用户名: 密码: 验证码:
综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大部分矿区煤层瓦斯赋存具有“三高三低”特征,使得煤层瓦斯采前预抽效果不甚理想,而利用采动覆岩移动影响及裂隙动态演化特征抽采卸压瓦斯,应是我国煤矿瓦斯治理的重要方向。论文系统评述了采动覆岩移动与结构演化、煤层瓦斯运移及瓦斯抽采方法的诸多成果,认为覆岩裂隙分布形态及其中瓦斯运移规律是实现煤与瓦斯安全共采的理论基础,也是今后研究重点之一。
     论文选择典型高瓦斯矿井煤样,用扫描电镜观察了煤样的微观结构,分析了其影响因素,基于MTS数控电液伺服渗流试验,分析了全应力应变过程中煤样的渗透特性,得到矿山压力是影响煤层瓦斯渗透性的主导因素。应用弹性薄板理论推导了覆岩破断时的初次及周期来压步距,得到基于薄板理论的关键层判别方法,并编写了相应的计算机自动判别程序。
     通过物理相似模拟实验及FLAC3D数值模拟,分析了煤层开采后覆岩裂隙产生、发展的时空规律和分布形态以及充分卸压范围与特征。基于前人研究成果,结合岩层控制的关键层理论,提出了采动裂隙带的工程简化模型,即采动覆岩中的穿层破断裂隙和层面离层裂隙贯通后,空间分布形状是一个动态变化的采动裂隙圆矩梯台带,分析了采动裂隙带动态演化特征、力学机理及影响因素,并得到切眼侧带宽大约为初次来压步距,工作面侧带宽在2~3倍周期来压步距间变化,进风巷及回风巷附近带宽约为0.7~0.8倍初次来压步距,内外梯台面的高度受制于关键层层位及所形成砌体梁结构的变形、破断和失稳形态。
     在分析采动裂隙带中卸压瓦斯来源及流态的基础上,运用多孔介质流体动力学、渗流力学等理论建立了瓦斯运移数学模型,并分析了卸压瓦斯运移与采动裂隙动态演化关系。通过FLUENT软件对U型、U+L型、U型+走向高抽巷及U+L型+走向高抽巷等通风条件下采动裂隙带中的瓦斯运移规律进行了数值模拟,得到联络巷间距约1.35倍工作面侧裂隙带带宽时尾巷排放瓦斯效果最好,高抽巷在回风巷附近与倾向断裂线边界0.46倍回风巷侧裂隙带带宽且与垮落带边界垂高2.8倍采高位置时,瓦斯抽采效果最好。
     通过现场观测,分析了日推进距、产量、配风量、开采工序、抽采量、矿山压力及覆岩移动等工作面瓦斯涌出的影响因素,得出初次来压时绝对及相对瓦斯涌出量是来压前的1.25倍,周期来压时绝对瓦斯涌出量是来压前的1.22倍,相对瓦斯涌出量是来压前的1.39倍,瓦斯涌出量呈周期性变化,其步距与周期来压步距基本相等,并分析了瓦斯涌出随关键层运动的7个阶段规律。通过山西和顺天池能源有限责任公司103综放面的现场实验,说明所得到的卸压瓦斯抽采布置参数较为合理,保证了工作面的安全生产,为优化卸压瓦斯抽采系统、实现煤与瓦斯安全共采提供了一定的理论依据和技术支持。
The pre-degasification effect is less in China, because most of coal-bed methane existing "three high-low" features. It is an important tackling methane direction that using moving influence and mining-induced fracture evolution features of mining overburden rock to degas. The paper systematically summarized and reviewed plenty of achievements of rock strata movement and structure evolution, the migration laws of coal-bed methane and degasification methods, it can get that the mining overburden rock fissure patterns and distribution of methane migration law are the theoretical foundation of safety and simultaneous extracting of coal and gas, which are one of the study key points for the future.
     The micro-structural characteristics and influencing factors of coal sample is studied with scanning electron microscope, the whole process of stress and strain of the permeability of coal samples is analyzed through the electro-hydraulic servo seepage test. It is got that ground pressure is the main controlling factor. The first weighting step and period weighting step were derived by elastic thin plate theory when overburden rock was broken, the distinguishing method of key strata based on thin plate theory was obtained, and the corresponding distinguishing procedure was compiled.
