用户名: 密码: 验证码:
青藏高原东北缘地区深部电性结构及构造涵义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用大地电磁方法在当今地学研究的热点地区之一--青藏高原东北缘及其邻近地区开展了探测研究,取得一些有意义的新成果。
     研究区位于东经99o-110o、北纬33o-40o范围内,其中西南部有巴颜喀拉地块、柴达木地块和祁连地块,西北部有阿拉善地块,东北部有鄂尔多斯地块。由科技部“973”项目、国家自然科学基金项目资助和通过合作交流,在研究区内新测和收集到13条大地电磁剖面、共1156个测点的高质量的观测数据。剖面分别穿过了柴达木地块、祁连地块和鄂尔多斯地块之间的海原边界带,祁连地块和阿拉善地块之间的古浪边界带,阿拉善地块和鄂尔多斯地块之间的银川边界带。
     在数据观测中采用了“远参考道”方法,数据处理采用了Robust技术,以提高观测数据质量。对所有观测数据统一进行了规范化处理,分析了所有测点的电性主轴方向、二维偏离度、磁感应矢量、视电阻率和阻抗相位曲线等多种参数。对发生局部畸变和静位移测点的数据分别进行了阻抗张量分解和静效正。对NLCG、OCCAM、RRI、REBOCC四种二维反演方法反演结果进行了分析对比研究,最后使用NLCG方法对所有剖面进行了二维反演。采用TE和TM两种极化模式的视电阻率和阻抗相位数据进行了联合反演,获得了13条剖面的二维电性结构图像。在结合研究区的地质和地球物理资料、中强地震资料等综合分析后,获得了研究区深部低阻层分布、各构造单元及它们之间的边界带的深部构造、强地震深部孕震环境以及有关动力学等一些新的认识,主要研究内容如下。
     (1)巴颜喀拉地块、柴达木地块、祁连地块、阿拉善地块和鄂尔多斯地块内部的地壳上地幔电性结构分别具有成层性,并发育有电阻率为几十欧姆米的低阻层。巴颜喀拉地块低阻层埋深约40多公里。柴达木地块低阻层埋深较大,约60多公里,其上覆盖较厚的、完整的高阻地层。祁连地块低阻层埋深在40到30公里之间。而阿拉善地块和鄂尔多斯地块低阻层埋深较浅,在20到30多公里之间。
     (2)海原边界带、古浪边界带和银川边界带的深部电性结构复杂,高阻体和低阻体相互交织,不存在大范围成层的壳内低阻层。海原边界带内地壳浅层显示出北部宽、南部窄而向北西撒开、向南东收缩的“扫帚状”形态,呈现西南深、东北浅的“簸箕状”起伏盆地形态。银川边界带内高、低阻带(体)相间分布,地壳浅层呈西浅东深的低阻断陷盆地形态。古浪边界带整体表现为西南深、东北浅的高阻体。
     (3)各地块之间或者地块与边界带之间的接触带分别与马沁断裂带、马衔山断裂带、西海原断裂带、青铜峡—固原断裂带和黄河断裂带对应,它们或者是两侧电性结构明显不同的边界带,或者是电阻率发生明显变化的梯度带。
     (4)西海原—海原—六盘山断裂带和青铜峡—固原断裂带为明显的电性边界带,并具有电性分段性,而沿断裂带出现低阻体的部位及其附近中强地震频发。西海原—海原—六盘山断裂带西南侧地块内发育连续成层的壳内低阻层,而其东北侧不存在大范围连续壳内的低阻层。
     (5)1920年海原8.5级大震区和1927年古浪8级大震区的深部电性结构显示,震源区均位于电性发生明显变化的边界带地区,但海原地震震源区表现出延伸较长的直立走滑运动特点,而古浪地震震源区电性边界则表现出具有向北东逆冲的构造环境。
     (6)地块内部成层型的结构和边界带内部复杂的结构表明,前者的地壳属于稳定地块或变形较弱的地壳,后者则属于构造活动性较强和变形较严重的地区。
     (7)综合分析研究区的地壳上地幔电性结构表明,青藏高原东北缘地区的几个地块以及由不同地块围陷的边界带地壳结构非常复杂,反映该区特殊的运动学和动力学环境,是特别值得进一步研究的敏感地区。
The northeastern margin of the Tibetan Plateau and adjacent areas are a focused topic of current geosciences in the world. This thesis presents the newly accomplished study on the deep structure beneath this region based on magnetotelluric (MT) sounding data.
     The study area lies in the range 99o-110oE, 33o-40oN, involves several major tectonic units. Its southwest is the Bayankala block, and Qaidam block. The Alashan block lies in the northwest. And it abuts the Ordos block in northeast. The work of this thesis is based on 13 profiles, some of which were recently completed in the field. These profiles pass through thr Qaidam block, Haiyuan boundary between the Qilian and Ordos blocks, Gulang boundary between the Qilian and Alshan blocks, and Yingchuan boundary between the Alashan and Ordos blocks. MT data of high quality at totally 1156 sites on these profiles are available for this study.
     In data processing, the remote reference and Robust methods are used to improve data quality. All measurements are regularized. The objects of analysis include many parameters of sites, such as orientations of principal electric axes, skewness, magnetic induction vectors, apparent resistivity, and impedance phases. Impedance vector decomposition and static correction are performed to those site data which have local distortion and static shift, respectively. The 2D inversions by NLGG, OCCAM, RRI and REBOCC methods are compared. Finally the NLGG method is used to make 2D inversions for all profiles, including joint inversions of apparent resistivity and impedance phase data by TE and TM polarity modes. From these inversions, 2D electric structure images of the 13 MT profiles are obtained. In conjunction with geological and geophysical data of the study area, the low-resistivity distributions at depth is determined. And their relation with deep structures of each tectonic units is analyzed. The conclusions of this thesis are summarized below.
     (1)The electric structure of crust and upper mantle beneath the Bayankala, Qaidam, Qilian, Alashan and Ordos blocks is characterized by layered low-resistivity (LR) materials of tensΩm. The LR layer below the Bayankala block is at about 40km depth. The burial depth of the LR layer below the Qaidam block is larger, some 60km, with thick and intact overlying high-resistivity (HR) strata. The depth of the LR layer of the Qilian block is between 30~40km. And those of the Alashan and Ordos blocks are relatively shallow, 20~30km deep.
     (2)Below the Haiyuan, Gulang and Yingchuan boundary zones, deep electric structures are complicated, where HR and LR bodies are mixed each other, thus no large-scale layered LR material exists. In the Haiyuan boundary zone, the LR body of shallow crust is wide in north and narrow in south, or say spreading out toward northwest and converging to southeast, like a deep in southwest and shallow in northwest listric surface. In the Yingchuan boundary zone, HR and LR bodies exist alternatively, and the LR body of upper crust is shallow in west and deep in east. And the whole Gulang boundary zone exhibits a HR body tilting toward southwest.
     (3)The contact zones between blocks or between a block and a boundary zone correspond to several major faults, which are the Maqing, Maxianshan, west Haiyuan, Qingtongxia-Guyuan and Yellow River faults, respectively. On either side of these faults, electric structures are apparently different, or resistivity changes rapidly across these faults.
