用户名: 密码: 验证码:
准噶尔东北缘哈腊苏—哈旦孙斑岩铜矿带成矿规律和勘查方向
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔东北缘哈腊苏-哈旦孙斑岩铜矿带可能是中亚-蒙古成矿域中包括欧玉陶勒盖、查干苏布尔等重要斑岩铜矿在内的南蒙古成矿带的西延部分,成矿潜力较大。近年来矿带内相继有希勒克特哈腊苏和玉勒肯哈腊苏斑岩铜矿和众多矿点发现。本文是在矿带内地质测量、矿点检查等野外工作的基础上,结合室内岩相学、矿相学、流体包裹体和同位素地球化学研究,取得如下认识。
     (一)新发现的玉勒肯哈腊苏矿床中矿石具有浸染状矿化,金属矿物组合简单,主要是黄铜矿、黄铁矿、辉钼矿和磁铁矿,蚀变分带清晰,从矿体中心向外依次是钾长石化带、黑云母化带、绢英岩化带和青磐岩化带,斑岩型矿化的特征比较明显。
     (二)玉勒肯哈腊苏矿床两个含矿岩体(斑状花岗岩和石英二长斑岩)的锆石U-Pb年龄分别为381.6±2.5Ma和265.6±3.7Ma,锆石特征显示其均为岩浆成因,结合矿床地质研究,认为在玉勒肯哈腊苏地区可能存在早中泥盆世和早二叠世两期斑岩矿化。
     (三)玉勒肯哈腊苏石英二长斑岩体中石英的δD值为-98.8~-84.2‰,δ18OH2O=0.4~4.7‰,显示成矿流体主要来源于岩浆水。流体包裹体的体积小,数量多,盐度(1.27~17.96wt%)变化范围较大,结合矿石中含有较多磁铁矿,认为成矿流体具有富水、富氯、氧化等特征。黄铁矿中的δ34SV-CDT=-3.795~-1.766‰,全岩εNd(t)和(87Sr/86Sr)i分别是12~12.5,0.70343~0.70423,证明成岩成矿物质主要来源于地幔。
     (四)玉勒肯斑状花岗岩La/Nb(均值1.02),Nb/U(13.09),和Hf-Ta-Rb判别图显示该区中泥盆世为岛弧背景,而厚层苦橄岩出露暗示可能存在微裂谷,致使幔源物质得以上涌。石英二长斑岩微量元素特征及同期区内外的基性岩体表明其形成于早二叠世新陆壳阶段的张弛期,局部石英脉中的富矿体可能是印支期构造-岩浆活动的产物。
     (五)哈腊苏矿田中泥盆世、早二叠世、三叠纪多阶段成矿作用的复合类似于中亚-蒙古成矿域中晚古生代成矿,主要是对已有成矿物质的继承、改造和新成矿物质的叠加。其和南蒙古成矿带都处于西伯利亚弧形深大断裂南缘岩浆岛弧带内,位置上均在晚古生代隆起和中新生带凹陷的分界,地层建造、岩浆发育也有类似,因此认为哈腊苏矿田可能是南蒙古成矿带的西延部分。
     (六)在地层、构造和勘查地球化学成果研究的基础上,认为北部围岩封闭条件好,更利于斑岩铜矿的形成,且剥蚀深度小也利于斑岩铜矿的保存,从而确定希-玉接壤地带是斑岩铜矿勘查的有利区域。结合对南北向断裂性质的分析,确定奥尔塔哈腊苏西是另外一个斑岩铜矿勘查的有利区域。地、物、化综合研究显示构造蚀变岩型矿床的勘查有利区在矿带中部,而岩浆型矿床更有可能在南部形成。
The porphyry copper belt of Halasu-Hadansun,northeast margin of Junggar is perhaps part of western extension part of the Mongolia metallogenic belt which belongsto central Asia-Mongolia mineralization domain,including many important porphyry copper deposits,such as ouyutolgoi and chagan subul deposits. Therefore,there wasenormous metallogenic potential in that area. In recent years, Xileketehalasu andYulekenhasula porphyry copper deposits and many other porphyry copper mineraloccurrences were discovered consecutively in this belt. Based on the field works such asgeological survey and ore occurrences check in metallogenic belt, together with study ofpetrography, mineralography, fluid inclusion and isotope geochemistry, this papergeneralizes a few conclusions as follows:
     The newly-discovered Yunlekenhalasu deposit in the porphyry copper belt ofHalasu-Hadansun in the northeast margin of Junggar has distinct Characteristics of porphyry mineralization, such as disseminated mineralization, simple metallic mineralassociation, mainly Chalcopyrite, pyrite, molybdenite and magnetite, and clear alterationzonation: from the central to the external are belts of potash feldspathization,biotitization, sericite-quartz alteration, propylite alteration in succession.
