用户名: 密码: 验证码:
具有规整孔道结构的蒙脱土柱撑杂化材料的制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用离子交换作用向层状蒙脱土矿物的层间引入金属或非金属化合物进行自组装,使本身具有二维层状结构的蒙脱土矿物转变为拥有三维孔道结构的多孔材料是当前层状材料的研究热点之一。柱撑粘土多孔材料以其特有的高比表面积,微孔-介孔复合结构以及较多的催化活性位在选择性吸附、催化、分离和药物缓释等方面有广泛的应用前景。
     目前,制备粘土柱撑材料主要有离子交换和有机溶剂预溶胀两种方法。用离子交换法制备的柱撑粘土比表面积相对较低,且孔径分布不均,热稳定性不高。用预溶胀的方法制备的粘土柱撑材料虽然可以克服以上的缺陷,但是过程比较复杂,难以满足大规模生产的需要。针对柱撑类多孔材料存在的问题,本文应用离子交换、溶剂化、层间模板法、分子自组装等技术进行了天然蒙脱土层间多孔纳米粒子杂化材料的制备研究,运用粉末X射线衍射(XRD)、傅利叶变换红外光谱(FT-IR)、N_2等温吸附-脱附(BET)、扫描电镜(SEM)、高倍透射电镜(HRTEM)、紫外-可见光谱(UV-vis)、氢气程序升温还原(TPR)等多种现代化测试手段,对蒙脱土杂化材料的层状结构,层间孔道结构和化学环境等性能进行了表征,研究了调控孔径分布及孔结构的方法,探讨了成孔机理,考察了样品对焦化蜡油和植物沥青催化裂解的催化性能。主要研究工作及取得的成果如下。
     (1)制备了拥有规整层间二氧化硅介孔孔道结构的蒙脱土杂化材料。用十六烷基三甲基溴化铵作为层间模板剂制备蒙脱土杂化材料,产品拥有规整的孔道结构(3.9nm)和较高的比表面积(622m~2/g)。结果表明作为层间摸板剂的十六烷基三甲基溴化铵在蒙脱土层间以规整胶束的形式进行自组装排列,形成规整的孔道结构。
     (2)用不同分子长度和带有不同官能团的表面活性剂作为层间模板剂研究了成孔机理,成功调节了层间孔道结构。层间孔道的孔径与所用的模板剂的分子长度成正比,模板剂的有机官能团能对蒙脱土杂化材料的介孔-微孔的分布起到调节的作用;不同的官能团对层间孔道结构影响也很明显,当使用带有苄基的模板剂时,形成的蒙脱土杂化材料比表面积高达1156m~2/g,而带有酯基的模板剂形成的蒙脱土杂化材料虽然孔径角大(4.3nm),但是比表面积只有400 m~2/g。
     (3)用阳-阳离子混合表面活性剂和阴-阳离子混合表面活性剂作为模板剂合成了蒙脱土杂化材料,并研究了其成孔和孔道调节机理;蒙脱土杂化材料成孔机理与介孔分子筛相似,蒙脱土杂化材料的孔径随混合模板剂中拥有较长分子结构的表面活性剂比例的上升而增加,这进一步论证了蒙脱土杂化材料的形成原理与分子筛相似。用阴-阳离子混合表面活性剂作为模板剂合成的蒙脱土杂化材料比用阳离子表面活性剂单独制备的蒙脱土杂化材料具有更多的介孔分布。
     (4)并在此基础上将镍和钴等过渡金属引入到了层间硅骨架结构内,研究了金属离子对层板和孔道结构的影响;由于层间硅骨架的非定型态结构,金属离子能顺利引入骨架结构,在骨架内主要以四面体构型存在。大量金属离子的引入会影响材料的层板和孔道结构,使层板有序性降低,比表面积下降。当添加的金属量与层间硅元素的摩尔比接近1/10时,蒙脱土杂化材料的比表面面积下降至300m~2/g左右。
     (5)利用焦化蜡油和植物沥青催化裂解反应体系评价了蒙脱土杂化材料的催化性能。催化裂解控制在300℃,结果表明,杂化蒙脱土催化剂在此温度下对焦化蜡油的催化裂解转化率可以达到90%以上,且转化率与蒙脱土杂化材料的孔径存在线性关系,孔径越大,转化率越高,且对汽油组分的选择性可达71.2%,积碳量低于2%。其催化性能远高于MCM-41分子筛,与Al-MCM-41(Si/Al=30)相当。由于柱撑杂化蒙脱土层间形成的规整孔道结构属于纳米尺度范畴,所以具有类纳米分子筛催化剂的特征,其活性高,选择性好。另外,参杂金属镍的蒙脱土杂化材料对植物沥青的催化裂解有很高的催化活性,其转化率可达90.2%,远高于Ni-ZSM-5(12.7%)分子筛,与Ni-MCM-41相当(86.3%)。Ni-ZSM-5分子筛对的柴油选择性高于50%,对气态烃和汽油组分的选择性低于10%;Ni-MCM-41虽然对气态烃和汽油组分有较高的选择性(分别达到15.4%和39.7%),但是对积碳的选择性同样较高(高达30%)。参杂金属镍的蒙脱土杂化材料对气态烃和汽油组分的选择性分别高达31.1%和32.5%,而对积碳的选择性低于Ni-MCM-41。
     上述研究结果表明,本文制备的蒙脱土杂化材料拥有高比表面积(400-1156m~2/g)和微孔-介孔复合孔道结构,且介孔孔径分布均匀。但是用不同分子结构的阳离子表面活性剂作为模板剂制备的蒙脱土杂化材料在孔道结构上存在着明显的差异。用带有酯基官能团的模板剂制备的蒙脱土杂化材料比表面积相对较低,但大部分的贡献来自介孔部分,且介孔孔径较大(4.3nm);而用带有苄基的模板剂制备的蒙脱土杂化材料,其介孔孔径也可以达到3.8nm,但其比表面积较大,可以达到1156m~2/g,这种大的比表面积主要来自孔径小于1.5nm的微孔部分。从总体上来看,蒙脱土杂化材料的介孔孔径随所使用的模板剂分子链长度的增加而增大,且所得到的蒙脱土杂化材料的层间净高度(3.5-4.5nm)接近模板剂分子长度的两倍,说明作为模板剂的表面活性剂在成孔的过程中起到了决定性作用。
     研究表明,通过不同比例的阳离子混合模板剂的调节作用,可以对蒙脱土杂化材料的孔径进行调控。同样,在制备过程中加入少量的阴离子表面活性剂,使其与阳离子表面活性剂形成混合模板剂,可以降低胶束中阳离子表面活性剂之间的电荷斥力,使胶束排列更加紧密和均匀,能有效提高蒙脱土杂化材料孔道的均匀性,并可调节微孔-介孔的比例。这为制备具有一定孔径分布和比表面积及具有一定介-微孔组成的多孔蒙脱土杂化材料催化剂及吸附剂提供了实验基础。
     实验发现,通过蒙脱土层间柱撑杂化,可以将较多的过渡金属离子引入到层间骨架结构中。当层间物中Si/Ni或Si/Co达到5/1时,杂化材料的孔道结构无明显变化,过渡金属离子(Ni或Co)在复合材料中主要是以Si-O-Ni或Si-O-Co结构存在。与传统的金属氧化物柱撑蒙脱土相比,具有比表面积高(300-600m~2/g)、孔径大(约3.8nm)、孔径分布均匀且催化活性高等优点。
     研究认为,蒙脱土杂化材料拥有规整的层间介孔或介孔-微孔孔道结构,主要是因为表面活性剂在蒙脱土层间域微环境内形成了液晶或类液晶,产生了类似分子筛模板结构的管状胶束排列,正硅酸乙酯正是围绕这些胶束水解进而形成了规整的类分子筛介孔结构。蒙脱土的纳米级层间距也就决定了在其层间域形成的类柱撑结构具有纳米尺度,拥有纳米催化剂的特征,活性高,选择性好,且由于蒙脱土层板的限制作用,使得层间纳米粒子或纳米结构不易团聚,具有更好的热及水热稳定性。在催化剂领域具有广阔的应用前景及重要的学术价值。
The design and synthesis of pillared clay using ion exchange and self-assembly, translating the 2D layered of clay structure into 3D porous structure is one of the most attractive research fields.Due to the special high surface area and micro-mesoporous structure,their potential applications as catalysts,supports,selective adsorbents, separating agents,and porous matrixes for encapsulation of specific functional molecules have been of great interest.
     In general,pillaring is achieved by direct introduction of bulk inorganic (polyoxcations) by ion exchange or organic precursors(metal alkoxides) between the interlayers of clay.Pillaring process that use metal alkoxide are facilitated by a preswelling step whereby interlayer regions are exposed to quaternary ammonium. However,preswelling procedures are problematic because they are complex, non-quantitative and require reagents and the products obtained by ion exchange have low surface area,wide pore size distribution and poor thermal stability.In this research,we have analyzed and concluded the preview works and prepared the ordered mesoporous silica-pillared montmorillonite by ion exchange,salvation, gallery tempalting,self-assembly synthetically.Based on the synthesis of ordered mesoporous silica-pillared montmorillonite,the nickel and cobalt ions have been incorporated into the gallery framework.The modern characterization methods such as powder X-ray diffraction(XRD),N_2 adsorption-desorption isotherms(BET),SEM, HRTEM,UV-vis and TPR had been used to characterize the obtained samples.The influence of the porous structure,pore size distribution and catalytic activity by the template molecules with different functional groups,cationic surfactants mixture and cationic-anionic surfactants mixture has been studied and discussed on detail.The catalytic activity of the mesoporous silica-pillared montmorillonite has been tested by cracking of coker gas oil(CGO) and plant atmosphere.Moreover,the properties of the tunable porous structure and the mechanism of pore form had also been studied. The main research and the achievements are indicated as the following:
     (1) The silica-pillared montmorillonite with ordered mesoporous structure was synthesized using cetyltrimethylammoniumethyl bromide as the gallery template. The product has ordered pore size(3.9nm) and high specific surface area(622 m~2/g).This regularity of pore distribution is achieved by the liquid crystal mechanism of quaternary ammonium cationic surfactant between layers of montmorillonite.
     (2) The prepared montmorillonite hybrid materials have high specific surface area, micro-mesoporous composite structure and ordered mesopore size distribution. However,there is some difference between the prepared samples which obtained using different surfactants as template.The sample prepared by surfactant with eater group has relative lower surface area(400 m~2/g).However,most of the surface area is from gallery mesopores,moreover,the mesopore size is bigger (4.3nm).The sample obtained by surfactant with beazyl group has the highest surface area(1156 m~2/g).