     (4)The west Haiyuan-Haiyuan-Liupanshan fault and Qingtongxia-Guyuan fault are distinct electric boundaries which are of segmentation. Along these faults the localities of LR bodies or their vicinities are prone to medium-and large-sized earthquakes. Southwest to the west Haiyuan-Haiyuan-Liupanshan fault exists continuous layered LR material in crust, while in its northeast side there is no such LR layer in crust.
     (5)The deep electric structure pictures show that the sources of the 1920 Haiyuan M8.5 and 1927 Gulang M8 shocks are located in the boundaries where electric property changes remarkably. The deep electric structure is consistent with the long-extending steep strike-slip of the Haiyuan earthquake source, and northeastward overthrusting of the Gulang earthquake source, respectively.
     (6)In comparison with tectonics of the study area, stable or weakly deformed blocks have layered resistivity structures. And those highly active and deformed blocks, and tectonic boundary zones are characterized by complex electric structures at depth.
     (7)The deep electric structures below the study area revealed by MT sounding show that several blocks and boundary zones in the northeastern margin of the Tibetan Plateau have extremely complicated crustal structures. They are associated with special tectonic and dynamic settings of this region, and deserve further studies.
引文
[1] A.N.Tikhonov.. On the determination of electric characteristics of deep layers of the earth’s crust. Dok. Akad. Nauk. 1950,73(2):295~297
    [2] Cagniard, L.Basic theory of the magneto~telluric method of Geophysicial prospecting.Geophysics,1953,18(3):605~635
    [3]陈乐寿,王光锷.大地电磁测深法.北京:地质出版社.1990
    [4] Jones,A.G..Electrical conductivity of the continental lower crust,in The Continental Lower Crust,edited by D.M.Fountain,R.J. Arculus,and R.W. Kay,Elsevier,New York,1992,81~143
    [5]刘国栋.我国大地电磁测深的发展.地球物理学报,1994,37(增刊1):301~310
    [6]王家映.我国大地电磁测深研究新进展.地球物理学报,1997,40(增刊):206~216
    [7]魏文博.大陆岩石圈导电性的研究方法.地学前缘(中国地质大学,北京),2003,10(1):15~22
    [8] Unsworth M.Studying continental dynamics with magnetotelluric exploration.Earth Acience Frontiers(China University og Geoscience,Beijing).2003,10(1):25~38
    [9]赵国泽,王继军,陈小斌.中国地壳上地幔结构电磁探测研究.陈运泰等主编:《中国大陆地震学与地球内部物理学研究进展》,地震出版社,2004,107~121
    [10] Alan G. Jones,Ian J. Ferguson,Alan D. Chave ,Rob L. Evans,Gary W. McNeice.Electric lithosphere of the Slave craton.Geology,2001,29(5):423~426
    [11] Alan G. Jones, Pamela Lezaeta, Ian J. Ferguson,Alan D. Chave, Rob L. Evans,Xavier Garciaa Jessica Spratta.The electrical structure of the Slave craton Alan.Lithos,2003,71:505~527
    [12]David W. Eaton,Alan G. Jones,and Ian J. Ferguson.Lithospheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations:Great Slave Lake shear zone, northern Canada.Geophys. Res. Lett., 2004,31,L19614,doi:10.1029/2004GL020939
    [13] Vaittinen K,Korja T,Kaikkonen P,et al..High-resolution magnetotelluric studies of the archaeanproterozoic border zone in fennoscandian shield, finland[A].18th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth Abstract[C].2006,El Vendrell,Spain,September 17~23
    [14] Heinson G,Maier R,Thiel S,et al. A 3d lithosphere model of the archaean~proterozoic gawler craton, southern Australia[A] . 18th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth Abstract[C].2006,El Vendrell,Spain,September 17~23
    [15] Muller M R,Hamilton M P,Evans S F, et al. Constraints on the Lithospheric Evolution of the Rehoboth and Kaapvaal Cratons,Southern Africa,From Broadband Magnetotellurics[A]. American Geophysical Union Fall Meeting[C].2006,San Francisco,USA,11~15 December
    [16] Jones A G, and the SAMTEX team. Electromagnetic imaging of the Kaapvaal Craton, South Africa Status Report[A]. Contributed paper at: Canadian Geophysical Union Annual Meeting[C].2006, Banff, Alberta, Canada,14~17 May
    [17] Fernando A. Monteiro Santos,Jaume Pous,Eugenio P. Almetda,et al..Magnetotelluric survey of the electrical conductivity of the crust across the Ossa Morena Zone and South Portuguese Zone suture. Tectonophysics, 1999,313:449~462
    [18] Eugenio Almeida,Jaume Pous,Fernando A. Monteiro Santos,et al..Electromagnetic imageing of a transpressional in SW Iberia.Geophysical Research Letters,2001,28(3):439~442
    [19] Fernando A. Monteiro Santos,Antonio Mateus,Eugenio P. Almetda,et al..Are some of the deep crustal conductive features found in SW Iberia caused by graphite? Earth and Planetary Science Letters,2002,201:353~367
    [20] Jaume Pous,Fernando A. Monteiro Santos,Wiebke Heise,et al..Electromagnetic imaging of Variscan crustal structures in SW Iberia:the role of interconnected graphite.Earth and Planetary Science Letters, 2004,217:435~450
    [21]Jaume Pous,Pilar Queralt,Juanjo Ledo,Eduard Roca.A high electrical conductive zone at lower crustal depth beneath the Betic Chain(Spain).Earth and Planetary Science Letters,1999,167:35~45
    [22] Sebastian Tauber, Roger Banks,Oliver Ritter,and Ute Weckmann. A high-resolution magnetotelluric survey of the Iapetus Suture Zone in southwest Scotland.Geophys. J. Int.,2003,153:548~56