     Based on simulation experiment and FLAC3D numerical simulation, the space-time law and distribution pattern of mining overburden rock and scopes and features of relieved pressure are analyzed. On the basis of the predecessors’research achievement, combined the key strata theory, it is proposed a simple engineering model which a dynamic mining-induced fracture round-rectangle trapezoidal zone would be formed if the bed-separated fissure and broken fissure were connected. It is analyzed that the dynamic evolution characteristics, mechanical mechanism and influencing factors of mining-induced fracture zone. It is obtained that the zone width of starting cut is about the first weighting step, the zone width of face is changing between 2~3 times of period weighting step, the zone width near intake entry and return entry is about 0.7~0.8 times of the first weighting step, the height of trapezoidal surface is basically subject to the location of the key strata and the deformation, breaking and instability form of the voussoir beams structure.
     On the basis of analyzing the relieved methane source and flow pattern in mining-induced fracture zone, the relieved methane delivery mathematical model is established by the theory of porous media fluid dynamics and mechanics of porous flow, and the relationship between relieved methane migration and dynamic evolution of mining-induced fracture is obtained. FLUENT software was applied to stimulate the methane delivery laws in the mining-induced fracture zone, which were in the ventilate condition of U, U+L, U and strike high roadway, and U+L and high roadway pattern. It is obtained that the discharge methane effect of tail roadway is best when the connection roadway interval is 1.35 times zone width of mining-induced fissure zone near face, and the degasification effect of strike high roadway is best where locate near the return entry, which the parallel distance from dip breaking line is 0.46 times zone width of mining-induced fracture zone near return entry, the vertical distance from caving zone boundary is 2.8 times mining height.
     Based on field observation, the influence factors of methane outflow were analyzed such as daily mining distance, daily coal output, air distribution, mining production processes, degasification quantity, ground pressure and overlying strata moving. It was obtained that the absolute and relative methane outflow of the first weighting are 1.25 times, the absolute methane outflow of the period weighting is 1.22 times, and relative methane outflow of the period weighting is 1.39 times than before weighting. The methane outflow is periodic changing which the step basically equity to period weighting. The seven stage laws of methane outflow with the key strata moving are analyzed. Through the field test in the 103 working face of Shanxi Heshun Tianchi Energy Co.,Ltd., it is showed that the degasification parameter of relieved methane is reasonable. The paper can provide a certain theoretical and technological foundation for optimizing achieving degasification system of relieved methane and safety and simultaneous extracting of coal and methane.
引文
[1]钱鸣高,许家林,缪协兴.煤矿绿色开采技术.中国矿业大学学报,2003,32(4):343~347
    [2] Li Shugang,Qian Minggao,Xu Jialin. Simultaneous extraction of coal and coalbed methane in China.Mining Science and Technology’99,1999,(10):357~360
    [3]中华人民共和国国家发展和改革委员会.煤层气(煤矿瓦斯)开发利用“十一五”规划. http://www.sdpc.gov.cn/nyjt/nyzywx/t20060626_74591.htm
    [4]李树刚,钱鸣高.我国煤层与甲烷安全共采技术的可行性.科技导报,2000,(6):39~41
    [5]李树刚,李生彩,林海飞,等.卸压瓦斯抽取及煤与瓦斯共采技术研究.西安科技学院学报,2002,22(3):247~249
    [6]李树刚,林海飞,成连华.煤与瓦斯安全共采基础理论研究进展.陕西煤炭,2005,(增):25~29
    [7]吴财芳,曾勇,秦勇.煤与瓦斯共采技术的研究现状及其应用发展.中国矿业大学学报,2004,33(2):137~140
    [8] Li Shugang,Lin Haifei. Migration and accumulation characteristic of methane in mining fissure elliptic paraboloid zone. In: Wang Yajun, Huang Ping, Li Shengcai, eds. Proceedings,2004 International Symposium on Safety Science and Technology. VolⅣ. Beijing:Science Press,2004. 576~581
    [9]钱鸣高,石平五.矿山压力与岩层控制.徐州:中国矿业大学出版社,2003
    [10]宋振骐.实用矿山压力控制.中国矿业大学出版社,1988
    [11]钱鸣高,缪协兴,何富连.采场砌体梁结构的关键块分析.煤炭学报,1994,19(6):557~563.
    [12]侯忠杰.老顶断裂岩块回转端角接触面尺寸.矿山压力与顶板管理,1999,(3~4):29~31.
    [13]侯忠杰.采场老顶断裂岩块失稳类型判断曲线讨论.矿山压力与顶板管理,2002,(2):1~3.