     (3) The pore size of prepared silica-pillared montmorillonite can be controlled by proportion of different cationic surfactants mixture.In addition,utilization of cationic-anionic mixed surfactants contributes to increase the constituent of mesopore effectively.The silica-pillared montmorillonite can be synthesized using mixed surfactants as gallery templates to obtain certain pore size,surface area and micro-mesopore composing according to the actual need of application for catalysts or adsorption agent.
     (4) Because of the amorphous gallery framework,the nickel and cobalt ions can be incorporated into the silica framework between the layers of silica-pillared montmorillonite.Our experimental results have proved this.The gallery Si/Ni or Si/Co ratios can even be up to 5/1 without destroy of layered structure.The characterization of instrument proves that large number of Si-O-Ni and Si-O-Co chemical bonds exist.The metal containing silica-pillared montmorillonite has high specific surface area(300-600m~2/g),larger diameter(about 3.8nm),uniform pore size distribution and high catalytic activity in compared with traditional metal-oxide-pillared montmorillonite.
     (5) In order to characterize the catalytic property of silica-pillared montmorillonite and metal containing silica-pillared montmorillonite,the catalysis cracking of coker gas oil(CGO) and plant atmosphere is used to estimate the catalytic properties respectively.The experimental results indicate that the bigger mesopore size of silica-pillared montmorillonite contributes to the higher conversion(Up to 90%) of CGO with high selectivity towards gasoline(71.2%) and low selectivity towards coke(Smaller than 2%).Due to the Si-Al structure of the layers,the silica-pillared montmorillonite has the acidic centers itself.The catalytic activity of silica-pillared montmorillonite is much higher than pure MCM-41 and which is up on to the Al-MCM-41(Si/Al=30).And the selectivity towards coke is lower than Al-MCM-41.Nickel metal doped silica-pillared montmorillonite has unique mesopore of 3.8nm,so its catalytic activity conversion of plant asphalt cracking (90.2%) is much higher than the Ni-ZSM-5(12.7%) and similar to the Ni-MCM-41(86.3%).The selectivity towards gaseous hydrocarbons(31.1%) and gasoline(32.5%) of nickel metal doped silica-pillared montmorillonite is near the Ni-MCM-41(15.4%and 39.7%).Furthermore,the selectivity towards coker of nickel metal doped silica-pillared montmorillonite is much lower than that of Ni-MCM-41(30%).
     Above all,the results indicate that prepared montmorillonite hybrid materials have high specific surface area(400-1156m~2/g),micro-mesoporous composite structure and ordered mesopore size distribution.However,there is some difference between the prepared samples which obtained using different surfactants as template. The sample prepared by surfactant with eater group has relative lower surface area. However,most of the surface area is from gallery mesopores,moreover,the mesopore size is bigger(4.3nm).The sample obtained by surfactant with beazyl group has the highest surface area(1156 m~2/g),but most of the surface area is from micropore which pore size is smaller than 1.5nm.The pore size of material is controllable by the chain length of surfactant.Since gallery heights of prepared silica-pillared montmorillonite are nearly double the chain length of surfactants,this implies that surfactants molecules in the gallery are arranged as molecular lamellar bilayers and that tetraethoxysilane produce firm enough silica-pillars to prop the expanded gallery after the removal of surfactants.
     According to the actual need of application,the pore size of prepared silica-pillared montmorillonite can be controlled by proportion of different cationic surfactants.In addition,utilization of cationic-anionic mixed surfactants contributes to increase the constituent of mesopore effectively.The silica-pillared montmorillonite can be synthesized using mixed surfactants as gallery templates to obtain certain pore size, surface area and micro-mesopore composing according to the actual need of application for catalysts or adsorption agent.
     Because of the amorphous gallery framework,the nickel and cobalt ions can be incorporated into the silica framework between the layers of silica-pillared montmorillonite.Our experimental results have proved this.The gallery Si/Ni or Si/Co ratios can even be up to 5/1 without destroy of layered structure.The characterization of instrument proves that large number of Si-O-Ni and Si-O-Co chemical bonds exist.The metal containing silica-pillared montmorillonite has high specific surface area(300-600m~2/g),larger diameter(about 3.8nm),uniform pore size distribution and high catalytic activity in compared with traditional metal-oxide-pillared montmorillonite.
     The experimental results indicate that the prepared silica-pillared montmorillonite has ordered mesoporous structure.This regularity of pore distribution is achieved by the liquid crystal mechanism of quatemary ammonium cationic surfactant between layers of montmorillonite.The surfactants arrange molecular sieves in the gallery areas of montmorillonite,the tetraethoxysilane hydrolysis happens around the sieves and form the ordered mesoporous structure between the layers of clay.This research will broaden the study field of layered materials and promote the application of montmorillonite-based porous materials in various fields especially in the petro-chemical catalysis.Furthermore,the research has important theoretical and practical significance for the development of porous clay materials.
引文
[1] Cheng S F. From layer compounds to catalytic materials [J] .Catalysis Today, 1999,49(1-3): 303-312.
    