     Zircon U-Pb dating of the two ore -bearing rock body, porphyritic granite and Beschtauite porphyry in Yuleken-Halasu deposit are 265.6±3.7Ma and 381.6±2.5Ma,respectively. The characteristics of the zircon which show its genesis was magmatic,together with the former research on chronology in Xilekehalasu, show that there weretwo periods for porphyry mineralization which are Early-Middle Devonian and Early Permian.
     Research on H-O isotope and fluid inclusion in Yuleken-Halasu deposit proves that metallogenetic fluid mainly derived from magmatic water and mixed with atmosphericwater latterly. The metallogenetic fluids with a small volume and a large quantity, have alarge range of halite (1.27~17.96wt%). Together with the ore relatively rich in magnetite,the metallogenetic fluids have some characteristics as follows: rich in water, andchlorine, as well as oxidation.δ34SV-CDT of the pyrite in Yuleken-Halasu deposit is -3.795‰~-1.766‰, andεNd(t)and (87Sr/86Sr)I of the whole rock are 12~12.5 and0.70343~0.70423,respectively, which proves that the source of the mineralizationderives from mantle.
     Porphyritic granite in the mining area shows that it was Island-arc background in Middle Devonian and the outcrop of thick-layered picrite implies that there exists micro rift which made the mantle-derived material uplift. The trace element characteristics ofthe beschtauite porphyry, as well as the basic rock of the internal and external area in the same stage show that the rock in this area forms at Early Permian when the newcontinental crust was in the condition of extension. High-grade ore body of the local quartz veins may be the result of tectonic - magmatic activity in the Indo-Chinese epoch.
     The characteristics of the superposition of the multistage metallogenesis in MiddleDevonian, Early Permian and Triassic is similar to that of the typical mineralization inthe Central Asia - Mongolia metallogenic domain, which is mainly inheritance and transformation of the previous ore-forming materials and superposition of the newlyore-forming materials. Both this and Southern Mongolia metallogenic belt ,in themagmatic island-arc belt ,are located in the southern margin of arc-shaped deep and large fault and both are in the dividing line of the Late Paleozoic uplift and Mid-Cenozoic depression. Therefore this mining area belongs to the part of Western extension part ofthe South Mongolia metallogenic belt.
     Based on the study of the strata, structure and geochemical exploration, the closed condition of the country rock in the northern part is better than the others making itpreferential to form porphyry copper deposit, and the little erosion helped preserve themine which made the Contiguous zone of Xi-Yu become a preferential area for the exploration of the porphyry copper deposits. Together with the analysis of nature of theN-S strike fault, the west of Aoertahalsu is another area for the exploration of theporphyry copper deposits. Synthetic study of the geological, geophysical, and geochemical data, shows that the preferential area of the exploration of structural alteredrock type deposits is located in the central part of the mineralizing belt and magmatictype deposits have a large possibility to form in the south.
引文
[1]曹异生.世界铜资源开发与我国海外办铜矿展望[J].有色金属通报. 2007(8): 5-10.
    [2] Cooke D R, Hollings P, Walshe J L. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls[J]. Econ. Geol. 2005, 100(5): 801-818.
    [3]罗晓玲.国内外铜矿资源分析[J].世界有色金属. 2000(4): 4-10.
    [4]张义,聂凤军,江思宏,等.中蒙边境欧玉陶勒盖大型铜-金矿床的发现[J].地质通报. 2003, 22(9): 708-712.
    [5]张连昌,夏斌,牛贺才,等.新疆晚古生代大陆边缘成矿系统与成矿区带初步探讨[J].岩石学报. 2006, 22(5): 1387-1398.
