,1992,9(1):50-53
    107.Schular P. J, Lerner. R. M, Kuehne D. L. Improving chemical flood with micellar/ alkaline/ polymer processes[R]. SPE14934, 1986
    108.赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1996,13(2):237-242
    109.李卫东,郭雄华,陈跃章,张国荣,陈近增.孤东油田黄原胶驱先导试验粘度变化及影响因素[J].石油钻采工艺,1998,20(5):75-78
    110.张伯英,孙景民,康恒.孤东油田七区油井黄原胶驱应用效果分析[J].石油与天然气化工,1999,28(1):48-52
    111.张伯英,孙景民,康恒.黄原胶驱现场应用效果分析[J].钻采工艺,1999,22(2):70-71
    112.孙景民,王喜臣,张成玉,徐风山.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000,27(5):90-92
    113.Wu Wenxiang, Wang Demin, Jiang Haifeng. Effect of the Visco-elasticity of Displacing Fluids on the Relationship of Capillary Number and Displacement Efficiency in Weak Oil-wet Cores[R], SPE109228
    114.Plate, N.A., Shibaev, V.P. Comb-Shaped Polymers and Liquid Crystals[M], New York: Plenum Press
    115.冯玉军.疏水缔合水溶性聚合物溶液结构及其对溶液流变性影响的研究[D].西南石油学院博士论文,1999
    116.R. B. Brid, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids,Vol.1 [M],Fluid Mechanics John Wiley&Sons,1977
    117.W. R. Schowalter. Mechanics of Non-Newtonian Fluids[M]. Pergamon Press 1978
    118.陈文芳.非牛顿流体力学[M].科学出版社,1984
    119.岳湘安.牛顿与非牛顿液-固两相流的本构理论及其在垂直管流[D].中国科学技术大学博士论文, 1993
    120.岳湘安.非牛顿流体力学原理及应用[M].石油工业出版社,1996(3)
    121.Demin Wang, Jiecheng Cheng, Qingyan Yang, Wenchao Gong, Qun Li, Fuming Chen. Viscous-elastic polymer can increase displacement efficiency in cores[R], SPE63227 presented at SPE Annual Technical Conference and Exhibition, 1-4 October 2000, Dallas, Texas
    122.Yanzhang Huang, Dasen Yu, Fuhai Liu. The study on micro polymer flooding mechanism [J], Oil field Chemistry, 1990,(1)P:56-60
    123.Huifen Xia, Ye Ju, Fanshun Kong. Effect of elastic behavior of HPAM solutions on displacement efficiency under mixed wettability conditions[R], SPE90234 presented ant the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Perth Australia, 17-20 October 2004
    124.M. Aboubacar, T. N. Philips, H. R. Tamaddon-Jahromi, B. A. Snigerev, M. F. Webster.High-order finite volume methods for viscoelastic flow problems[J]. Journal of Computational Phusics, 2004(199):15-40
    125.X. L. Luo. A control volume approach for integral viscoelastic models and its application to contraction flow of polymer melts [J]. J. Non-Newtonian Fluid Mech, 1996(64):173-189
    126.K. A. Missirlis, D. Assimacopoulos, E. Mitsoulis. A finite volume approach in the simulation of viscoelastic expansion flows [J]. J. Non-Newtonian Fluid Mech, 1998(78):91-118
    127.Baoguo Wang, Dong Wang, Qinsheng Liu. Efficient hybrid method for Oldroyd-B fluid flow computations [J]. Tsinghua Science and Technology, ISSN 1076-0214, 1998(3):985-990
    128.M. Aboubacar, H. Matallah, M. F. Webster. Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: Plannar contraction flows [J]. J. Non-Newtonian Fluid Mech, 2002(103):65-103
    129.M. J. Crochet, K. Walters, A. R. Davies. Numerical simulation of non-Newtonian flow [M]. New York: Elsevier Science Publisher B.V. 1984:85-120
    130.J. L. White, A. Kondo. Flow patterns in polyethylene and polystyrene melts during extrusion through a die enty region[J]. J. Non-Newtonian Fluid Mech, 1997(3)
    131.R. I. Tanner. From A to (BK) Z in constitutive equations[J]. J. Non-Newtonian Fluid Mech,1988(32):673-702
    132.吕平.毛管数对天然岩心渗流特征的影响[J].石油学报,Vol.22,No.4,July 1987,48-54
    133.Lake L. Enhanced Oil Recovery[M]. Printice Hall
    134.郭尚平.物理化学渗流微观机理[M].科学出版社
    135.R. Seright, et al. X-Ray computed microtomography studies of fluid partitioning in drainage and imbibition before and after gel placement: Disproportionate permeability peduction[J]. SPE Journal, June 2006
    136.纪朝风.疏水缔合水溶性聚合物在多孔介质中缔合机理研究[D].西南石油学院博士论文,2004
    137.施雷庭,叶仲斌,罗平亚,杨建军.疏水缔合水溶性聚合物AP-P3在多孔介质中的缔合行为研究[J].天然气勘探与开发,2004,27(4): 40-43
    138.Zaitoun A, Kohler N. Two-phase flow through porous media: Effect of an adsorbed polymer layer[R], SPE18085
    139.Gogarty W B, Levy G L, Fox V G. Viscoelastic effects in polymer flow through porous media[R], SPE4025
    140.Hirasaki G H, Pope G A. Analysis of factors influencing the mobility and adsorption in the flow of polymer solution through porous media[R], SPE 4026

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700