    [14]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析.煤炭学报,1999,24(6):581~585
    [15] A. A.鲍里索夫.矿山压力原理与计算.北京:煤炭工业出版社,1986
    [16]钱鸣高,朱德仁.老顶断裂模式及其对采面来压的影响.中国矿业大学学报,1986,14(2):9~16
    [17]贾喜荣.矿山岩层力学.北京:煤炭工业出版社. 1997
    [18]蒋金泉.长壁工作面老顶初次断裂步距及类型研究.山东矿业学院学报,1991,(4):23~30
    [19]吴洪词.长壁工作面基础板结构模型及其来压规律.煤炭学报,1997,22(3):259~264
    [20]陈忠辉,谢和平.长壁工作面采场围岩铰接薄板组力学模型研究.煤炭学报,2005,30(2):172~176
    [21]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究.煤炭学报,1996,21(3):225~230
    [22]许家林、钱鸣高.覆岩关键层位置的判断方法.中国矿业大学学报,2000,30(5):463~467.
    [23]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究.煤炭学报,2000,25(2):122~126
    [24]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究.中国矿业大学学报,1997,27(1):39~42.
    [25]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律,煤炭学报,1998,23(2):135~150.
    [26]侯忠杰.浅埋煤层关键层研究.煤炭学报,1999,24(4):359~363
    [27]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层.岩石力学与工程学报,2004.23(11):1856~1860
    [28]刘开云,乔春生,周辉.覆岩组合运动特征及关键层位置研究.岩石力学与工程学报,2004. 23(8):1301~1306
    [29]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究.煤炭学报,1998,23(5):466~469
    [30]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究.徐州:中国矿业大学出版社,2000
    [31]李树刚.综放开采围岩活动及瓦斯运移.徐州:中国矿业大学出版社,2000
    [32]黄庆享.厚沙土层在顶板关键层上的载荷传递因子研究.岩土工程学报,2005,27(6):672~676
    [33]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共采”技术研究.煤炭学报,2004,29(2):129~132
    [34]缪协兴,陈荣华,白海。保水开采隔水关键层的基本概念及力学分析.煤炭学报,2007,32 (6):561~564
    [35]Karmis M,Triplett T,Haycocks C,etc.. Mining subsidence and its prediction in appalachian coalfield. In : Rock mechanics : theory , experiment , practice. Proceedings,Process 24th US Symp. Rock Mechanics,22~23 June 1983,Texas A.& M. Univeresity Balkema,Rotterdam:665~675.
    [36]Hasenfus GJ,Johnson KL, Su DWH. A hydrogeomechanical study of overburden aquifer response to longwall mining. Proceedings,7th Conf. Ground Control in Mining, 3~5 August 1988, Morgantown. West Virginia University,Morgantown:144~152.
    [37]Bai M,Elsworth D. Some aspects of mining under aquifers in China.Mining Sci. Tech.,1990,10(1):81~91.
    [38]Palchik V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines. Environmental Geology,2002,42(1):92~101.
    [39]刘天泉.矿山岩体采动影响与控制工程学及其应用.煤炭学报,1995,20(1):1~5.
    [40]高延法.岩石四带模型与动态位移反分析.煤炭学报,1996,21(1):51~56
    [41]姜福兴,王春秋,宋振骇.采场覆岩空间结构与应力场动态关系探讨,见:中国科协第46次“青年科学家论坛”文集,中国科学技术出版社,1999.
    [42]张玉卓,陈立良.长壁开采覆岩离层产生的条件.煤炭学报,1996,21(6):576~581.
    [43]杨伦,于广明,王旭春等.煤矿覆岩采动离层位置的计算.煤炭学报,1997,22(5):477~480
    [44]苏仲杰,于广明,杨伦.覆岩离层变形力学模型及应用.岩土工程学报,2002,24(6):778~781
    [45]赵德深,朱广轶,刘文生,等.覆岩离层分布时空规律的实验研究.辽宁工程技术大学学报, 2002,21(1):4~6
    [46]A.T.艾鲁尼.煤矿瓦斯动力现象的预测和预防(唐修义,宋德淑,译).北京:煤炭工业出版社.1992
    [47]周世宁,孙辑正.煤层瓦斯流动理论及其应用.煤炭学报,1965,2(1):24~36
    [48]周世宁.用电子计算机对两种测定煤层透气系数方法的检验.中国矿业学院学报,1984,12(3):46~51
    [49]郭勇义.煤层瓦斯一维流场流动规律的完全解.中国矿业学院学报,1984,12(2):19~28
    [50]谭学术.矿井煤层真实瓦斯渗流方程的研究.重庆建筑工程学院学报,1986,(1):106~112
    [51]余楚新,鲜学福.煤层瓦斯流动理论及渗流控制方程的研究.重庆大学学报,1989,(5):1~9
    [52]孙培德.煤层瓦斯流动方程补正.煤田地质与勘探,1993,21(5):61~62
    [53]Sun Peide. Coal gas dynamics and it applications.Scientia Geologica Sinica,1994,3(1):66~72
    [54]Sun Peide. Study on the mechanism of interaction for coal and methane gas. Journal of Coals Science &Engineering,2001,7(1):58~63
    [55]黄运飞,孙广忠.煤─瓦斯介质力学.北京:煤炭工业出版社,1993
    [56]丁晓良.煤在瓦斯渗流作用下持续破坏的机制.中国科学:A辑,1989,(6):600~607
    [57]俞善炳.恒稳推进的煤与瓦斯突出.力学学报,1988,20(2):23~28
    [58]彼特罗祥.煤矿沼气涌出.宋世钊译.北京:煤炭工业出版社.1983
    [59]孙培德.煤层瓦斯流场流动规律的研究.煤炭学报,1987,12(4):74~82
    [60]罗新荣.煤层瓦斯运移物理模型与理论分析.中国矿业大学学报,1991,20(3):36~42
    [61]Xinrong Luo,QixiangYu. Physical Simulation and Analysis of Methane Transport in Coal Seam. Journal of China University of Min. & Tech.,June 1994,4(1):24~31.