    [23]Gabriella Losito,Pierre~Andre Schnegg,Candice Lambelet,et al..Microscopic scale conductivity as explanation of magnetotelluric results from the Alps of Western Switzerland.Geophys. J. Ini.,2001,147:602~609
    [24]Ilyas Caglar.Electrical resistivity structure of the northwestern Anatolia and its tectonic implications for the Sakarya and Bornova zones.Physics of the Earth and Planetary Interiors,2001,125:95~110the electrical resistivity structure.Journal of Volcanology and Geothermal Research,1999,89:35~42
    [76] R. Di Maioa,P. Mauriello a,D. Patella,Z. Petrillo,S. Piscitelli,A. Siniscalchi b.Electric and electromagnetic outline of the Mount Somma~Vesuvius structural setting.Journal of Volcanology and Geothermal Research,1998,82:219~238
    [77] Adele Manzella, Gianni Volpi,Annalisa Zaja ,Max Meju.Combined TEM-MT investigation of shallow-depth resistivity structure of Mt Somma~Vesuvius.Journal of Volcanology and Geothermal Research, 2004,131:19~32
    [78] Theodora K.Volti.Magnetotelluric mearsurements on the Methana Peninsula (Greece):modeling and interpretation.Tectonophysics,1999,301:111~132
    [79] G.F. Risk, H.M. Bibby,T.G. Caldwell.Resistivity structure of the central Taupo Volcanic Zone,New Zealand.Journal of Volcanology and Geothermal Research,1999,90:163~181
    [80] Malcolm Ingham.Deep electrical structure of the Central Volcanic Region and Taupo Volcanic Zone,New Zealand.Earth Planets Space,2005,57:591~603
    [81] Jaume Pous,Wiebke Heise, Pierre-Andre Schnegg,et al.Magnetotelluric study of the Las Canadas caldera(Tenerife, Canary Islands):structural and hydrogeological implications.Earth and Planetary Science Letters,2002,204:249~263
    [82] V. Sakkas a, M.A. Meju a,*, M.A. Khan a, V. Haak b, F. Simpson。Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya.Tectonophysics,2003,46:169~185
    [83] A.A. Adepelumi,S.L. fonts,P.A. Schnegg,J.M. Flexor. An integrated magnetotelluric and aeromagnetic investigation of the Serra da Cangalha impact crater,Brazil.Physics of the Earth and Planetary Interiors. ,2005,150:159~18
    [84] Martyn Unsworth,Oscar Campos Enriquez,Salvador Belmonte,Jorge Arzate,Paul Bedrosian.Crustal structure of the Chicxulub Impact crater imaged with magnetotelluric exploration.Geophysical Research Letters,2002,29(16):351~354
    [85] J. O. Campos~Enriquez,F.J. Chavez~Garcia,H. Cruz,et al..Shallow crustal structure of Chicxulub impact crater imaged with seismic gravity and magnetotelluric data:inferences about the central uplift.Geophys. J. Int.,2004,157:515~525
    [86]A. Muller,V.Haak.3-D modeling of the deep electrical conductivity of Merapi volcano(Central Java):integrating magnetotellurics, induction vectors and the effects of steep topography.Journal of Volcanology and Geothermal Research,2004,138:205~222 [87 Denghai Bai,Maxwell A. Meju,and Zhijie Liao.Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong,sothern China.Geophys. J. Ini.,2001,147:677~687
    [88]汤吉,晋光文,赵国泽等。感应矢量及其在长白山天池火山区的应用.地质论评,1999,45(增刊):294~303
    [89]詹艳,赵国泽,王继军,肖骑彬,汤吉,Rokityansky I.I.黑龙江五大连池火山群地壳电性结构.岩石学报,2006,22(6):1494~1502
    [90] Hisashi Utada.Interpretation of time changes in the apparent resistivity observed prior to the 1986 eruption of Izu^Oshima volcano,Japan.Journal of Volcanology and Geothermal Research,2003,126:97~107
    [91] J. Zlotnicki a, Y. Sasaib, P. Yvetot , Y. Nishida, M. Uyeshima, F. Fauquet, H. Utada, Y. Takahashi , G. Donnadieu.Resistivity and self~potential changes associated with volcanic activity: The July 8, 2000 Miyake~jima eruption (Japan).Earth and Planetary Science Letters,2003,205:139~154
    [92] F. Dudkin a,A. De Santis b,V. Korepanov.Active EM sounding for early warning of earthquakes and volcanic eruptions.Physics of the Earth and Planetary Interiors,2003,139:187~195
    [93] E. Lagios, D. Galanopoulos, B.A. Hobbs, G.J.K. Dawes.Two~dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece).Tectonophysics,1998,287:157~I72
    [94] Gianni Volpi,Adele Manzellaa Adolfo Fiordelisib.Investigation of geothermal structures by magnetotellurics (MT): an example from the Mt. Amiata area,Italy.Geothermics,2003,32:131~145
    [95] lyas C_ag?lar*,Turgay I˙s_seven.Two~dimensional geoelectrical structure of the Go¨ynu¨k geothermal area, northwest Anatolia,Turkey.Journal of Volcanology and Geothermal Research,2004,134:183~197
    [96] Behrooz Oskooi, Laust B. Pedersen, Maxim Smirnov, Knutur A rnasonb, Hja′lmar Eysteinsson, Adele Manzella the DGP Working Group.The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland.Physics of the Earth and Planetary Interiors,2005,150:183~195
    [97] George F. Riska, Hugh M. Bibby,Christopher J. Bromley, T. Grant Caldwell,Stewart L. Bennie.Appraisal of the Tokaanu~Waihi geothermal field and its relationship with the Tongariro geothermal field, New Zealand.Geothermics,2002,31:45~68
    [98] GeorgeF.Risk,T.Grant Caldwell,Hugh M.Bibby.ensor time domain electromagnetic resistivity measurements at Ngatamariki geothermal cold,New Zealand.Journal of Volcanology and Geothermal Research,2003,127:33~54