    [2] Pinnavaia T J. Intercalated clay catalysts [J].Science, 1983, 220:365-372.
    
    [3] Gil A, Gandia L M. Recent advances in the synthesis and catalytic applications of pillared clays[J]. Catal.Rev.Sci.Eng, 2000, 42(1&2):145-212.
    
    [4] Sapag K, Mendioroz S. Synthesis and charaeteriation of micro-mesoporous solids: pillared clays[J]. Colloids and surfaces A: physicochemistry and Engineering aspects, 2001, 187&188:141-149.
    
    [5] Pinnavaia T J, Landau S D, Tzou M S. Layer cross-linking in pillared clay [J]. J Am Chem Soc , 1985, 107: 7222-7223.
    
    [6] Centi G, Perathoner S. Catalysis by layered materials: A review [J]. Micropore. Mesopore. Mater. 2008,107, 3-15.
    
    [7] Yebra-Rodriguez A, Alvarez-Lloret P, Alejandro B. Navarro R, Martin-Ramos J D, Cardell C. Thermo-XRD and differential scanning calorimetry to trace epitaxial crystallization in PA6/montmorillonite nanocomposites [J]. Materials Letters, 2009, 63 (13-14) 1159-1161.
    
    [8] Zainuddin S, Hosur M V, Zhou Y, Kumar A, Jeelani S. Durability studies of montmorillonite clay filled epoxy composites under different environmental conditions [J].Mater. Science. Engineer: A, 2009, 507(1-2), 117-123.
    
    [9] Cuadros J, Aldega L, Vetterlein J, Drickamer K, Dubbin W. Reactions of lysine with montmorillonite at 80℃: Implications for optical activity, H~+ transfer and lysine-montmorillonite binding[J]. J. Colloid and Interface Science, 2009, 333(1) 78-84.
    
    [10] Birgersson M, Karnland O. Ion equilibrium between montmorillonite interlayer space and an external solution—Consequences for diffusional transport [J]. Geochimica et Cosmochimica Acta, 2009, 73 (7), 1908-1923.
    
    [11] Zhou L, Chen H, Jiang X, Lu F, Zhou Y, Yin W, Ji X. Modification of montmorillonite surfaces using a novel class of cationic gemini surfactants [J]. Journal of Colloid and Interface Science, 2009, 332, (1) 16-21.
    
    [12] Almeida C A P, Debacher N A, Downs A J, Cottet L, Mello C A D. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay [J]. Journal of Colloid and Interface Science, 2009, 332, (1), 46-53.
    