    [62]罗新荣.可压密煤层瓦斯运移方程与数值模拟研究.中国安全科学学报,1998,8(5):19~23
    [64]L. N. Germanovich. Deformation of Nature Coals.Soviet Mining Science,1983,(5):377~381
    [65]王佑安,朴春杰.用煤解吸瓦斯速度法井下测定煤层瓦斯含量的初步研究.煤矿安全,1981,(11):9~14
    [66]王佑安,朴春杰.井下煤的解吸指标及其与煤层区域突出危险性的关系.煤矿安全,1982,(7):17~23
    [67]杨其銮,王佑安.煤屑瓦斯扩散理论及其应用.煤炭学报,1986,11(3):62~70
    [68]杨其銮.关于煤屑瓦斯扩散规律的试验研究.煤矿安全,1987,(2):9~16
    [69]聂百胜,何学秋,王恩元.瓦斯气体在煤层中的扩散机理及模式.中国安全科学学报,2000,10(12):24~28
    [70]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式.矿业安全与环保,2000,27(5):13
    [71]郭勇义,吴世跃.煤粒瓦斯扩散规律及扩散系数测定方法的探讨.山西矿业学院学报,1997,(1):16~19
    [72]郭勇义,吴世跃.煤粒瓦斯扩散规律与突出预测指标的研究.太原理工大学学报,1998,29(2):138~142
    [73]Snghfi.A.煤层瓦斯流动的计算机模拟及其在预测瓦斯涌出和抽放瓦斯中的应用.第22届国际采矿安全会议论文集.北京:煤炭工业出版社,1987
    [74]孙培德.煤层瓦斯流场流动规律的研究.煤炭学报,1987,12(4):74~82
    [75]段三明,聂百胜.煤层瓦斯扩散~渗流规律的初步研究.太原理工大学学报,1998,29(4):14~18
    [76]吴世跃.煤层瓦斯扩散渗流规律的初步探讨.山西矿业学院学报,1994,(3):259~263
    [77]吴世跃,郭勇义.煤层气运移特征的研究.煤炭学报,1999,24(1):65~70
    [78]周世宁,林柏泉.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,1999
    [79]Somerton W.H. Effect of stress on permeability of coal. Int.J. Rock Meck. Mech. Min. Sci. & Geomech. Abstr.,1975,12(2):151~158
    [80] Ettinger A. L. Swelling stress in the gas~coal system as an energy source in the development of gas bursts. Soviet Mining Science.1979,(5):494~501
    [81]Gwwuga J.. Flow of gas through stressed carboniferous strata[D].Univ. of Nottingham. Ph. D. thesis,1979
    [82]Khdot,V.V. Role of methane in the stress state of a coal seam. Fiziko~tekhnicheskie Problem Razrabotki poleznykh is kopaemykh, 1980,(5)
    [83]Harpalani,S. Gas flow through stressed coal[D].Univ. of California. Berkeley,1985
    [84]Borisenko A A. Effect of gas pressure on stress in coal strate. Soviet Mining Science.1985,(1):88~91
    [85]Harpalani,S.& Mopherson,M.J. The effect of gas evacation on coal permeability tests peciments. Int.J.Rock. Meth. Min. Sci & Geomech.Abstr,1975,12(2):151~158
    [86]J.R.E.Enever, A.Henning. The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implication with Respect to Coalbed Methane Exploration and Reservoir Modeling.Proceedings of the 1997 International Coalbed Methane Symposium,1997:13~22
    [87]林柏泉,周世宁.含瓦斯煤体变形规律的实验研究.中国矿业学院学报,1986,15(3):67~72
    [88]林柏泉,周世宁.煤样瓦斯渗透率的实验研究.中国矿业学院学报,1987,16(1):21~28
    [89]姚宇平,周世宁.含瓦斯煤的力学性质.中国矿业学院学报,1988,17(2):87~93
    [90]许江,鲜学福.含瓦斯煤的力学特性的实验分析.重庆大学学报,1993,16(5):26~32
    [91]靳钟铭,赵阳升,贺军,等.含瓦斯煤层力学特性的实验研究.岩石力学与工程学报,1991,10(3):271~280
    [92]段康廉,张文,胡耀青.三维应力对煤体渗透性影响的研究.煤炭学报,1993,18(4):43~50
    [93]何学秋,周世宁.煤和瓦斯突出机理的流变假说.中国矿业大学学报,1990,19(2):1~9
    [94]赵阳升,胡耀青.孔隙瓦斯作用下煤体有效应力规律的实验研究.岩土工程学报,1995,17(3):26~31
    [95]赵阳升,胡耀青,魏锦平,等.气体吸附作用对岩石渗流规律影响的实验研究.岩石力学与工程学报,1999,18(6):651~653.