    [99] T. Harinarayana,K.K. Abdul Azeez,K. Naganjaneyulu,C. Manoj,K. Veeraswamy,D.N. Murthy,S. Prabhakar Eknath Rao.Magnetotelluric studies in Puga valley geothermal field,NW Himalaya, Jammu and Kashmir,India.Journal of Volcanology and Geothermal Research,2005,138:405~424
    [100] Adolfo Fiordelisi,Adele Manzella,Giorgio Buonasorte,Jimmy C. Larsen,Randall L. Mackie.MT methodology in the detection of deep,water-dominated geothermal systems. Proceedings World Geothermal Congress 2000,Kyushu-Tohoku,Japan,May 28-June 10,2000,1121~1126
    [101] Denghai Bai,1,Maxwell A. Meju and Zhijie Liao.Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong,southern China.Geophys. J. Int.,2001,147:677~687
    [102] Adel K. Mohamed, Maxwell A.Meju and Sergio L. Fontes.Deep structure of the northeastern margin of the Parnaiba Basin, Brazil, from magnetotelluric imaging.Geophysical Prospecting,2002,50:589~602
    [103]Don White,David Boerner,Jianjun Wu,Steve Lucas,Eberhard Berrer,Jorma Hannila, and Rick Somerville.Mineral exploration in the Thompson nickel belt,Manitoba,Canada,using seismic and controlled~source EM methods.Gepphysics,2000,65(6):1871~1881
    [104] Alan G. Jones,James A. Craven.Area selection for diamond exploration using deep-probing electromagnetic surveying.Lithos,2004,77:765~782
    [105] V.J.S. Grauch,Douglas P. Klein,and Brian D. Rodriguez.Progress on understanding the crustal structure near the battle mountaineureka mineral trend from geophysical constraints. Contributions to the gold metallogeny of northern Nevada Open-File report,98,338:8~14
    [106]张宝林等,赵国泽,詹艳,等.综合地球物理方法对金矿深部找矿靶区的验证.地球物理学报,2002,45(增刊):346~355
    [107]何展翔.非地震勘探技术的进步与发展趋势.石油地球物理勘探,2000,25(3):354~360
    [108] A. Colella,V. Lapenna, E. Rizzo. High-resolution imaging of the High Agri Valley Basin(Southern Italy) with electrical resistivity tomography.Tectonophysics,2004,386:29~40
    [109]詹艳,赵国泽,王继军,等.鄂尔多斯西缘六盘山盆地的大地电磁探测.石油地球物理勘探,2004,39(suppl.):80~84
    [110]Ichiki M,Uyeshima M,Utada H, et al.Upper mantle conductivity structure of the back~arc region beneath northeastern China[J]. Geophysical Research Letters,2001,28(19)3773~3776
    [111]Uyeshima M,Utada H, Nishida Y. Network-magnetotelluric method and its first results in central and eastern Hokkaido,NE Japan[J].Geophys. J. Int.,2001,146:1~19
    [112]赵国泽,汤吉等.用大地电磁网在长春等地探测上地幔电导率结构.地震地质,2001,23(2):143~152
    [113]马宗晋,汪一鹏,张燕平.前言.见:马宗晋,汪一鹏,张燕平主编.青藏高原岩石圈现今变动与动力学.北京:地震出版社,2001,1
    [114]汪一鹏.青藏高原活动构造基本特征.见:马宗晋,汪一鹏,张燕平主编.青藏高原岩石圈现今变动与动力学.北京:地震出版社,2001,251~262
    [115]汪一鹏.有关塔波尼亚的青藏高原运动学模型的要点及评述.国际地震动态,1998,229:9~14
    [116]赵文津,黄力言,熊嘉育.喜马拉雅和青藏高原深剖面研究的进展.地球物理学报,1997,40(增刊):140~152
    [117]Molnar and Tapponnier.Cenozoic tectonics of Asia: Effects of a continental collision.Science,1975,189:419~426
    [118]Tapponnier P.,Peltzer G. and Le Dain. A.Y..Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine.Geology,1982,10:611~616
    [119]Tapponnier P,Xu Z Q,et al.Oblique stepwise rise and growth of the Tibet.Science,2001,294(23):1671~1677
    [120]Peltzer G. and Tapponnier P. Armijo R.Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet. Science,1989,246:1285~1289
    [121]England and Houseman G.Role of lithospheric strength heterogenetities in the tectonics of Tibet and neighbouring regions.Nuture,1985,315(6017):297~301
    [122]Eangland and Molnar,P. .Right-lateral shear and rotation as explanation for strike-slip fauting in eastern Tibet.Nature,1990,344(6262):140~142
    [123]Eangland and Molnar. The fileld of ceustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int.,1997,130:551~582
    [124]Houseman G. and England P..Crustal thickening versus lateral expulsion in the India~Asian continental collision.J. Geophys. Res.,1993,98:12233~12249
    [125]Meyer B,Tapponnier P,Bourjot L,et al.Crustal thickening in Gansu~Qinghai,lithospheric mantle subduction,and oblique,strike slip controlled growth of the Tibet Plateau.Geophysical Journal International,1998,135:1~47
    [126]张培震,甘卫军,沈正康,王敏.中国大陆现今构造作用的地块运动和连续变形耦合模型.地质学报2005,79(6):748~756
    [127]袁道阳.青藏高原东北缘晚新生代以来的构造变形特征与时空演化.中国地震局地质研究所博士论文.2003
    [128]张家声,李燕,韩竹军.青藏高原向东挤出的变形响应及南北地震带构造组成.地学前缘,2003,10(特刊) 166~175
    [129]张广良.青藏高原东北缘六盘山—马东山地区晚新生代构造变形综合研究.中国地震局地质研究所博士论文.2006
    [130]赵文津.青藏高原地壳上地幔地球物理调查研究成果综述.中国工程科学,2003,5(2):1~15 Zhao Wenjin.Deep exploration for lithosphere with special reference to Qinghai Tibet plateau. Engineering Science. 2003,5(2):1~15
    [131]腾吉文,熊绍柏,张中杰,等。青藏高原深部结构与构造地球物理研究的回顾和展望。地球物理学报。1997,40(增刊):121~139
    [132]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起.地球前缘,1999,6(3):149~151
    [133]吴功建,高锐,余钦范,等.西藏高原亚东一格尔木地学断面综合地球物理调查与研究[J].地球物理学报,1991,34(5): 552-561
    [134]高锐,成湘洲,丁谦.格尔木-额济纳旗地学断面地球动力学初探.地球物理学报,1995,38(增刊II):3~14 [135 ]崔作舟,李秋生,孟令顺,等.格尔木-额济纳旗岩石圈结构与深部构造.北京:地质出报社,1999
    [136]Zhao W J.Nlson K D.et al.Deep seismic reflection evidence for continental underthrustiong beneath Southern Tibet[J].Nature,1993,336:557-559
    [137]赵文津,薛光琪,,吴珍汉,等.西藏高原上地幔的精细结构与构造—地震成析成像给出的启示.地球物理学报,2004,47(3):449~455
    [138]孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究.中国科学(D辑),1996,26(4):308~315