    [6]杨文平,张招崇,周刚,等.阿尔泰铜矿带南缘希勒克特哈腊苏斑岩铜矿的发现及其意义[J].中国地质. 2005, 32(1): 107-114.
    [7]吴淦国;董连慧;薛春纪等.新疆主要斑岩铜矿带[M].北京:地质出版社, 2008: 1-335.
    [8] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol. 1972(67): 184-197.
    [9] Sillitoe R H. Andean mineralization: a model for the metallogeny of covergent plate margin. In Strong D F (ed): Metallogeny and plate tectonics[J]. Geol. Assoc. Canada. 1976(14): 59-100.
    [10] Mitchell A H G. Metallogenetic belts and angle of dip of Benioff zones[J]. Nature. 1973(245): 49-52.
    [11] Rosenbaum G, Giles D, Saxon M, et al. Subduction of the Nazca Ridge and the Inca Plateau : In-sights into the formation of ore deposits in Peru[J]. Earth and Planetary Science Letters. 2005(239): 1-2.
    [12]侯增谦,莫宣学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例[J].矿床地质. 2003, 22(1): 1-12.
    [13] Kirkham R V, Dunne K P E. World distribution of porphyry, porphyry-associated skarn, and bulk-tonnage epithermal deposits and occurrences[C]. 2000. 26.
    [14] Sheppard S M F, Nielsen R L, Taylor H P. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits[J]. Econ. Geol. 1973, 66(4): 515-542.
    [15] Ulrich T, Gunther D, Heinrich C A. Evolution of a porphyry Cu-Au deposit , based on LA-ICP-MS analysis of fluid inclusions : Bajo de la Alumbrera , Argentina[J]. Econ. Geol. 2001, 96(8): 1743-1774.
    [16] Harris A C, Golding S D. New evidence of magmatic-fluid re-lated phyllic alteration : Implications for the genesis of porphyry Cu deposits[J]. Geology. 2002, 30(4): 335-338.
    [17] Harris A C, Kamenetsky V S, White N C. Melt inclusions in veins : Linking magmas and porphyry Cu deposits[J]. Science. 2003, 302(5653): 2109-2111.
    [18] Harris A C, Golding S D, White N C. Bajo de la Alumbrera copper-gold deposit : Stable isotope evidence for a porphyry-related[J]. Econ. Geol. 2005, 100(5): 863-886.
    [19] Calagari A A. Stable isotope (S , O , H and C) studies of the phyllic and potassic-phyllic alteration zones of the porphyry copper deposit at Sungun , East Azarbaidjan , Iran[J]. Journal of Asian Earth Sciences. 2003, 21(7): 767-780.
    [20] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences. 1997, 44(3): 373-388.
    [21] Cline J S, Bodnar R J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?[J]. Journal of Geophysical Research. 1992(96): 8113-8126.
    [22] Webster J D. Fluid-melt interaction involving Cl-rich granites: Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta. 1993(56): 659-678.
    [23] Oyarzun R, Marquez A, Lillo J. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism[J]. Mineralium Deposita. 2001(36): 794-798.
    [24] Force E R. Laramide alteration of Proterozoic diabase : A likely contributor of copper to porphyry systems in the Dripping Spring mountains area , southeastern Arizona[J]. Econ. Geol. 1998, 93(2): 171-183.
    [25] Lowell J D, Guilbert J M. Lateral and vertical alteration-min-eralization zoning in porphyry ore deposits[J]. Econ. Geol. 1970, 65(4): 373-408.
    [26] Solomon M. Subduction , arc reversal , and the origin of porphyry copper-gold deposits in island arcs[J]. Geology. 1990, 18(7): 630-633.
    [27] Mungall J E. Roasting the mantle : Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology. 2002, 30(10): 915-918.
    [28] Thieblemont D, Stein G, Llescuyer J. Gisement sepit hermaux et porphyriques : la connexion adakite[J]. C R Acad Sci Paris Eart h Planet Sci. 1997(325): 103-109.
    [29] Sajona F G, Maury R C. Association of adakites with gold and copper mineralization in Philippines[J]. C R Acad Sci Paris Earth Planet Sci. 1998, 326(1): 27-34.
    [30]张旗,王元龙,张福勤,等.埃达克岩与斑岩铜矿[J].华南地质与矿产. 2002(3): 431-435.