    [96]杨栋,赵阳升,胡耀青,等.三维应力作用下单一裂缝中气体渗流规律的理论与实验研究.岩石力学与工程学报,2005,24(6):999~1003
    [97]孙培德.变形过程中煤样渗透率变化规律的实验研究.岩石力学与工程学报,2001,20(增):1801~1804
    [98]孙培德,鲜学福,钱耀敏.煤体有效应力规律的实验研究.矿业安全与环保,1999,26(2):16~18
    [99]张广洋,胡耀华,姜德义,等.煤的渗透性实验研究,贵州工学院学报,1995,24(4):65~68
    [100]程瑞端,陈海焱,鲜学福,等.温度对煤样渗透系数影响的实验研究.煤炭工程师,1998,(1):13~17
    [101]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究.岩石力学与工程学报,2000,19(3):366~368
    [102]谭学术,鲜学福,张广洋,等.煤的渗透性研究.西安矿业学院学报,1994,15(1):22~25
    [103]刘保县,鲜学福,王宏图,等.交变电场对煤瓦斯渗流特性的影响实验.重庆大学学报,2000,23(增):41~43
    [104]刘保县,鲜学福,徐龙君,等.地球物理场对煤吸附瓦斯特性的影响.重庆大学学报,2000,23(5):78~81
    [105]王宏图,杜云贵,鲜学福,等.地电场对煤中瓦斯渗流特性的影响.重庆大学学报,2000,23(增):22~24
    [106]刘保县,熊德国,鲜学福.电场对煤瓦斯吸附渗流特性的影响.重庆大学学报,2006,29(2):83~85
    [107]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学.徐州:中国矿业大学出版社,1995
    [108]何学秋.交变电磁场对煤吸附瓦斯的影响.煤炭学报,1996,21(1):63~67
    [109]林海燕,袁修干,王恩元,等.含瓦斯煤断裂电磁辐射的实验研究.煤炭工程师,1998,(3):2~4
    [110]王恩元,何学秋,聂百胜,等.电磁辐射法预测煤与瓦斯突出原理.中国矿业大学学报,2000,29(3):225~229
    [111]王恩元,张力,何学秋,等.煤体瓦斯渗透性的电场响应研究.中国矿业大学学报,2004,33(1):62~65
    [112]赵阳升.煤体~瓦斯耦合数学模型及数值解法.岩石力学与工程学报,1994,13(3):229~239
    [113] Zhao Yangsheng,Jin Zhongming,Sun Jun. Mathematical for coupled solid deformation and methane flow in coal seams. Appl. Math. Modeling,1994,18(6):328~333
    [114]赵阳升.矿山岩石流体力学.北京:煤炭工业出版社,1994
    [115]赵阳升,段康廉,胡耀青,等.块裂介质岩石流体力学研究新进展.辽宁工程技术大学学报,1999,18(5):459~462
    [116]赵阳升,胡耀青,赵宝虎,等.块裂介质岩体变形与气体渗流的耦合数学模型及其应用.煤炭学报,2003,28(1):41~45
    [117]章梦涛,潘一山,梁冰.煤岩流体力学.北京:科学出版社,1995
    [118]梁冰,章梦涛,王泳嘉.煤和瓦斯突出的固流耦合失稳理论.煤炭学报,1995,20(5):492~496
    [119]梁冰,章梦涛,王泳嘉.煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法.岩石力学与工程学报,1996,15(2):135~142
    [120]梁冰,章梦涛.从煤和瓦斯的耦合作用及煤的失稳破坏看突出的机理.中国安全科学学报,1997,7(1):6~9
    [121]丁继辉,麻玉鹏,赵国景,等.有限变形下的煤与瓦斯突出的固流两相介质耦合失稳理论.河北农业大学学报,1998,21(1):74~81
    [122]丁继辉,麻玉鹏,赵国景,等.煤与瓦斯突出的固流两相介质耦合失稳理论及数值分析.工程力学,1999,16(4):47~53
    [123]李树刚.综放开采围岩活动影响下瓦斯运移规律及其控制[博士学位论文].徐州:中国矿业大学,1998
    [124]李树刚,林海飞,成连华.综放开采支承压力与卸压与瓦斯运移关系研究.岩石力学与工程学报,2004,23(19):3288~3291
    [125]林海飞,李树刚,成连华.矿山压力变化的采场瓦斯涌出特征及其管理.西安科技学院学报,2004,24(1):15~18