    [139]孔祥儒,王谦身,熊绍柏.青藏高原西部综合地球物理剖面和岩石圈结构与动力学.科学通报,1999,44(12):1257~1265
    [140]任爱华,石应骏,李宗舜,等.西藏高原那曲至亚东测线地壳、上地幔的大地电磁研究.地球物理学报,1982,25 (5):457~463 [ 141]范文科,袁学诚.羊八井至洛扎南北向剖面磁大地电流测深初步成果.见:李光岑,Mercier J L编.中法喜马拉雅考察成果,1980.北京:地质出版社,1984,413~419
    [142]Van Ngoc,P.,D. Boyer,P. Therme, X. Cheng Yuan,L. Li,and G. Yuan Jin.Partial melting zones in the crust in southern Tibet from magnetotelluric results.Nature,1986,23:310~319
    [143]郭新峰,张元丑,程庆云.西藏高原亚东-格尔木地学断面岩石圈电性研究.中国地质科学院院报,1990,21:191~202
    [144]秦国卿,陈九辉,刘大建,等.昆仑山脉和喀喇昆仑山脉地区的地壳上地幔电性结构特征.地球物理学报,1994,37(2):193~199
    [145]张胜业,魏胜,王家映,张先觉.西藏羌塘盆地大地电磁测深研究.地球科学—中国地质大学学报, 1996,21(2):198~202
    [146]马晓冰,孔祥儒,于晟.青藏高原西部大地电磁测深探测结果.科学通报,1997,42(11):1185~1187
    [147]马晓冰.青藏高原东部电性结构特征及地球动力学意义.中国科学院研究生院博士学位论文.2004
    [148]Chen L S,Booker J R,Jones A G,et al..Electically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying[J].Science,1996,274:1694~1696
    [149]Wei W. B.,Unsworth M J.,Jones A..et al..Detection of widespread fluids in the Tibet crust by magnetotellurlc studys[J].Science,2001,292:716~718
    [150]Shenghui Li,Martyn J.Unsworth,John R.Booker,et al.Partial melt or aqueous fluid in the mid~crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data.Geophys.J.Ini,2003,153:289~304
    [151]Unsworth M.,W. Wei,A. G. Jones,S. Li,P. Bedrosian,J. Booker,S. Jin,M. Deng,H. Tan.Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data.J.Geophys.Res.,2004,109,B02403,doi:10.1029/2002JB002305
    [152]魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨—据INDEPTH~MT研究结果.现代地质,1997,11(3):379~386
    [153]谭捍东,魏文博,Martyn Unsworth,等.西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究。地球物理学报,2004,47(4):685~690
    [154]高锐.碰撞构造:喜马拉雅-青藏高原隆起的时间与过程-第19届喜马拉雅-喀喇昆仑-西藏国际讨论会一瞥.地质通报,2004,23(10):1055~1056
    [155]高锐,黄东定,卢德源,等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报,2000,45(17):1874~1879
    [156]马宗晋,杜品仁.现今地壳运动问题(4).地质出版社.1995
    [157]马宗晋,张家声,汪一鹏.青藏高原地壳结构和新构造运动的东西差异.马宗晋,汪一鹏,张燕平主编:青藏高原岩石圈现今变动与动力学.北京:地震出版社.2001,75~87
    [158]曾融生,孙为国,毛桐恩,等.中国大陆莫霍界面深度图.地震学报,1995,17(3):322~327
    [159]邓起东,张培震,冉勇康等.中国活动构造基本特征.中国科学(D辑),2002,32(12):1020~1030
    [160]张培震,邓起东,张国民等.中国大陆的强震活动与活动地块.中国科学(D辑),2003,33:12~19
    [161]沈正康,王敏,甘卫军,张祖胜.中国大陆现今构造应变率场及其动力学成因研究.地学前缘(中国地质大学,北京),2003,10(Suppl):93~100
    [162]王敏,沈正康,牛之俊,等.现今中国大陆地壳运动与活动块体模型。中国科学(D辑),2003,33(B04):21~32
    [163]Gu G X,Lin T.and Shi Z.Catalogue of Chinese Earthquakes (1831 BC~1969 AD),Science Press, Beijing,1989
    [164]徐锡伟,于贵华,马文涛,等.中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵.地学前缘,2003,10(特刊):160~167
    [165]Deng Q D,et al..Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China,and the surface rupture of the 1920 Haiyuan earthquake,in Earthquake Source Mechanics, Geophys.Monogr.Ser.,edited by S.Das et al.AGU,Washington, D.C.1986,37:169~182
    [166]刘和甫,汪泽成,熊保贤,李永林,刘立群,张建珍.中国中西部中、新生代前陆盆地与挤压造山带耦合分析.地学前缘(中国地质大学,北京),2000,7(3):55~72
    [167]邓起东,张维歧,汪一鹏等.海原断裂带和1920年海原地震断层的基本特征及其形成机制.现代地壳运动研究(3).北京:地震出版社.1987,9~25
    [168]邓起东,张维歧,张培震,等.海原走滑断裂带及其尾端挤压构造.地震地质,1989,11(1):1~14
    [169]国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.北京:地震出版社,1990
    [170]冉勇康,段瑞涛,邓起东,等.海原断裂高弯子地点三维探槽的开挖与古地震研究.地震地质,1997,19(2):97~l07
    [171]田勤俭,申旭辉,丁国瑜,等.海原断裂带内第三纪老龙湾拉分盆地的地质特征.地震地质,1998, 22(3):329~336
    [172]田勤俭,丁国瑜,申旭辉,等.拉分盆地与海原断裂带新生代水平位移规模.中国地震,2001,17(2):167~175
    [173]闵伟.香山-天景山断裂带的构造演化及走滑断层尾端挤压构造的形成机制.国家地震局地质研究所硕士论文,1988
    [174]汪一鹏,宋方敏,李志义,尤惠川,安平.宁夏香山-天景山断裂带晚第四纪强震重复间隔的研究.中国地震,1990,6(2):15~24
    [175]闵伟,张培震,邓起东.中卫—同心断裂带全新世古地震研究.地震地质,2001,23(3):357~366
    [176]闵伟,蔡炽章,王萍,杨平.罗山东簏断裂的几何学特征及全新世滑动速率.中国地震,1992,8(4):48~54
    [177]袁道阳,刘百篪,张培震,等.兰州庄浪河断裂带的新构造变形与地震活动.地震学报,2002,24(4):441~444
    [178]袁道阳,张培震,刘小龙,等.青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制.地学前缘(中国地质大学,北京).2004,11(4):393~402
    [179]王志才.青藏高原东北缘新生代以来的构造变形特征与时空演化:以陇西-武山地区为例.中国地震局地质研究所博士论文.2004
    [180]李传友.青藏高原东北部几条主要断裂带的定量研究.中国地震局地质研究所博士论文.2005
    [181]宋方敏,袁道阳,陈桂华,程建武,张兰凤,何文贵,葛伟鹏,苏鹤军,陆斌.甘肃马衔山北缘断裂西北段几何结构及其新活动.地震地质,2006,28(4):548~559
    [182]国家地震局地质研究所,国家地震局兰州地震研究所,祁连山—河西走廊活动断裂系.北京:地震出版社,1993,175~180
    [183]Gaudemer Y,Tapponnier P,et al.Partitioning of crustal slip between linked,active faults in the eastern Qilianshan,and evidence for a major seismic gap,the‘Tianzhu Gap’,on the western Haiyuan fault,Gansu (China).Geophys.J.int.,1995,120:599~645
    [184]Meyer B,Tapponnier P,Bourjot L,et al.Crustal thickening in Gansu~Qinghai,lithospheric mantle subduction,and oblique,strike slip controlled growth of the Tibet Plateau.Geophysical Journal International,1998,135:1~47
    [185]陈文彬.河西走廊及邻近地区最新构造变形基本特征及构造成因分析.中国地震局地质研究所博士论文.2003
    [186]侯康明,邓起东,刘百篪.对古浪8级大震孕育和发生的构造环境及发震模型的讨论.中国地震,1999,15(4):339~348
    [187]田勤俭,丁国瑜.青藏高原东北隅似三联点构造特征.中国地震,1998,14(4):27~35
    [188]郑文俊,袁道阳,张冬丽,等.1927年古浪8级地震的破裂习性及破裂机制的数值模拟.中国地震,2004,20(4):353~363
    [189]傅征祥,刘桂萍,陈棋福.青藏高原北缘海原、古浪、昌马大地震间相互作用的动力学分析.地震地质,2001,23 (1):35~42
    [190]陈志泰,腾瑞增,吕田保,张维歧,李孟銮.海原大震与断裂活动.北京:地震出版社,中国活动断裂,1982,206~211
    [191]闵伟,张培震,邓起东.海原活动断裂带破裂行为特征研究.地质论评,2001,47(1):75~81
    [192]张培震,闵伟,邓起东,毛凤英.海原活动断裂带的古地震与强震复发规律.中国科学,2003,33(8):705~713
    [193]国家地震局鄂尔多斯周缘活动断裂系课题组.鄂尔多斯周缘活动断裂系[M].北京:地震出版社.1998