    [13] Plee D, Brog F, Gatineau L. High-resolution solid-state ~(27)Al and ~(29)Si nuclear magnetic resonance study of pillared clays.J Am Chem Soc[J],1985,107:2362-2369.
    [14]朱利中,陈宝梁,有机膨润土及其在污染控制中的应用[M],科学出版社,2006.
    [15]Horch R A,Golden T D,D'Souza N A,Riester L,Electrodeposition of Nickel/Montmorillonite Layered Silicate Nanocomposite Thin Films[J].Chem.Mater,2002,14,3531-3538.
    [16]Zhu H Y,Lu G Q.Engineering the Structures of Nanoporous Clays with Micelles of Alkyl Polyether Surfactants[J].Langmuir,2001,17,588-594.
    [17]Liu A G,Russell E W.Adsorption/desorption in a system containing of humic acid,heavy metals,and clay minerals[J].J Colloid Interf Sci,1999,218(1):225-232.
    [18]Abollino O,Aceto M,Malandrino M et al.Adsorption of heavy metals on Na-montmorillonite.Effect of pH and organic substances[J].Water Research,2003,37(7):1619-1627.
    [19]He H,Guo J,Xie X et al.Location and migration of cations in Cu~(2+)-adsorption montmorillonite[J].Environ Int,2001,26(5-6):347-352.
    [20]Choi J,Kang C.H,Whang J.Experimental assessment of non-treated bentonite as the buffer material of a radioactive waste repository[J].J Environ Sci Heal A,2001,36(5):689-714.
    [21]Kowal F A,Drot R,Simoni E et al.Use of spectroscopic techniques for uranium/montmorillonite interaction modeling[J].Environm Sci Technol,2004,38(5):1399-1407.
    [22]Chen G H,Yao K D,Zhao J T.Montmorillonite clay/poly(methyl methacrylate) hybrid resin and its barrier property to plasticizer within poly(vinyl chloride) composite[J].J Appl Polym Sci,1999,73(3):425-430.
    [23]Fan A X,Somasundaran P,Turro N J.Adsorption of alkyltrimethylammonium bromides on negatively charged alumina[J].Langmuir,1997,13(3):506-510.
    [24]Zhu H Y,Zhao J C,Liu J W,Yang X Z,Shen Y N.General Synthesis of a Mesoporous Composite of Metal Oxide and Silicate Nanoparticles from a Metal Salt and Laponite Suspension for Catalysis[J].Chem.Mater,2006,18,3993-4001.
    [25]J.Ahenach,P.Cool,E.F.Vansant,Enhanced bronsted acidity created upon Al-graffing of porous clay heterostructures via aluminium acetylacetonate adsorption[J].Phys.Chem.Chem.Phys,2000,2,5750-5755.
    [26] Zou S, Zhou R. Influence of synthesis condition on pore structure of Al pillared and supported Pd catalysts for deep oxidation of benzene [J]. Micropor. Mesopor. Mater, 2008,113,472-480.
    [27] Gil A, Vicente M A, Korili S A. Effect of the nature and structure of pillared clays in the catalytic behaviour of supported manganese oxide [J]. Catal. Today, 2006, 112, 117-120.
    [28] Brindley G W, SemPels R E. Preparation and properties of some hydroxyl-aluminium beidellites [J]. Clay Minerals, 1977, 12:229-237.
    [29] Ohtsuka K. Preparation and properties of two-dimensional microporous pillared interlayered solids[J].Chem. Mater. 1997, 9:2039-2050.
    [30] Narayanan, Deshpande K. Alumina pillared montmorillonite: chracteration and catalysis of tobluene benzylation and aniline ethylation [J]. Appl. Catal. A, 2000, 193(1-2): 17-27.
    [31] Coelho A V, Poneelet G, Gallium, aluminum and mixed gallium-aluminum Pillared montmorillonite: preparation and characterisation [J] Appl.Catal. A, 1991,77:303-314.
    [32] Cristina V. Pillaring of different smectite members by chromium species (Cr-PILCs) [J] .Microporous and mesoporous materials, 2001, 49(1-3): 197-202.
    [33] Guin G, Gil A, Monies M, Grange P. Tantalum-pillared montmorillonite 1. Synthesis and physicoehemical chraraeterization [J] J. Catal, 1997, 168:450-462.
    [34] Valverde J L, Sanehez P, Dorado F, Molina C B, Romero A. Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethox ideas the pillaring agent [J] Microporous and mesoporous materials, 2002, 54 (1-2):155-165.
    [35] Choudary B M, Kantam M L, Sateesh M et al. Iron pillared clays-effieient catatysts for Friedel-Crafts reactions [J] Appl.Catal.A, 1997, 149:257-264.
    [36] Thomas M, Bertrand J A, Oeeelli M L, Steneel J M, Gould A C. Synthesis and charaeteration of expanded smectites containing trinuelear complexes [J].Chem. Mater, 1999,11 (4): 1153-1164.
    [37] Gil A, Montes M. Metathesis of propene on molybdenum-alumina-pillared montmorillonite [J].Ind. Eng. Chem. Res, 1997, 36(5):1431-1443.
    [38] Ceari A. Preparation and catalytic properties of cationic and anionic Clays [J].Catal.Today, 1998,41:53-71.
    [39] Sehoonheydt R A, Pinnavaia T, Lagaly G, Gangas N. Pillared clays and pillared layered solids [J].Pure. Appl .Chem, 1999, 71(12):2367-2371.
    [40] Trombe M, Guido B, Maurizio L, Loretta S, Renzo G, Luca P, Antonio J L, Manuel A R, Enrique R C. Solid acid catalysts from clays: Evaluation of surface acidity of mono and bi-pillared smectites by FT-IR spectroscopy measurements, NH_3-TPD and catalytic tests[J] Appl. Catal A:Gen, 2000, 193(1-2): 55-69.
    [41] Manos G, Yusof I Y, Gangas N H, Papayannako S N. Tertiary recycling of polyethylene to hydrocarbon fuel by catalytic cracking over aluminum Pillared clays [J].Energy&Fuels, 2002,16(2):485-489.
    [42] Manos G, Yusof I Y, Papayannako S N, Gangas N.H. Catalytic cracking of polyethylene over clay catalysts. Comparison with an ultrastable Y zeolite [J]. Ind. Eng. Chem. Res, 2001, 40(10):2220-2225.
    [43] Yang H, Wilson M, Fairbridge C, Ring Z, Hill J M. Mild hydro cracking of synthetic crude gas over Pt supported on pillared and delaminated clays. Energy&Fuels, 2002, 16(4):855-863.
    [44] Abdellaoui M, Bouehoule , Majest M A, tatibouet J M, Louloudi A, Papayannakos N, Gangas N H. Catalytic wet peroxide oxidation over mixed(Al-Fe) Pillared clays [J] Appl Catal: B Environ, 2000, 27 (4):225-230.
    [45] Choy. J H, Jung H, Han Y S, Yoon J B, Shul Y G, Kim H J New Co-SiO2-sol pillared clays as catalysts for NOx conversion [J].Chem. Mater, 2002, 14(9):3823-3828.
    [46] He H, zhang L, Klinowski J, Oecelli M L. In situ ~(13)C solid-state NMR studies of the catalytic conversion of methanol on expanded montmorillonites and saponites[J].J Phys. Chem, 1995, 99:6980-6985.
    [47] Sterte J. Hydron thermal stability and catalytic cracking performance of some pillared clays[J].ACS Symp. Ser, 1990, 437:104-113.
    [48] Bradley S M, Kydd R A. Ga13, Al13, GaAl12, and chromium-pillared montmorillonites: acidity and relativity for cumene conversion[J]J Catal, 1993, 141:239-249.
    [49] Swamankar R, Brandt K B, Kydd R A. Catalytic activity of Ti-and Al-pillared montmorillonite and beidellite for cumene cracking and hydrocracking[J]. Appl.Catal: A, 1996,142:61-71.
    [50] Gonzalez F, Pesquera C, Benito I, Herrero E, Poncio C, Casuseelli S. Pillared clays: catalytic evaluation in heavy oil cracking using a microactivity test[J] Appl. Catal: A.Gen 1999,181(1-3):71-76.
    [51] Brandt K B, Kydd R A. The effect of framework substitution and pillar composition on the cracking activities of montmorillonite and beidellite [J]. Appl. Catal: A. Gen, 1997, 165(1-2): 327-333.
    [52] Bodman S D, Mewhinnie W R, Begon V, Suelves I, Lazaro M J, Morgan T J,Herod A A,Kandiyoti R.Metal-ion pillared lays as hydroeracking catalysts(Ⅰ):Catalyst Preparation and assessment of performance at short contact times[J].Fuel,2002,81(4):449-459
    [53]Occelli M L,Finseth D H.Preparation and characterization of chlorobenzene over solid-acid catalysts[J].J.Catal,1986,99:316-326.
    [54]Chevalier S,Franek R,Lambert J F,Barthomeuf D,Suquet H.Characterzation of the porous structure and cracking activity of Al-Pillared saponites[J]Appl.Catal:A.Gen 1994,110(2):153-165.
    [55]Onaka M.Organic synthesis in claynanospaces[J]J.Synth.Org.Chem,1995,53:392-397.
    [56]Yadav G D,Doshi N S.Synthesis of linear phenyldodeeanes by the alkylation of benzene with 1-dodecene over non-zeolitic catalysts[J].Org.Process.Res.Dev,2002,6(3):263-272.
    [57]Lenarda M,Storaro L,Pellegrini G,Piovesan L,Ganzerla.Solid acid catalysts from clays:Part3:benzene alkylation with ethylene catalyzed by aluminum and aluminum gallium pillared bentonites[J].J.Molecular Cataly A:Chem,1999,145(1-2):237-244.
    [58]Chouda B M,Kantam M L,Sateesh M,Rao K K,Santhi P L.Iron pillared clays-Efficient catalysts for Ffiedel-Crafts reactions[J].Appl.Catal A:Gen,1997,149(1):257-264.
    [59]Moyaka R,Jones W.Pillared acid-activated clay catalysts[J].J.Chem.Soc,1994,8:929-930.
    [60]Kifton J F.C4 alkane separation process using solid acid catalysis[J].Appl.Catal.A,1994,109(2):247-262.
    [61]Destefanis A,Perez G L.PILCs versus zeolites as sorbents and catalysts Ⅱ.Terpene conversion in alumina-pillared calys and Phosphates and medium pore zeolites[J].Appl.Catal.A,1995,132(2):353-365.