    [31]张旗,秦克章,王元龙,等.加强埃达克岩研究,开创中国Cu-Au找矿的新局面[J].岩石学报. 2004, 20(2): 195-204.
    [32]芮宗瑶,侯增谦,李光明,等.俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J].地质与勘探. 2006, 42(1):1-6.
    [33]张静.埃达克岩及其成矿作用和相关问题的讨论[J].矿物岩石地球化学通报. 2003, 22(4): 365-371.
    [34]芮宗瑶,黄崇柯,齐国明.中国斑岩铜(钼)矿床[M].北京:地质出版社, 1984: 1-50.
    [35]王福同,马天林,刘光海.新疆喀拉通克铜镍金矿带成矿规律和找矿模式[M].北京:地质出版社, 1992.
    [36]闫升好,滕荣丽,张招崇,等.新疆阿尔泰山南缘卡拉先格尔斑岩铜矿带成因再认识-来自哈腊苏铜矿硫-铅-氢-氧同位素和40Ar-39Ar年来的约束[J].矿床地质. 2006, 25(3): 292-300.
    [37]张招崇,闫升好,陈柏林,等.新疆东准噶尔北部俯冲花岗岩的SHRIMP U-Pb锆石定年[J].科学通报. 2006, 51(13): 1565-1574.
    [38] Zhang Z C, Mao J W, Cai J, et al. Geochemistry of picrites and associated lavas of a Devonian island arc in the Northern Junggar terrane, Xinjiang (NW China): implications for petrogenesis, arc mantle sources and tectonic setting[J]. Lithos. 2008, 105(3): 379-395.
    [39]涂光炽.初议中亚成矿域[J].地质科学. 1999, 34(04): 397-404.
    [40]肖序常,汤耀庆,冯益民,等.新疆北部及其邻区大地构造[M].北京:地质出版社, 1992: 111-121.
    [41] Li J Y. Petrological evidence of continental disintegration in the late Neoproterozoic: Sinian volcanic rocks in central China mainland[J]. Gondwana Research. 2001, 4(4): 682-683.
    [42] Khain E V, Bibikova E V, Kroner A, et al. The most ancient ophiolite of the Central Asian fold belt : U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex , Eastern Sayan , Siberia , and geodynamic implications[J]. Earth and Planetary Science Letter. 2002(199): 311-325.
    [43] Buchan C, Pfander J, Kroner A, et al. Timing of accretion and collisional deformation in the Central Asian orogenic Belt :implications of granite geochronology in the Bayankhongor Ophiolite Zone[J]. Chemical Geology. 2002(192): 23-45.
    [44]王京彬,秦克章,吴志亮.阿尔泰山南缘火山喷流沉积型铅锌矿床,[M].北京:地质出版社, 1998: 1-210.
    [45]秦克章.新疆北部中亚型造山与成矿作用(博士后研究工作报告)[D].北京: 2000.
    [46]许志琴,杨经绥,李海兵,等.青藏高原与大陆动力学-地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质. 2006, 33(2): 221-238.
    [47]朱永峰.新疆的印支运动与成矿[J].地质通报. 2007, 26(5): 510-520.
    [48]李锦轶,何国琦,徐新,等.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报. 2006, 80(1): 148-168.
    [49]曹荣龙.新疆北部蛇绿岩及基性-超基性杂岩[J].新疆地质. 1994, 12(1): 25-31.
    [50]何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社, 1994: 45-64.
    [51]肖序常,汤耀庆,李锦轶,等.新疆地质科学(第1辑)[M].北京:地质出版社, 1990: 47-68.
    [52]李好斌,温长顺,王志平.新疆卡拉先格尔铜矿韧脆性剪切变形与铜矿化的关系[J].地质力学学报. 2007, 13(2): 141-149.
    [53]周刚.新疆阿尔泰玛因鄂博断裂带两侧后碰撞花岗岩类的年代学、岩石学和地球化学研究[D].中国地质科学院, 2006.
    [54]张湘炳,隋静霞,李志纯,等.额尔齐斯构造带构造演化与成矿系列[M].北京:科学出版社, 1996.
    [55]韩宝福,季建清,宋彪,等.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报. 2004, 49(22): 2324-2328.
    [56]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志. 2005, 24(4): 285-293.