    [194]邓起东,程绍平,闵伟,杨桂枝,任殿卫.鄂尔多斯块体新生代构造活动和动力学的讨论.地质力学学报,1999,5(3):13~21
    [195]李建华,申旭辉.青藏高原东北隅弧束断裂与南鄂尔多斯环形构造.地震地质,2001,13(1):116~121
    [196]张进,马宗晋,任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制.地质学报,2004,78(5):600~611
    [197]汤锡元,郭忠铭,王定一.鄂尔多斯盆地西部逆冲推覆构造带特征及其演化与油气勘探.石油与天然气地质,1988,9(1):1~10
    [198]杨俊杰,赵重远.鄂尔多斯盆地西缘掩冲带构造与油气.兰州:甘肃科学技术出版社,1990,20~95
    [199]刘少峰,杨士恭.鄂尔多斯盆地西缘南北差异及其形成机制.地质科学,1997,32(3):397~408
    [200]杨福忠,胡社荣.六盘山盆地中、新生代构造演化和油气勘探.新疆石油地质,2001,22(3):192~195
    [201]李定方.六盘山盆地石油地质特征与勘探方向.新疆石油地质,2001,22(1):27~31
    [202]李吉均,方小敏,朱俊杰,等.临夏盆地新生代地层古地磁年代与模式序列.见:青藏项目专家委员会编,青藏高原形成演化、环境变迁与生态系统研究学术论文年刊.1994,北京:科学出版社,41~54
    [203]陈杰,卢演俦.中国西部前陆盆地生长不整合、生长地层与构造变形.卢演俦,高维明等主编:新构造环境.北京:地震出版社,2001,407~421
    [204]申旭辉,田勤俭,丁国瑜,等.宁夏贺家口子地区晚新生代地层序列及其构造意义.中国地震,17(2):156~166
    [205]方小敏,宋春晖,高军平,等.青藏高原东北缘晚新生代哺乳动物化石磁性地层学.科学通报,2003,47(23):1824~1828
    [206]郑德文,张培震,万景林,等.青藏高原东北缘晚新生代构造变形的时序-临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D辑),2003,33(增刊):190~198
    [207]郑德文,张培震,万景林,等.六盘山盆地热历史的裂变径迹证据.地球物理学报,2005,48(1):157~164
    [208]Zheng D W,Zhang P Z,Wan J L,et al.. Rapid exhumation at~8 Ma on the Liupan San thrust fault from apatite fission~track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters,2006,248:183~193
    [209]李吉均,方小敏.青藏高原隆起和环境变化研究.科学通报,1998,43(15):1569~1574
    [210]方小敏和李吉均.3.4百万年来青藏高原隆升的阶段性与环境变化.施雅风、李吉均和李炳元主编:青藏高原晚新生代隆升和环境变化.1998,广州:广东科技出版社,391~414
    [211]李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381~391
    [212]甘卫军,程朋根,周德敏唐方头,李金平.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析.地震地质,2005,27( 2):177~187
    [213]张元生,李清河,盛国英,等.河西走廊中部地壳三维速度结构.石特临等编《河西祁连山中段地震危险基础研究》.北京:地震出版社,1990,159~169
    [214]林中洋,蔡文伯,陈学波,等.青海门源至福建宁德地学断面.北京:地震出版社,1992,30~35
    [215]孙武城,徐杰,杨主恩,等.上海奉贤至内蒙古阿拉善左旗地学断面.北京:地震出版社,1992,32~33
    [216]闵祥仪,周民都,郭建康,等.灵台-阿木去乎剖面地壳速度结构.西北地震学报,1991,13(增刊):29~36
    [217]李清河,郭建康,周民都,等.成县-西吉剖面地壳速度结构.西北地震学报,1991,13(增刊):37~43
    [218]王椿镛,林中洋,陈学波.青海门源-福建宁德地学断面综合地球物理研究.地球物理学报,1995,38(5):590~598
    [219]李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造.北京:地震出版社,1999
    [220]周民都,吕太乙,张元生等.青藏高原东北缘地质构造背景及地壳结构研究.地震学报,2000,22(6):645~653
    [221]屈健鹏.鄂尔多斯块体西缘及西南缘深部电性结构与该区地质构造的关系.内陆地震,1998,12(4):312~319
    [222]张云琳,刘晓玲,安海静,等.祁连山中段深部电性结构及潜在震源危险区的研究.中国地震,1994,10(1):62~71
    [223]郭守年。南北地震带北段地壳上地幔电性结构及有关资料问题的讨论。西北地震学报,1999,21(3):285-295
    [224]杨长福,林长佑,王书明,陈军营.兰州地区深部电性结构的初步研究。地震研究,26 (4):350-354
    [225]殷秀华,黎益仕,刘占坡.南北构造带北段重磁异常的对应分析.地震地质,1999,21(4):370~376
    [226]祝意青,李辉,朱桂芝,等.青藏块体东北缘重力场演化与地震活动.地震学报,2004,26(增刊):71~78
    [227]江为为,郝天珧,宋海斌.鄂尔多斯盆地地质地球物理场特征与地壳结构.地球物理学进展,2000,15(3):45~52
    [228]王椿镛,吴建平,楼海,等.川西藏东地区的地壳P波速度结构.中国科学(D),2003,33(增刊):181~189
    [229]王椿镛,吴建平,楼海,等.青藏高原东部壳幔速度结构和地幔变形场的研究.地学前缘,2006,13(5):349~359
    [230]Wang C Y,Han W B,Wu J P, et al..Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications.J Geophys Res,2007,112(B07307),doi:10.1029/2005JB003873
    [231] Huang J,Zhao D,Zheng S.Lithosphefic structure and its relationship to seismic and volcanic activity in south—west China.J Geophys Res,2002,107(B10):5423~5453
    [232]孙洁,晋光文,白登海,等.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学(D),2003,33(增刊):173~180
    [233]李松林,张先康,张成科,等.玛沁-兰州-靖边地震测深剖面地壳速度结构的初步研究.地球物理学报,2002,45(2):210~217
    [234]刘宝峰,李松林,张先康,等.玛沁—靖边剖面S波资料研究与探讨.地震学报,2003,25(1): 82~88
    [235]郭飚,刘启元,陈九辉,赵大鹏,李顺成,赖院根.青藏高原东北缘-鄂尔多斯地壳上地幔地震层析成像研究.地球物理学报,2004,47(5):790~797
    [236]陈九辉,刘启元,李顺成,郭飚,赖院根.青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报,2005,48(2):333~342
    [237]赵国泽,汤吉,詹艳,陈小斌,卓贤军,王继军,宣飞,邓前辉,赵俊猛.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学(D辑),2004,43(6):908~918
    [238]汤吉,詹艳,赵国泽,邓前辉,王继军,陈小斌,赵俊猛,宣飞.青藏高原东北缘玛沁-兰州-靖边剖面地壳上地幔电性结构研究.地球物理学报,2005,48(5):1205~1216
    [239]李松林,张先康,张成科,等.海原8.5级大震区地壳结构探测研究.中国地震,2001,17(1):16~23
    [240]李松林,张先康,任青芳,等.西吉-中卫地震测深剖面及其解释.地震地质,2001,23(1):86~92
    [241]樊计昌,李松林,张先康,等.海原断裂在地壳深处的几何形态及其动力学意义.地震学报,2004,26(增刊):42~49
    [242]詹艳,赵国泽,王继军,汤吉,陈小斌,邓前辉,宣飞,赵俊猛.青藏高原东北缘海原弧形构造区地壳电性结构探测研究.地震学报,2005,4(27):431~440
    [243]詹艳,赵国泽,陈小斌,汤吉,王继军,邓前辉.宁夏海原大震区西安州—韦州剖面大地电磁探测与研究.地球物理学报,2004,47(2):274~281
    [244]许忠淮,汪素云,裴顺平.青藏高原东北缘地区Pn波速度的横向变化.地震学报,2003,25(1):24~31
    [245]Cantwell,T. and Madden,T.R.Preliminary report on crustal magnetotelluric measurements.Journal of Geophysics Research, 1960,65:4202~4205
    [246]Bostick,F.X.and Smith,H.W.Investigation of large-scale inhomogenities in the earth by the magnetotelluric method. Proceedings of the IRE ( IEEE ),1962,50,2339~2346
    [247]Swift,C.M.A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States,1962,Ph.d Thesis
    [248]Uyeshima, M..Application of Network MT method to the study of electrical conductivity structure in the central and eastern part of Hokkaido,D.Sc Thesis,niv. Tokyo,1990
    [249]Uyeshima, M.,M. Ichiki,I. Fujii, H.,Utada, et al.Network-MT survey in Japan to determine nation-widedeep electrical conductivity structure,International workshop on the seismotectonics at the subduction zone,Tsukuba,Japan,1999
    [250]赵国泽,汤吉,等.用大地电磁网在长春等地探测上地幔电导率结构.地震地质,2001,23(2):143~152
    [251]魏文博,邓明,谭捍东,金胜.我国海底大地电磁探测技术研究的进展,地震地质,2001,23(2):131~137
    [252]邓明,魏文博,邓靖武,李立学.海底天然大地电磁场的探测.测控技术,2003,2(1):5~8