    [62]Lourvanij K,Rorrer G L.Dehydration of glucose to organic acids in micro porous pillared clay catalysts[J]Appl.Catal.A,1994,109(1):147-165.
    [63]Breen C,Watson R,Madejova J,Komadel P,Klapyta Z.Acid-activated organc clays:preparation,characterization and catalytic activity of acid-treated tetraalkylammonium-exehanged smectites[J].Langrnuir,1997,13(24):6473-6479.
    [64]Clearfield A.Organically pillared micro and mesoporous materials[J]Chem.Mater,1998,10(10):2801-2810.
    [65]Meier L P,Nueeseh R,Madsen F T.Organic pillared clays[J].J.Colloid and Interface Science,2001,238(1):24-32.
    [66]Chen J P,Hansladen M C,Yang R T.Delaminated Fe_2O_3-pillared clay:its preparation, characterzation, and activities for selective catalytic reduction of NO by NH_3[J]. J Catal, 1995, 151: 135-146.
    [67] Long R Q, Chang M T, Yang R T. Enhancement of activities by sulfation on Fe-exehanged TiO_2-Pillared clay for selective catalytic reduction of NO by ammonia [J]. Appl. Catal B: Environment, 2001, 33(2): 97-107.
    [68] De Stefanis A, Dondi M, Perez G, Tomlinson A A G. Decomposition of nitrous oxide on pillared clays [J].Chemophere, 2000,41(8): 1161-1165.
    [69] Long R Q, Yang R T. The promoting role of rare earth oxides on Fe-exchanged TiO_2-pillared clay for selective catalytic reduction of nitric oxide by ammonia[J]. Appl. Catal. B:Environmental, 2000, 27(2): 87-95.
    [70] Chen J P, Hansladen M C, Yang R T. Mechanism of pillaring of the V_2O_5/TiO_2 catalyst for the reduction of NO by NH_3[J]. J Catal, 1990,125:411-420.
    [71] Del Castillo H L, Grange P. Preparation and catalytic activity of titanium pillared montmorillonite[J] Appl. Catal. A. 1993, 103: 23-34.
    [72] Choudary B M, Shobha R S, Narender N. Vanadium-pillared montmorillonite catalyst for selective oxidation of sulfides to sulfoxides[J].J. Mol.Catal, 1992, 75(1): 7-12.
    [73] Shimizu K I, Kaneko T, Fujishima T, Kodama T, Yoshida H, Kitayama Y. Selective oxidation of liquid hydrocarbons over photoirradiated TiO_2 pillared clays [J]. Appl. Catal. A: Gen, 2002, 225(1-2):185-191.
    [74] Wu P X, Liao Z W, Zhang H F, Guo J G. Adsorption of phenolon inorganic-organic pillared montmorillonite in polluted water[J]. Environment International, 2001, 26(5-6):401-407.
    [75] Volzone C. Hydrexy-chromium smectite: influence of Cr added [J].Clays Clay Miner, 1995, 43(3): 377-382.
    [76] Tzou M S, Pinavaia T J. Chromium pillared clays [J]. Catal.Today, 1988, 2(2-3): 243-259.
    [77] Bergaya F, Hassoun N, Gatineau L et al. Mixed aluminum-iron pillared laponites: properties, characterization and catalytic properties in syngas conversion [J].Stud. Surf. Sci. Catal, 1991, 63: 329-336.
    [78] Gil A, Gandia L M. Recent advances in the synthesis and catalytic applications of pillared clays[J]. Catal. Rev. Sci. Eng, 2000, 42(1&2): 145-212.
    [79] Han Y S, Yamanaka S. Preparation and characterization of microporous SiO_2-ZrO_2 pillared montmorillonite [J]. J Solid State Chemistry, 2006, 179(4): 1146-1153.
    [80] Han Y S, Yamanaka S, Choy J H. Acidic and Hydrophobic Microporous Clays Pillared with Mixed Metal Oxide Nano-Sols [J]. J. Solid State Chemistry, 1999, 144(1): 45-52.
    [81] Han Y S, Yamanaka S, Choy J H. A new thermally stable SiO_2-Cr_2O_3 sol pillared montmorillonite with high surface area [J]. Appl. Catal A: Gen, 1998, 174 (1-2): 83-90.
    [82] Vicente M A, Belver C, Sychev M, Prihod'ko R, Gil A. Relationship between the Surface Properties and the Catalytic Performance of Al-, Ga-, and AlGa-Pillared Saponites [J]. Ind. Eng. Chem. Res., 2009, 48 (1), 406-414.
    [83] Kannan P, Sevvel R, Rajagopal S, Pitchumani K, Srinivasan C. Oxidation of organic sulfides with clay-supported iodosylbenzene as oxygen donor [J]. Tetrahedron, 1997, 53( 22), 7635-7640.
    [84] Hernando M J, Pesquera C, Blanco C, Gonzalez F. Synthesis, Characterization, and Catalytic Properties of Pillared Montmorillonite with Aluminum/Cerium Polyoxycations [J]. Chem. Mater., 2001, 13 (6), 2154-2159.
    [85] Yanagisawa T, Shimi T, Kurda K et al. The preparation of alkyltrimethylammoniurn-kanemite complexes and their conversion to microporous materials [J]. Bull.Chem.Soc. Japan, 1990, 63: 988-992.
    [86] Kresge C T, Leonowiez M E, Roth W J, Vartuli J C, Beek J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    [87] Alfredsson V, Anderson M W. Structure of MCM-48revealed by transmission electron microscopy [J]. Chem. Mater, 1996, 8(5): 1141-1146.
    [88] Huo Q, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R, Petroff P M, Sehu Th F, Stueky G D. Generalized synthsis of periodic surfcant / inorganic composite materials [J].Nature, 1994, 368: 317-320.
    [89] Van Der Voort P, Morey M, Stueky G D, Mathieu M, Vansant E F. Creation of VOx surface species on pure siliea MCM-48 using gas-phase modification with VO(aeac)_2[J]. J. Phys. Chem. B, 1998, 102(3): 585-590.
    [90] Tanev P T, Pannavaia T J.A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267:865-867.
    [91] Ligia S, Jean-Louis G. Synthesis of mesoporous silica with tunable pore size from sodium silicate solutions and a polyethylene oxide surfactant[J]. Micropor. Mesopor. Mater, 1999, 27:243-253.
    [92] Seong S K, Abhijeet K, Pinnavaia T J. Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates [J].J. Phys. Chem. B, 2001, 105: 7663-7670.
    [93] Selmlidi-Winkel P, Lukens W W Jr, Zhao D, Yang P, Chnlelka B F, Stucky G D. Mesocellular siliceous foams with uniformly sized cells and windows [J]. J. Am. Chem. Soc , 1999, 121(1): 254-255.
    [94] Sakamoto Y, Diaz I, Terasaki O, Zhao D, Perez-Pariente J, Kim J M, Stueky, G D. Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography [J]. J. Phys. Chem. B, 2002,106(12): 3118-3123.
    [95] Sehmidt-Winkel P, Glinka C J, Stueky G D. Microemulsion templates for mesoporous silica[J]. Langmuir, 2000, 16(2): 356-361.
    [96] Margolese D, MeleroJ A, Christiansen S C, Chmelka B F, Stucky G D. Direct synthesis of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater, 2000, 12(8): 2448-2459.
    [97] M. Benjelloun, P. Cool, T. Linssen, E.F. Vansant, Acidic porous clay heterostructures: study of their cation exchange capacity [J] Micropor. Mesopor. Mater, 2001, 49, 83-94.
    [98] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures (PCH) as acid catalysts [J]. Chem. Commun, 1997, 1661-1662.
    [99] Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidity obtained from aicd-activated clays [J]. Chem. Commun, 2001, 2100-2101.
    [100] Polverejan M, Pauly T R, Pinnavaia T J. Acidic Porous Clay Heterostructures (PCH): Intragallery Assembly of Mesoporous Silica in Synthetic Saponite Clays Chem. Mater 2000,12, 2698-2704
    [101] Russo P A, Ribeiro Carrott M M L, Padre-Eterno A, Carrott P J M, Ravikovitch P I, Neimark A V. Interaction of water vapour at 298 K with Al-MCM-41 materials synthesised at room temperature [J]. Microporous. Mesoporous. Mater, 2007,103, 82-93.
    [102] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures formed by gallery template synthesis [J]. Nature, 1995, 374, 529-531.
    [103] Polverejan M, Liu Y, Pinnavaia T J. Aluminated derivatives of porous clay heterostructure (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts [J]. Chem. Mater, 2002,14, 2283-2288.
    [104] Wei L M, Tang T, Huang B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay [J]. Micropor. Mesopor. Mater 2004, 67,175-179.
    [105] Aguilar-Armenta G, Patin-o-Iglesias M E, Jime'nez-Jime'nez J, Rodri'guez-Castello'n E, Jime'nez-Lo'pez A. Application of Porous Phosphate Heterostructure Materials for Gas Separation [J] Langmuir 2006, 22, 1260-1267.
    [106] Chmielarz L, Kus'trowski P, Dziembaj R, Cool P, Vansant E F. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species [J]. Catalysis Today, 2007, 119,181-186.
    [107] Nguyen-Thanh D, Bandosz T J. Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures [J]. Microporous and Mesoporous Materials, 2006, 92, 47-55.
    [108] Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant E F. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia [J]. Appl. Catal. B: Environ, 2006, 62 (3-4), 369-380.
    [109] Chmielarz L, Kustrowski P, Rafalska-Lasocha A, Dziembaj R. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides [J]. Appl. Catal B: Environ, 2005, 58 (3-4), 235-244.
    [110] Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-itaniapillars synthesis and characterization [J]. J. Solid. State. Chem. 2009, doi:10.1016/j.jssc.2009.02.017.
    [111] Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process [J]. Appl. Catal B: Environ, 2008 doi:10.1016/j.apcatb.2008.11.001
    