    [57]赵华,薛红梅,姚红,等.新疆青河县卡拉先格尔-玛因鄂博一带石英正长斑岩的形成时代及地球化学特征[J].新疆有色金属. 2007(增刊): 45-47.
    [58]张前锋,胡霭琴,张国新,等.阿尔泰地区中、新生代岩浆活动的同位素年龄证据[J].地质化学. 1994, 23(3): 269-280.
    [59]汪劲草,夏斌.中国阿尔泰造山带大型逆冲推覆构造[J].桂林工学院学报. 2005, 25(2): 135-141.
    [60]高怀忠,张旺生,孙华山.板块碰撞产物--强应变构造带对东准噶尔金矿的控制[J].地质与勘探. 2000, 36(3): 15-21.
    [61]李嘉兴,尹意求.新疆克兰盆地红墩铅锌矿床与铁木尔特铅锌矿床的对比研究[J].地质与勘探. 2006, 42(1): 7-11.
    [62]王新安,李月臣,潘成泽,等.阿尔泰晚古生代内生金属矿床成矿系列和成矿规律[J].矿床地质. 2006, 25(增刊): 317-320.
    [63]李华琴,谢富才,常海亮,等.新疆北部有色金属矿床成矿年代学[M].北京:地质出版社, 1998.
    [64]王京彬,李博泉,张积斌,等.额尔齐斯聚矿带金铜成矿条件及找矿预测[M].北京:冶金出版社, 1999: 1-50.
    [65]刘悟辉,廖启林,戴培根,等.阿尔泰南缘与韧性剪切带有关金矿床成矿特征浅析[J].地质找矿论丛. 1999, 14(3): 42-49.
    [66]胡霭琴,张国新.新疆北部主要地质事件同位素年表[J].地球化学. 1995, 24(1): 20-31.
    [67]童英,洪大卫,王涛,等.岩石矿物学杂志[J]. 2006, 25(2): 85-89.
    [68]闫升好,滕蓉丽,王义天,等.新疆布尔根含金剪切带的40Ar-39Ar年龄及其地质意义[J].中国地质. 2006, 33(3): 648-655.
    [69]周刚,张招崇,谷高中,等.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和40Ar-39Ar同位素年龄及地质意义[J].地质学报. 2006, 81(3): 359-369.
    [70] Sun S, Mcdonough W. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes[J]. Geological Society. 1989(42): 313-345.
    [71] Green D H, Falloon T, Eggins S M, et al. Primary magmas and mantle temperatures[J]. European Journal of Mineralogy. 2001(13): 188-204.
    [72]卢焕章,郭迪江.地球中流体研究的一些热点[J].地学前缘. 2001, 46(4): 385-390.
    [73]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘. 2000, 7(2): 299-320.
    [74]徐林刚,杨富全,李建国,等.新疆富蕴县蒙库铁矿地质地球化学特征[J].岩石学报. 2007, 23(10): 2653-2664.
    [75] Clay R N, Oneil J R, Maydz T K. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysics Research. 1971(77): 3057-3067.
    [76]万博,张连昌.新疆阿尔泰南缘泥盆纪多金属成矿带Sr-Nd-Pb同位素地球化学与构造背景探讨[J].岩石学报. 2006, 22(1): 145-152.
    [77] Chen F, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NW turkey) and implications for geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences. 2002(91): 469-481.
    [78] Chen F, Hegner E, Todt W. Zircon ages. Nd isolopic and chemical compositions of orthogneisses from the Black Forest, Germany-evidence for a Cambrian magmatic arc[J]. International of Earth Sciences. 2000(88): 791-802.
    [79] Anczkiewicz R, Oberli F, Burg J P, et al. Timing of normal faulting along the Indus Suture in Pakistan Himalaya and a case of major 231Pb/235U initial disequilibrium in zircon[J]. Earth and Planetary Science Letters. 2001(1991): 101-114.
    [80] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandsrd Newsletter. 1995(19): 1-23.
    [81]郗爱华,蔡元峰,葛玉辉,等.四平山Cu-Ni矿化辉长岩体锆石LA-ICP-MS年龄及其地质意义[J].矿床地质. 2008, 27(1): 1141-1150.
    [82] Ludwig K R. Users manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel[J]. Berkeley Geochronology Center,Special Publication. 2003(4): 25-32.