    [253]Bostick, F.X. Electromagnetic array profiling(EMAP).Abxtracts of papers presented at the 56th Annual International SEG Meeting.Geophys.,1987,52:60~61
    [254]Gamble, T. D., Goubau, W.M. and Clarke, J.Magnetotelluric with a remote magnetic reference.Geophys.,1979a,44:53~68
    [255]Gamble, T.D.,Goubau W.M. and Clarke, J..Error analysis for remote reference magnetotelluric.Geophys.,1979b,44:959~968
    [256]Egbert,GD and Booker, J.R..Robust estimation of geomagnetic transfer functions. Geophys. J. R. Astr. Soc., 1986,87:173~194
    [257]Chave, A.D,Thomson, D.J. and Ander, M.E. On the robust estimation of power spectra, coherence, and transfer function.J.Geophys.Res.,1987,92:633~648
    [258]Larsen, J.C. . Transfer function : smooth robust estimates by least-squares and remote reference methods.Geophys. J. Int.,1989,99:645~663
    [259]Larsen, J.C..Mackie, R. L., Manzella, A., Fiordelisi, A. and Reiven, S., Robust smooth magnetotelluric transfer functions.Grophys. J. Int.,1999,124:801~819
    [260]Chave, A.D; Thomson, D.J. and Ander, M.E.On the robust estimation of power spectra, coherence, and transfer function.J. Geophys. Res.,1987,92,633~648
    [261]K. Bahr.Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion.J. Geophys.Res.,1988,62:119~127
    [262]K. Bahr.Geological noise in magnetotelluric data: a classification of distortion types.Physics of the Earth and Planetary Interiors,1991,66:24~38
    [263]Groom,R.G. and Bailey R.C.Decomposition of the magnetotelluric tensor.J.Geophys.Res.,1989,47:1204~924
    [264]Groom R.G.and Bailey R.C..Analytic investigation of the effects of near-surface 3D galvanic scatterers on MT tensor decomposistions.Geophysics,1990,56:496~518
    [265]Chave,A.D. and Smith, J.T..On electric and magnetic galvanic distortion temsor decompositions.J. Geophys. Res.,1994,99,4669~4682
    [266]赵国泽,汤吉,刘铁胜等.山西阳高-河北容城剖面大地电磁资料的初步解释-阻抗张量分解技术及其应用,地震地质,1997,18(1):66~74
    [267]胡建德,王光鄂,陈乐寿,李维敏.大地电磁二维正演计算中若干问题的讨论,石油地球物理勘探,1982,6:69~72
    [268]赵国泽,刘国栋.一种二维大地电磁反演方法.地震地质,1985,7:56~58
    [269]Weaver,J.T, LeQuang,B.V., Flscher,G. A comparison of analytical and numerical results for a two-dimensional control model in electromagnetic induction I.B-polarization calculations.Geophys. J. R.,Astron.Soc.1985,82:263-278
    [270]Weaver,J.T,LeQuang,B.V., Flscher G. A comparison analyses electrical and numerical results r a 2-D control model In electromagnetic induction一II.E-polarization calculations.Geophys.J.R. Astron.Soc.1986,87:917~948
    [271]C. DeGroot-Hedlin and S. Constable.Occam’s inversion to generate smooth, two-dimensional modes from magnetotelluric data.Geophysics,1990,55((12):1613~1624
    [272]DeGroot-Hedlin, C. and Constable, S.C..Inversion of magnetotelluric data for 2D structure with sharp resistivity contrasts.Geophysics,2004,69(1):78~86
    [273]Smith, J.T.,and J.R. Booker.Rapid inversion of two- and three-dimensional magnetotelluric data.J. Geophys, Res,1991,96:3905~3922
    [274]Wu,N. , Booker,J.R and Smith , J . T . Rapid two-dimensional inversion of COPROD2 data.J.Geomag.Geoelectr,1993,45:1073~1087
    [275]Rodi. W and Mackie. R.L..Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics,2001,66(1):174~187
    [276]Weerachai Siripunvaraporn , Gary Egbert . An efficient data-subspace inversion method for 2-D magnetotelluric data.Geophysics,2000,65(3):791~803
    [277]T. Uchida.Smooth 2-D inversion for Magnetotelluric data based on statistical criterion ABIC.J. Geomag. Geoelectr.,1993,45:841~858
    [278]魏胜,王家映.二维大地电磁资料偏移.地球物理学报,1993,36(2):256~262
    [279]师学明.二维大地电磁拟波动方程反演法研究,2000,中国地质大学博士论文
    [280]Wannamaker,P E.Advances in 3D magnetotelluric modeling using Integral equations,Geophysics,1991, 56:1716~1728
    [281]Smith,J T .Conservative modeling of 3-D electromagnetic fields,Part I:Properties and error analysis.Geophysics,1996a,61:1308~1318
    [282]Smith,J T.Conservative modeling of 3-D electromagnetic fields, Part II:Biconjugate gradient solution and an accelerator.Geophysics,1996b,61:1319~1324
    [283]Mackie,R. L.,Smith,J. T.,Madden,T R .Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example.Radio Sci.,1994,29:923~935
    [284]Pu,X.H.,Agarwal, A.K., and Weaver, J. T..Magnetic field solutions of E-polarization induction problems.J. Geomagn. Geoelectr.,1993,45:859~872
    [285]Mackie , R L and Madden , T R . Three-dimensional magnetotelluric inversion using conjugate gradient.Geophys. J. Internat.,1993,115:215~229
    [286]谭捍东.大地电磁三维快速松弛反演.2000,中国地质大学(北京)博士论文
    [287]Siripunvaraporn, W., G. Egbert, Y. Lenbury, and M. Uyeshima.Three dimensional magnetotelluric inversion: Data space method.Phys. Earth Planet. Inter.,2005,150:3~14
    [288]石应俊,大地电磁测深法教程.北京:地震出版社,1985
    [289]陈乐寿,刘国栋主编.大地电磁测深研究.北京:地震出版社.1985
    [290]考夫曼AA,凯勒G V著。大地电磁测深法.刘国栋、赵国泽等译朱佐全校.北京:地震出版社,1990
    [291]王家映.石油电法勘探.石油工业出版社.1992
    [292]Parkinson W D.Direction of rapid geomagnetic fluctuations.Geophys. J.,1959,2:1~14
    [293]Parkinson W D.The influence pf continents and oceans on geomagnetic variations.Geophys. J., 1962,6:441~449
    [294]Parkinson W D.Conductivity anomalies in Australia and the ocean effect.J. Geomag. Geoelectr,1964,15:222~226