    [112] Park K W, Jung J H, Seo H J, Kwon O Y. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane [J]. Micropor. Mesopor. Mater. 2009, 121, 219-225.
    [113] Park K W, Jung J H, Kim J D, Kim S K, Kwon O Y. Preparation of mesoporous silica-pillared H~+-titanosilicates [J]. Micropor. Mesopor. Mater. 2009,118,100-105.
    [114] Kwon O Y, Shin H S, Choi S W. Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H~+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate [J]. Chem. Mater, 2000,12,1273-1278.
    [1] Pinnavaia T J, Landau S D, Tzou M S. Layer cross-linking in pillared clay[J]. J Am Chem Soc , 1985, 107: 7222-7223.
    [2] J. Ahenach, P. Cool, E.F. Vansant, Enhanced bronsted acidity created upon Al-grafting of porous clay heterostructures via aluminium acetylacetonate adsorption [J]. Phys. Chem. Chem. Phys, 2000, 2, 5750-5755.
    [3] Horch R A, Golden T D, D'Souza N A, Riester L, Electrodeposition of Nickel/Montmorillonite Layered Silicate Nanocomposite Thin Films [J]. Chem. Mater, 2002, 14, 3531-3538.
    [4] Zhu H Y, Lu G Q. Engineering the Structures of Nanoporous Clays with Micelles of Alkyl Polyether Surfactants [J]. Langmuir, 2001, 17, 588-594.
    [5] Zhu H Y, Zhao J C, Liu J W, Yang X Z, Shen Y N.General Synthesis of a Mesoporous Composite of Metal Oxide and Silicate Nanoparticles from a Metal Salt and Laponite Suspension for Catalysis [J]. Chem. Mater, 2006, 18,3993-4001.
    [6] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures formed by gallery template synthesis [J]. Nature, 1995, 374, 529-531.
    [7] Polverejan M, Liu Y, Pinnavaia T J. Aluminated derivatives of porous clay heterostructure (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts [J]. Chem. Mater, 2002, 14, 2283-2288.
    [8] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures (PCH) as acid catalysts [J]. Chem. Commun, 1997, 1661-1662.
    [9] Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidity obtained from aicd-activated clays [J]. Chem. Commun, 2001, 2100-2101.
    [10] Polverejan M, Pauly T R, Pinnavaia T J. Acidic Porous Clay Heterostructures (PCH): Intragallery Assembly of Mesoporous Silica in Synthetic Saponite Clays Chem. Mater 2000, 12, 2698-2704
    