    [126]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究.岩土工程学报,2001,23(1):68~70
    [127]李树刚,钱鸣高,石平五.煤样全应力应变中的渗透系数~应变方程.煤田地质与勘探,2001,29(1):22~24
    [128]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析.岩土工程学报,2001,23(4):489~493
    [129]Tang C A, Tham L G, Lee PK K, et al. Coupled analysis of flow stress and damage(FSD)in rock failure. Int. J. Rock Mech. Min. Sci.,2002,39(4):477~489.
    [130]徐涛,杨天鸿,唐春安,等.含瓦斯煤岩破裂过程固气耦合数值模拟.东北大学学报,2005,26(3):293~296
    [131]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析.中国矿业大学学报,2001,30(4):362~365
    [132]梁冰,刘建军,王锦山.非等温情况下煤和瓦斯固流耦合作用的研究.辽宁工程技术大学学报,1999,18(5):483~486
    [133]梁冰,刘建军,范厚彬,等.非等温情况下煤层中瓦斯流动的数学模型及数值解法.岩石力学与工程学报,2000,19(1):1~5
    [134]王宏图,杜云贵,鲜学福,等.受地应力、地温和地电效应影响的煤层瓦斯渗流方程.重庆大学学报,2000,23(增刊):47~50
    [135]刘保县,鲜学福,王宏图,等.交变电场对煤瓦斯渗流特性的影响实验.重庆大学学报,2000,23(增刊):41~43
    [136]王宏图,杜云贵,鲜学福,等.地电场对煤中瓦斯渗流特性的影响.重庆大学学报,2000,23(增刊):22~24
    [137]赵阳升,胡耀青,杨栋,等.气液二相流体裂缝渗流规律的模拟实验研究.岩石力学与工程学报,1999,18(3):354~356
    [138]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流.辽宁工程技术大学学报,2001,20(1):36~39
    [139]孙可明,梁冰,朱月明.考虑解吸扩散过程的煤层气流固耦合渗流研究.辽宁工程技术大学学报,2001,20(4):548~549
    [140]刘建军.煤层气热~流~固耦合渗流的数学模型.武汉工业学院学报,2002,(2):91~94
    [141]林良俊,马凤山.煤层气产出过程中气~水两相流与煤岩变形耦合数学模型研究.水文地质工程地质,2001,(1):1~3
    [142]王锦山,尹伯悦,谢飞鸿.水—气两相流在煤层中运移规律.黑龙江科技学院学报,2005,15(1):16~19
    [143]刘晓丽,梁冰,王思敬,等.水气二相渗流与双重介质变形的流固耦合数学模型.水利学报,2005,36(4):405~412
    [144]蒋曙光,张人伟.综放采场流场数学模型及数值计算.煤炭学报,1998,23(3):258~261
    [145]丁广骧,柏发松.采空区混合气运动基本方程及有限元解法.中国矿业大学学报,1996,25(3):21~26
    [146]丁广骧.矿井大气与瓦斯三维流动.徐州:中国矿业大学出版社,1996
    [147]梁栋,黄元平.采动空间瓦斯运动的双重介质模型.阜新矿业学院学报,1995,14(2):4~7
    [148]吴强,梁栋.CFD技术在通风工程中的运用.徐州:中国矿业大学出版社,2001
    [149]李宗翔,孙广义,王继波.回采采空区非均质渗流场风流移动规律的数值模拟.岩石力学与工程学报,2001,20(增2):1578~1581
    [150]李宗翔.综放工作面采空区瓦斯涌出规律的数值模拟研究.煤炭学报,2002,(2):173~178
    [151]李宗翔,纪书丽,题正义.采空区瓦斯与大气两相混溶扩散模型及其求解.岩石力学与工程学报2005,24(16):2971~2976
    [152]刘卫群.破碎岩体渗流理论及其应用研究[博士学位论文].徐州:中国矿业大学.2002
    [153]缪协兴,刘卫群,陈占清.采动岩体渗流理论.北京:科学出版社,2004
    [154]胡千庭,梁运培,刘见中.采空区瓦斯流动规律的CFD模拟.煤炭学报,2007,32(7): 719~723
    [155]兰泽全,张国枢.多源多汇采空区瓦斯浓度场数值模拟.煤炭学报,2007,32(4):396~401