    [295]Schmucker U.Anomalies of geomagnetic variations in the southwestern United States. California:University of California Press,1970
    [296]Kaufman,A.A..Tutorial:Distribution of alternating electrical charges in a conducting medium.Geophysics Prosp.,1985,33:171~184
    [297]Ogawa.Y..On two-dimensional modeling of Magnetotellutic field data.Surveys in Geophysics,2002,23:251~272
    [298]Berdichevsky M N,Vanyan, L.L., et al..Geoelectric model of the Baikal region.Phys. Earth Planet. Int.,1980,22:1~11
    [299]DeGroot-Hedlin C..Removal static shift in two dimensions by regularized inversion.Geophysics,1991,56(12):2102~2106
    [300]Ogawa. Y. and Uchida T.A two-dimensional magnetotelluric inversion assuming gaussian static shift. Geophys. J. Int.,1996,126:69~76
    [301]Wu N . Booker J . R , andSmith , J T . Rapid two-dimensional inversion of COPROD2 data.J.Geomag.Geoelectr,1993,45:1073~1087
    [302]Alan G.Jones.Static shift of magnetotelluric data and its removal in a sedimentary basin environment.1988,53:967~978
    [303]大庆石油管理局地球物理勘探公司,国家地震局地质研究所.《松辽盆地北部北安—拜泉地区北部大地电磁测深勘探研究成果报告》,1990
    [304]Meju . Joint inversion of TEM and distorted MT soundings : Some effective practical considerations.Geophysics,1996,61:158~163
    [305]Denghai Bai,Maxwell A. Meju,and Zhijie Liao.Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, sothern China.Geophys. J. Ini.,2001,47:677~687
    [306]肖骑彬.大地电磁测深反演方法对比与可视化及应用研究.中国科学院研究生院博士学位论文,2004
    [307]青海省地质局区域地质测量队.中华人民共和国地质图1:100万玉树幅地质图.1970
    [308]地质部地质研究所.中华人民共和国地质图1:100万兰州幅地质图.1964
    [309]地质部地质研究所.中华人民共和国地质图1:100万宝鸡幅地质图.1964
    [310]地质部地质研究所队.中华人民共和国地质图1:100万太原幅地质图.1964
    [311]陈小斌,赵国泽,詹艳.MT资料处理与解释的Windows可视化集成系统.石油地球物理勘探,2004,39(sup):11~16
    [312]陈小斌,赵国泽,詹艳,等.磁倾子矢量的图示分析及其应用研究.地学前缘,2004,11(4):626~636
    [313]地矿部第一综合物探大队.胜利油田宁夏中卫地区电法(MT)勘探成果报告.2004
    [314]胥颐,刘福田,刘建华,等.天山地震带的地壳结构与强震构造环境,地球物理学报,2000.43(2):184~191
    [315]马杏垣主编.中国及邻区海域岩石圈动力学图.北京:地质出版社,1986 [316 ]张培震,王琪.中国大陆现今地壳运动和构造变形.见:马宗晋,王一鹏,张燕平,主编.青藏高原岩石圈现今变动与动力学.北京:地震出版社,2001,21~35
    [317]中国地震局地质研究所.中国大陆新生代构造变形格局与重力场分区特征的关系,1999年
    [318]邓起东,冉勇康,杨晓平,等.中国活动构造图(1/4000000).北京:地震出版社,2007
    [317]马宗晋.地震与断裂关系的讨论.北京:地震出版社,中国活动断裂,1982,14~18
    [318]邓起东.活动断裂带研究的进展和方向.北京:地震出版社,活动断裂研究,1991,1~6
    [320]邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学(D辑),2002,32(12):1020~1030
    [321]邓起东,张培震,冉勇康,等.中国活动构造与地震活动.地学前缘,2003,10(特刊):66~73
    [322]徐锡伟.活动断层、地震灾害与减灾对策问题.震灾防御技术,2006,1(1):7~14
    [323]徐锡伟,于贵华,马文涛等.活断层地震地表破裂“避让带”宽度确定依据与方法.地震地质,2002,24(4):471~483
    [324]韩竹军,谢富仁,万永革.断层间相互作用与地震触发机制的研究进展.中国地震,2003,l9(1):67~76
    [325]马瑾,马胜利,刘力强,邓志辉,马文涛,刘天昌.断层几何结构与物理场的演化及失稳特征.地震学报,1996,18(2):200~207
    [326]马胜利,刘力强,马瑾,巴晶,王凯英,扈小燕.基于实验结果讨论断层破裂与强震物理过程的若干问题。地学前缘(中国地质大学,北京),2003,10(Suppl):226~232
    [327]张进.陕甘宁地区古生代以来的构造演化特征研究.中国地震局地质研究所博士论文,2002
    [328]Skippen G,Studies of fluids in the crust.Logan Club seninar,Geol Surv Can,Ottawa,1988
    [329]梁恕信.大地热流.见:林中洋,等主编:青海宁远至福建宁德学断面(B),北京:地震出版社,1991,15~18
    [330]Wickham S M,Taylor H P J.Stable isotope constrains on the origin and depth of penetration of hydrothermal fluids associated with Hercynian regional metomorphism and crustal anatexis in the Pyrenees.Contrib Minaeral Petrol,1987,95:255~268
    [331]Rumble D.Evidences for fluid flow during regional metamorphism.Eur J Mineral,1989,1:731~737
    [332]Rumble D,Duke E F,and Hoering T C. Hydrothermal graphite in New Hampshire: evidence for carbon mobility during regional metamorphism.Geology,1986,14:452~455
    [333]Frey M,Bucher K,Frank E,et al.Alpine metomophism along the Geotraverse Basel-Chiasso-a review.Eclogae Geol Helv,1980,73:527~546
    [334]Touret J.Fluid distribution in the continental lithosphere.In: Kroner A,(ed): Proterozoic Lithospheric evolution.Am Geophys Union,Geodynamics Series,1987,17:27~33
    [335]Frost B R,Fyfe W S,Tazaki K,et al.Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust.Nature,1989,340:134~136
    [336]Bailey R C.Trapping of acqueous fluids in the deep crust.Geophys Res Lett,1990,17:1129~1132
    [337]Haak V,Hutton V R S.Electrical resistivity in continental lower crust.In:Dawson J B, Carswell D A, Hall J,Eds.The nature of the lower continental crust.Geol Soc London, Spec Publ,1986,24:35~49
    [338]Gough D I.Seismic reflectors,conductivity,water and stress in the continental crust.Nature,1986,323:143~144
    [339]McCaig A M.Fluid flow through fault zones. Nature,1989,34:600
    [340]Etheridge M A,Wall V J, Vernon R H.The role of the fluid phase during regional metomorphism and deformation.J Metamorph Geol,1983,1:205~226
    [341]Torgersen T. Terrestrial helium degassing fluxes and the atmospheric helium budget:Implications with respect to the degassing processes of continental crust.Chem Geol (Isotope Geosci Section),1989,79:1~14
    [342]McCaig A M.Deep fluid circulation in fault zones.Geology,1988,16:867~870
    [343]陶玮,沈正康,万永革,单新建,马超.根据2001年Mw7.8可可西里强震InSAR同震测量结果反演东昆仑断裂两侧地壳弹性介质差异.地球物理学报,2007,50(3):744~751
    [344]张培震,沈正康,王敏,甘卫军.青藏高原及周边现今构造变形的运动学.地震地质,2004,26(3):367~377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700