    [11] Park K W, Jung J H, Seo H J, Kwon O Y. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane [J]. Micropor. Mesopor. Mater. 2009,121, 219-225.
    
    [12] Park K W, Jung J H, Kim J D, Kim S K, Kwon O Y. Preparation of mesoporous silica-pillared H~+-titanosilicates[J].Micropor.Mesopor.Mater.2009,118,100-105.
    [13]Kwon O Y,Shin H S,Choi S W.Preparation of porous silica-pillared layered phase:simultaneous intercalation of amine-tetraethylorthosilicate into the H~+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate[J].Chem.Mater,2000,12,1273-1278.
    [14]Wang Z M,Nakajima H,Manias E,Chung T C.Macromolecules.2003,36,8919-8925.
    [15]C.C.Chou,J.J.Lin,Macromolecules.2005,36,230-235.
    [16]Vaia R A,Teukolsky R K,Giannelis E P.Interlayer structure and molecular environment of alkylammonium layered silicates[J]Chem.Mater,1994,6,1017-1022.
    [17]Furrell J,Reinhard M,Desorption of halogenated organics from model solids,sediments,and soil under unsaturated conditions.1.Isotherms[J].Environ.Sci.Technol,1994,28(1):53-62.
    [18]Li Z,Roy S J,Browman R S et al.Long-term chemical and biological stability of surfactant-modified zeolite[J].Environ.Sci.Technol,1998,32(17):2628-2632.
    [19]朱利中,陈宝梁,有机膨润土及其在污染控制中的应用[M],科学出版社,2005.
    [20]朱建喜,HDTMA+柱撑蒙脱石层间域内有机离子的排列、演化模式及结构变化.中国科学院研究生院博士论文,2003.
    [1] Ohtsuka K. Preparation and properties of two-dimensional microporous pillared interlayered solids[J].Chem. Mater.1997, 9:2039-2050.
    [2] Narayanan, Deshpande K. Alumina pillared montmorillonite: chracteration and catalysis of tobluene benzylation and aniline ethylation[J]. Appl. Catal. A, 2000, 193(1-2):17-27.
    [3] Wei L M, Tang T, Huang B T. Novel acidic porous clay heterostructure with highly ordered organic-inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay [J]. Micropor. Mesopor. Mater 2004, 67, 175-179.
    [4] Aguilar-Armenta G, Patin-o-Iglesias M E, Jime'nez-Jime'nez J, Rodri'guez-Castello'n E, Jime'nez-Lo'pez A. Application of Porous Phosphate Heterostructure Materials for Gas Separation [J] Langmuir 2006, 22, 1260-1267.
    [5] Chmielarz L, Kus'trowski P, Dziembaj R, Cool P, Vansant E F. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species [J]. Catalysis Today, 2007, 119,181-186.
    [6] Nguyen-Thanh D, Bandosz T J. Metal-loaded carbonaceous adsorbents templated from porous clay heterostructures [J]. Microporous and Mesoporous Materials, 2006, 92, 47-55.
    [7] Chmielarz L, Kustrowski P, Dziembaj R, Cool P, Vansant E F. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia [J]. Appl. Catal. B: Environ, 2006, 62 (3-4), 369-380.
    [8] Chmielarz L, Kustrowski P, Rafalska-Lasocha A, Dziembaj R. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides [J]. Appl. Catal B: Environ, 2005, 58 (3-4), 235-244.
    [9] Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-itaniapillars synthesis and characterization [J]. J. Solid. State. Chem. 2009, doi:10.1016/j.jssc.2009.02.017.
    [10] Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process [J]. Appl. Catal B: Environ, 2008 doi:10.1016/j.apcatb.2008.11.001
    [11] Margolese D, MeleroJ A, Christiansen S C, Chmelka B F, Stucky G D. Direct synthesis of ordered SBA-15 mesoporous silica containing sulfonic acid groups [J]. Chem. Mater, 2000, 12(8): 2448-2459.
    [12] Sakamoto Y, Diaz I, Terasaki O, Zhao D, Perez-Pariente J, Kim J M, Stueky, G D. Three-dimensional cubic mesoporous structures of SBA-12 and related materials by electron crystallography [J]. J. Phys. Chem. B, 2002, 106(12): 3118-3123.
    [13] Park K W, Jung J H, Seo H J, Kwon O Y. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane [J]. Micropor. Mesopor. Mater. 2009, 121, 219-225.
    [14] Park K W, Jung J H, Kim J D, Kim S K, Kwon O Y. Preparation of mesoporous silica-pillared H~+-titanosilicates [J]. Micropor. Mesopor. Mater. 2009, 118, 100-105.
    [15] Kwon O Y, Shin H S, Choi S W. Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H~+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate [J]. Chem. Mater, 2000,12, 1273-1278.
    [16] Dailey J S, Pinnavaia T J. Silica-pillared derivatives of H~+-magadiite, a crystalline hydrated silica [J] Chem. Mater, 1992, 4, 855-863.
    [1] Kresge C T, Leonowiez M E, Roth W J, Vartuli J C, Beek J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359: 710-712.
    