    [156]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究.中国矿业大学学报,2000,29(1):78~81
    [157]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论.徐州:中国矿业大学出版社,2000
    [158]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响的研究.2007,26(7):1478~1484
    [159]刘泽功.开采煤层顶板抽放瓦斯流场分析.矿业安全与环保,2000,27(3):4~6
    [160]刘泽功,袁亮,戴广龙,等.开采煤层顶板“环形裂隙圈内走向长钻孔”抽放瓦斯研究.中国工程科学,2004,6(5):32~38
    [161]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[博士学位论文].合肥:中国科技大学.2004
    [162]郭玉森,林柏泉,吴传始.围岩裂隙演化与采动卸压瓦斯储运的耦合关系.采矿与安全工程学报,2007,24(4):414~417
    [163]李树刚,林海飞,成连华.采动裂隙椭抛带卸压瓦斯抽取方法,煤炭科学技术,2004,32(增):54~57
    [164]梁冰,章梦涛.可压缩瓦斯气体在煤层中渗流规律的数值模拟.见:中国北方岩石力学与工程应用学术会议论文集.北京:科学出版社,1991
    [165]孙培德,鲜学福.煤层气越流的固气耦合理论及其应用.煤炭学报,1999,24(1):60~64
    [166]孙培德,万华根.煤层气越流固~气耦合模型及可视化模拟研究.岩石力学与工程学报,2004,23(7):1179~1185
    [167]梁运培.邻近层卸压瓦斯越流规律的研究.矿业安全与环保,2000,27(2):32~35
    [168]梁运培.岩石水平长钻孔抽放邻近层瓦斯.煤,2000,9(1):6~9
    [169]程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术.辽宁工程技术大学学报,2003,22(4):483~486
    [170]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究.中国矿业大学学报,2004,33(2):132~136
    [171]林柏泉,张建国.矿井瓦斯抽放理论与技术.徐州:中国矿业大学出版社,1996
    [172]袁亮.松软低透煤层群瓦斯抽采理论与技术.北京:煤炭工业出版社,2004
    [173]王兆丰,刘军.我国煤矿瓦斯抽放存在的问题及对策探讨.煤矿安全,2005,36(3):29~32
    [174]王魁军,张兴华.中国煤矿瓦斯抽采技术发展现状与前景.中国煤层气,2006,3(1):13~16
    [175]Gan H, Nandi S P, Walker P L. Nature of porosity in American coals . Fuel, 1972, 51: 272~277.
    [176]郝琦.煤的显微孔隙形态特征及其成因探讨.煤炭学报,1987,12(4): 51~57
    [177]张慧.煤孔隙的成因类型及其研究.煤炭学报,2001,26(1): 40~44
    [178]杨永杰,宋扬,陈绍杰.煤岩全应力应变过程渗透性特征试验研究.岩土力学,2007,28(2): 381~385.
    [179]赵连涛,于旭磊,刘启蒙,等.煤层底板岩石全应力—应变渗透性试验.煤田地质与勘探,2006,24(12):37~40
    [180]Scott A R ,Tyler R.Geologic and hydrologic controls critical to coalbed methane production and resource assessment, the textbook of the short course for the 1999 international CBM symposium.Tuscaloosa: University of Alabama, 1999
    [181]秦勇,叶建平,林大扬,等.煤储层厚度与其渗透性及含气性关系初步探讨.煤田地质与勘探,2000,28(1):24~27
    [182]黄盛初,刘文革,赵国泉.中国煤层气开发利用现状及发展趋势,中国煤炭,2009,35(1):5~10
    [183]林韵梅.实验岩石力学.北京:煤炭工业出版社,1984.
    [184]李鸿昌.矿山压力的相似模拟实验.徐州:中国矿业大学出版社,1988.