    [83]陈毓川.新疆北准噶尔苦橄岩的发现及其地质意义[J].地质通报. 2004, 23(11): 1059-1065.
    [84]万博,张连昌.新疆阿尔泰东南缘卡拉先格尔铜矿带含矿斑岩地球化学及其成矿意义[J].中国地质. 2006, 33(3): 618-625.
    [85]张海祥,牛贺才,于学元,等.新疆北部富蕴县沙尔布拉克玻安岩的地球化学特征及构造意义[J]. 2003, 32(2): 155-160.
    [86]许继峰,梅厚均,于学元.准噶尔北缘晚古生代岛弧中与俯冲作用有关的adakite火山岩:消减板片部分熔融的产物[J].科学通报. 2001, 46(8): 684-687.
    [87]张招崇,闫升好,陈柏林,等.阿尔泰造山带南缘中泥盆世苦橄岩及其大地构造和岩石学意义[J].地球科学. 2005, 30(3): 289-309.
    [88]张招崇,周刚,闫升好,等.新疆阿尔泰山南缘泥盆纪弧型苦橄岩铂族元素地球化学特征及其地质意义[J].现代地质. 2006, 20(4): 519-527.
    [89] Harris N B W, Pearce J A, Trindle A G. Geochemical characteristics of collision-zonemagmatism[J]. Corward MP,Rei AC(. 1986(19): 67-81.
    [90]周刚,张招崇,杨文平,等.新疆阿尔泰山南缘玛音鄂博断裂南侧变质基性岩的发现及其地质意义[J].地球科学. 2005, 30(6): 738-746.
    [91]张湘炳,杨新岳.阿尔泰地区大地构造演化体制及其形成机理,新疆北部固体地球科学进展[M].北京:科学出版社, 1993.
    [92]周刚,张招崇,罗世宾,等.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义[J].岩石学报. 2007, 23(8): 1909-1929.
    [93]于学元,梅厚均,杨学昌,等.额尔齐斯火山岩及其构造演化[M].北京:科学出版社, 1993.
    [94]成守德,王元龙.新疆大地构造演化基本特征[J].新疆地质. 1998, 16(2): 89-107.
    [95]肖庆辉,邓晋福,马大铨.花岗岩研究思维与方法[M].北京:地质出版社, 2002.
    [96]杨牧,彭省临,杨斌,等.新疆北部壳体大地构造演化与运动初步研究[J].大地构造与成矿学. 2005, 29(1): 113-121.
    [97]王京彬,徐新.新疆北部后碰撞构造演化与成矿[J].地质学报. 2006, 80(1): 23-31.
    [98]陈汉林,杨树锋,历子龙,等.阿尔泰造山带南缘基性杂岩的形成背景及其动力学含意[J].岩石学报,. 2006, 22(1): 127-134.
    [99]张招崇,闫升好,陈柏林,等.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J].岩石矿物学杂志. 2003, 22(3): 217-225.
    [100]王中刚,赵振华.阿尔泰花岗岩类地球化学[M].北京:科学出版社, 1989.
    [101]芮宗瑶,张立生,陈振宇,等.斑岩铜矿的源岩或源区探讨[J].岩石学报. 2004, 20(2): 229-238.
    [102]朱永峰,何国琦,安芳.中亚成矿域核心地区地质演化与成矿规律[J].地质通报. 2007, 26(9): 1167-1177.
    [103]何国琦,朱永峰.中国新疆及其邻区地质矿产对比研究[J].中国地质. 2006, 33(3): 451-461.
    [104]聂凤军,江思宏,张义,等.中蒙边境及邻区斑岩型铜矿床地质特征及成因[J].矿床地质. 2004, 23(2): 176-189.
    [105]韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)—后碰撞深成岩浆活动的时限[J].岩石学报. 2006, 22(5): 1077-1086.
    [106]韩宝福,何国琦,王式洗.后碰撞慢源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学辑(D). 1999, 29(1): 16-21.
    [107]张伟,张旺生,王杰,等.新疆及周边国家铜矿产资源战略分析[J].新疆地质. 2007, 25(1): 68-72.
    [108]卢兰英,张湘江,黄建云,等.新疆东北部毗邻国家的几个重要成矿带[J].新疆地质. 2007, 25(1): 72-75.