    [2] Huo Q, Margolese D I, Ciesla U, Feng P, Gier T E, Sieger P, Leon R, Petroff P M, Sehu Th F, Stueky G D. Generalized synthsis of periodic surfcant / inorganic composite materials [J].Nature, 1994, 368: 317-320.
    [3] Tanev P T, Pannavaia T J. A neutral templating route to mesoporous molecular sieves[J]. Science, 1995, 267:865-867.
    [4] Tanev P T, Pannavaia T J. Mesoporous silica molecular sieves prepared by ionic and neutral surfactant templateing: A comparison of physical properties [J]. Chem. Mater, 1996, 8, 2068-2079.
    [5] Khushalani D, Kuperman A, Coombs N, Ozin G A. Mixed Surfactant Assemblies in the Synthesis of Mesoporous Silicas [J] Chem. Mater, 1996, 8,2188-2193
    [6] Galarneau A, Barodawalla A, Pinnavaia T J. Porous clay heterostructures (PCH) as acid catalysts [J]. Chem. Commun, 1997, 1661-1662.
    [7] Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidity obtained from aicd-activated clays [J]. Chem. Commun, 2001, 2100-2101.
    [8] Polverejan M, Pauly T R, Pinnavaia T J. Acidic Porous Clay Heterostructures (PCH): Intragallery Assembly of Mesoporous Silica in Synthetic Saponite Clays Chem. Mater 2000, 12, 2698-2704
    [9] M. Benjelloun, P. Cool, T. Linssen, E.F. Vansant, Acidic porous clay heterostructures: study of their cation exchange capacity [J] Micropor. Mesopor. Mater, 2001, 49, 83-94.
    [10] Kwon O Y, Shin H S, Choi S W. Preparation of porous silica-pillared layered phase: simultaneous intercalation of amine-tetraethylorthosilicate into the H~+-magadiite and intragallery amine-catalyzed hydrolysis of tetraethylorthosilicate [J]. Chem. Mater, 2000,12,1273-1278.
    
    [11] Dailey J S, Pinnavaia T J. Silica-pillared derivatives of H~+-magadiite, a crystalline hydrated silica [J] Chem. Mater, 1992, 4, 855-863.
    
    [12] Park K W, Jung J H, Seo H J, Kwon O Y. Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane [J]. Micropor. Mesopor. Mater. 2009, 121, 219-225.
    
    [13] Park K W, Jung J H, Kim J D, Kim S K, Kwon O Y. Preparation of mesoporous silica-pillared H~+-titanosilicates [J]. Micropor. Mesopor. Mater. 2009, 118, 100-105.
    [1] He H, Guo J, Xie X et al. Location and migration of cations in Cu~(2+)-adsorption montmorillonite. Environ Int, 2001, 26(5-6): 347-352.
    [2] Fan A X, Somasundaran P, Turro N J. Adsorption of alkyltrimethylammonium bromides on negatively charged alumina. Langmuir, 1997,13(3): 506-510.
    [3] Zhu H Y, Zhao J C, Liu J W, Yang X Z, Shen Y N.General Synthesis of a Mesoporous Composite of Metal Oxide and Silicate Nanoparticles from a Metal Salt and Laponite Suspension for Catalysis [J]. Chem. Mater, 2006, 18,3993-4001.
    [4] Xu W Y, Yao Y Z, Xie X M, Liu S Z, Zhang T Y. Catalytic cracking properties of Al-Zr-Bcomposite pillared clayse [J] Appl. Catal, 1991, 75(1): 33-40.
    [5] Bodman S D, Mewhinnie W R, Begon V, Suelves I, Lazaro M J, Morgan T J, Herod A A, Kandiyoti R. Metal-ion pillared lays as hydroeracking catalysts(I): Catalyst Preparation and assessment of performance at short contact times [J]. Fuel, 2002, 81(4):449-459
    [6] Wang W, Song M. Preparation of high nickel-containing MCM-41 -type mesoporous silica via a modified direct synthesis method [J] .Materials Research Bulletin, 2005, 40,1737.
    [7] Kermarec M, Carriat J Y, Burattin P, Che M, Decarreau A. FTIR Identification of the Supported Phases Produced in the Preparation of Silica-Supported Nickel Catalysts [J]. J. Phys. Chem. 98 (1994) 12008-12017.
    [8] Burattin P, Che M, Louis C. Characterization of the Ni(II) Phase Formed on Silica Upon Deposition-Precipitation [J]. J. Phys. Chem. B 101 (1997) 7060-7074.
    [9] Vaia R A, Teukoleky R K, Giannelis E P. Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates [J]. Chem. Mater 1994, 6, 1017-1022.
    [10] Pichowicz M, Mokaya R. Porous clay heterostructures with enhanced acidity obtained from aicd-activated clays [J]. Chem. Commun, 2001, 2100-2101.
    [11] Chmielarz L, Kus'trowski P, Dziembaj R, Cool P, Vansant E F. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species [J]. Catalysis Today, 2007,119,181-186.
    [12] T. Klimova, M. Calderon, J. Ram'irez, Applied Catalysis A: General 240 (2003) 29.
    [13] Yang Y, Lim S, Du G, Chen Y, Ciuparu D, Haller G L. Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves [J]. J. Phys. Chem. B 2005, 109, 13237-1324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700