    [185]杨彬林.天池能源有限公司101综放工作面矿压观测与顶板分类.煤矿现代化,2006,75(6):46~47
    [186]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[博士学位论文].辽宁工程技术大学,2000
    [187]刘波,韩彦辉(美国).FLAC原理、实例与应用指南.北京:人民交通出版社,2005.9
    [188]寇晓东,周维垣,杨若琼.FLAC3D进行三峡船闸高边坡稳定分析.岩石力学与工程学报,2001,20(1):6~10
    [189]胡斌,张倬元,黄润秋.FLAC3D前处理程序的开发及仿真效果检验.岩石力学与工程学报,2002,21(9):1387~1391
    [190]尹尚先,王尚旭.陷落桩影响采场围岩破坏和底板突水的数值模拟分析.煤炭学报,2003,28(3):26~34
    [191]黄志安,童海方,张英华,等.采空区上覆岩层“三带”的界定准则和仿真确定.北京科技大学学报,2006,28(7):609~612
    [192]彭永伟,齐庆新,李宏艳,等.高强度地下开采对岩体断裂带高度影响因素的数值模拟分析.煤炭学报,2009,34(2):145~149
    [193]李树刚,林海飞,成连华.采动覆岩卸压范围及裂隙场特征研究.中国煤炭学会开采专业委员会2007年学术年会论文集,2007:83~86
    [194] Lin Haifei, Li Shugang, Cheng Lianhua. Study on distribution law of the mining~induced fractures in overburden strata based on methane drainage. In:Mining hazards prevention and control technology.Beijing:Science Press,152~158
    [195]林海飞.采动裂隙椭抛带中瓦斯运移规律及应用分析[硕士学位论文].西安:西安科技大学,2004.
    [196]赵保太,林柏泉.“三软”不稳定低透气性煤层开采瓦斯涌出及防治技术.徐州:中国矿业大学出版社,2007
    [197]姜福兴.薄板力学解在坚硬顶板采场的应用范围.西安矿业学院学报,1991,11(2):12~19
    [198]徐芝纶.弹性力学.北京:高等教育出版社,1994
    [199]涂敏,谢广祥.水采采场顶板周期垮落规律及数力学模型.煤炭学报,1998.23(5):491~496
    [200]李树刚,林海飞.采动裂隙椭抛带分布特征的相似模拟实验分析.煤,2008,17(2):19~21
    [201]弓培林.大采高采场围岩控制理论及应用研究.北京:煤炭工业出版社,2006
    [202]尹增德.采动覆岩破坏特征及发育规律数值模拟研究[博士学位论文].济南:山东科技大学,2007,6
    [203] J·贝尔.多孔介质流体动力学(李竞生,陈崇希,译).北京:中国建筑工业出版社,1983
    [204]周西华.双高矿井采场自燃与爆炸特性及防治技术研究[博士学位论文].辽宁工程技术大学,2006
    [205]杨兰和等.煤炭地下气化渗流燃烧方法研究.徐州:中国矿业大学出版社,2001
    [206]S. Ergun. Fluid flow through packed columns. Chem. Eng. Prog..1952,48(2):89~94
    [207]姚征,陈康民.CFD通用软件综述.上海理工大学学报,2002,24(20):137~144
    [208]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004
    [209]赵玉新.FLUENT中文全教程.长沙:国防科技大学出版社,2003
    [210]FLUENT 6.2 User's Guide.Fluent Inc.January 11,2005
    [211]S.V. Patankar,D.B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and MassTransfer,1972,15:1787~1806
    [212]Lin Haifei,Li Shugang,Cheng Lianhua. Studies on distribution features and internal methane concentration distribution laws of mining-induced fracture zone. Progress in safety science and technology(VOL 5).Beijing:Science Press,2006.10:1680~1685
    [213]李树刚,林海飞,成连华.采动裂隙椭抛带中瓦斯浓度分布规律研究.中国煤炭学会煤矿安全专业委员会2004年学术年会论文集,2004.8:18~22
    [214]李树刚,林海飞,成连华.基于顶板巷道的椭抛带内瓦斯排放方法.中国煤炭学会开采专业委员会2006年学术年会论文集,2006:279~283
    [215]Li Shugang,Zhang Wei,Lin Haifei. Numerical simulation on the delivery law of gob gas of fully mechanized caving face. Journal of Coal Science & Engineering(China),2008,14(3):403~406
    [216]游浩,李宝玉,张福喜.阳泉矿区综放面瓦斯综合治理技术.北京:煤炭工业出版社,2008
    [217]戴广龙,储方健.综采放顶煤工作面瓦斯涌出规律的分析.煤矿安全,2005,36(8):55~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700