    [109]刘春涌.中亚各国其它大型规模以上斑岩铜矿床[J].中亚信息. 2005(10): 13-16.
    [110]刘春涌.哈萨克斯坦科翁腊德特大型斑岩铜矿床[J].中亚信息. 2005(5): 19-21.
    [111]刘春涌.哈萨克斯坦阿克斗卡特大型斑岩铜矿床[J].中亚信息. 2005(6): 28-30.
    [112]刘春涌.哈萨克斯坦阿里马雷大型斑岩铜矿田[J].中亚信息. 2005(8): 20-22.
    [113]李智明,赵仁夫,霍瑞平,等.新疆土屋—延东铜矿田地质特征[J].地质与勘探. 2006, 42(6): 1-4.
    [114] Yasushi W, Holly J S. Re-Os Ages for the Erdenet and Tsagaan suvarga porphyryCu-Mo deposits, mongolia, and tectonic implications.[J]. Economic Geology. 2000(95): 1537-1542.
    [115] Melissa A L, Dennis C. New 40Ar/39Ar age data and implications for porphyry copper deposits of Mongolia[J]. Economic Geology. 1998(93): 524-529.
    [116]刘益康,徐叶兵.蒙古Oyu Tolgoi斑岩铜金矿的勘查[J].地质与勘探. 2003, 39(1): 1-4.
    [117] James H S B, Dickson C, Michael P. Crustal evolution of the Saykhandulaan Inlier, Mongolia[J]. Journal of Asia Earth Sciences. 2008(32): 142-164.
    [118]方维萱,杨社锋,刘正桃,等.蒙古查干苏布尔加(Tsagaan Suvarga)大型斑岩型铜钼矿床含矿蚀变岩常量、微量和稀土元素地球化学特征及意义[J].中国稀土学报. 2007, 25(1): 86-94.
    [119] Fang W X, Yang S F, Liu Z T, et al. Geochemical Characteristics and Significance of Major Elements, Trace Elements and REE in Mineralized Altered Rocks of Large-Scale Tsagaan Suvarga Cu-Mo Porphyry Deposit in Mongolia[J]. Journal of Rare Earths. 2007, 25(6): 759-769.
    [120]朱文志.新疆富蕴县索尔库都克铜(钼)矿床地质特征及成因探讨[J].甘肃冶金. 2004, 25(2): 11-17.
    [121]王玉山.新疆索尔库都克铜钼矿矿石特征[J].新疆地质. 2004, 22(02): 226-227.
    [122]陈仁义.新疆索尔库都克矽卡岩铜(钼)矿床地质特征及矿床成因[J].地质论评. 1995, 41(2): 165-172.
    [123]董连慧,李凤鸣.新疆北部斑岩铜矿成矿规律及找矿方向[J].矿床地质. 2006, 25(增刊): 293-296.
    [124]陈文明.论斑岩铜矿的成因[J].现代地质. 2002, 16(1): 1-8.
    [125]王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[M].北京:地质出版社, 1991: 1-298.
    [126]杨炳滨.新疆北部岩浆型铜镍硫化物矿床控矿因素的研究[J].矿产与地质. 1994(8): 330-333.
    [127]王有标.新疆铜镍硫化物矿床的基本地质特点[J].新疆地质. 1990(8): 305-320.
    [128]赵文津.大型斑岩铜矿成矿的深部构造岩浆活动背景[J].中国地质. 2007, 34(2): 179-206.
    [129] Richards J P. Tectono2magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J].Econ. Geol. 2003, 98(8): 1515-1533.
    [130] Richards J P, Boyceand A J, Pringle M S. Geologic evolution of the Escondida area , northern Chile : A model for spatial and temporal localization of porphyry Cu mineralization[J]. Econ. Geol. 2001, 96(2): 271-305.
    [131]刘德权,唐延龄,周汝洪.新疆斑岩铜矿的成矿条件和远景[J].新疆地质. 2001, 19(1): 43-48.
    [132]刘德权,唐延龄,周汝洪.中国新疆铜矿床和镍矿床[M].北京:地质出版社, 2005: 212-215.
    [133]刘家远.新疆青河老山口地区岩浆隐蔽爆破作用、爆破角砾岩及成矿意义[J].新疆地质. 2001, 19(4): 241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700