用户名: 密码: 验证码:
变形镁合金电磁搅拌悬浮铸造与合金强化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据镁合金研究的现状及存在的不足,以高性能变形镁合金材料作为研究方向,将新型铸造技术——电磁搅拌、悬浮铸造应用到高性能变形镁合金的制备中,形成一种高效、无污染的镁合金熔体处理、组织细化技术,以提高合金的力学性能,从而促进镁合金在工业中的应用。
     自行设计了电磁搅拌—悬浮铸造装置,以悬浮剂和添加合金元素种类及剂量的变化对变形镁合金影响为主要研究内容,以具有代表性的Mg-Al-Zn系AZ31、AZ61合金为基,对变形镁合金材料的合金成分—组织结构—性能变化—材料应用之间的相互关系和作用规律进行了系统的研究。
     电磁搅拌—悬浮铸造实验结果表明:电磁搅拌—悬浮铸造技术可以细化金属镁及镁合金的显微组织,减小合金的晶粒尺寸;提高合金的抗拉强度和伸长率;减少合金中的显微缩松和气孔,提高合金的致密度,这些结果有利于改善镁合金的后续加工性能。
     CaC_2颗粒悬浮剂的加入显著的改变了金属镁的晶粒尺寸,晶粒大小从纯镁的2350μm减小到CaC_2加入量为0.26%时的125μm。CaC_2添加到AZ31、AZ61镁合金中,改善了合金的显微组织,晶粒细化效果明显,同时合金的抗拉强度和伸长率都得到提高。当CaC_2添加量为0.15%时,AZ31合金的晶粒最细小,抗拉强度和伸长率达到最大值(σb:195.3MPa,δ:12.9%),分别比金属型铸造AZ31镁合金提高了18.72%和48.28%;当CaC_2添加量为0.36%时,AZ61合金的晶粒最细小,抗拉强度和伸长率达到最大值(σb:211.36MPa,δ:8.5%),分别比金属型铸造AZ61合金提高了约24.2%和46.6%。
     Zr在含Al镁合金中会引起元素“中毒”现象的发生而使合金的性能急剧下降,但Zr是无Al镁合金的通用细化剂,Zr与Mg有共格关系(都是密排六方结构,有相似的晶格常数),可以作为镁合金的异质形核核心。考虑到以上因素,采用电磁搅拌—悬浮铸造技术,成功制备出Zr颗粒悬浮剂细化AZ31、AZ61变形镁合金。适量的Zr颗粒悬浮剂在镁合金中主要以固溶原子和颗粒相存在,颗粒相尺寸在10μm以下,合金凝固时作为α-Mg晶粒的形核衬底,细化了含Al镁合金的显微组织,提高其力学性能。但是过量的Zr将与合金中的Al反应生成Al_3Zr沉淀相,消耗了合金中的Al元素,减弱了Al对镁合金的细化、强化作用,而且由于Al_3Zr与镁基体没有共格关系,不能起到细化晶粒的作用,合金组织粗化。因此,控制合金中Zr悬浮剂的加入量是十分重要的,Zr的添加量为0.07wt.%左右为宜。
     利用电磁搅拌技术,制备了稀土Er增强AZ31、AZ61变形镁合金,研究了稀土Er对AZ系变形镁合金组织和性能的影响,结果表明:少量的稀土Er对镁合金有显著的细化效果,合金组织均匀,等轴晶趋势明显,晶粒尺寸减小,力学性能提高;过量的稀土Er会使AZ系变形镁合金的铸态树枝晶急剧长大,晶粒粗化十分严重,导致合金力学性能下降。观察到少量的稀土Er在镁合金中以固溶原子的形式存在,过量的Er与合金中的Al反应的生成Al_2Er相,消耗了合金中的Al,削弱了Al对镁合金的强化作用。并且,Al_2Er是面心立方结构,晶体结构与Mg不同,既不能起到异质形核核心作用,又不能阻碍镁合金晶粒的长大,且由于Al_2Er和Mg基体的凝固收缩率不同而促进裂纹的萌发,导致镁合金力学性能的下降。研究分析结果表明,合金中Er含量为0.03—0.05wt.%是适宜的。
     采用动态墩粗极限变形试验,研究了电磁连铸镁合金的铸造、挤压、挤压+锻造+轧制状态和电磁搅拌—悬浮铸造及微合金化镁合金的极限变形程度和热变形行为,为镁合金热加工成形工艺的制定、推广提供依据。镁合金在动态墩粗变形过程中,由于应变速率高,发生了以孪生变形为基础的动态再结晶,动态再结晶晶粒以孪晶界为界形核、长大。墩粗变形量的增加,引起再结晶晶粒形核数量的上升,合金中的孪晶组织和大晶粒减少,再结晶晶粒数量增多,合金的晶粒逐渐细化。
     动态墩粗极限变形试验结果表明,电磁连铸铸态下AZ31镁合金在380—430℃时具有较好的塑性成型性能,锻造最大变形量为40%,挤压工艺可以使合金的锻造温度范围扩大到350℃—450℃之间,使合金在较低的温度下就可以得到较大的变形;电磁连铸AZ61镁合金锻造最大变形量为30%时,锻造温度范围为315℃—370℃之间,挤压工艺可以使合金的最大变形量加大到40%,使合金在锻造温度基本不变的情况下,得到了较大的变形。金属型铸造AZ31镁合金的最佳锻造温度在380℃—410℃之间,锻造最大变形量小于40%。金属型铸造AZ61镁合金的最佳锻造温度在300℃—350℃,最大变形量为30%。电磁搅拌—悬浮铸造技术可以改善合金的塑性变形性能,提高合金的最大变形量,扩大变形温度。悬浮剂Zr和稀土Er的加入可以提高AZ31、AZ61合金的锻造变形量,并且使变形温度范围扩大到300℃—410℃。
According to the research status and insufficient of magnesium alloy,research works of this thesis aim at high performance wrought magnesium,and mainly focus on the effects of electromagnetic suspension casting(combines the virtues of the electromagnetic stirring and the suspension casting,ESC) and alloy strengthening on it.The formation of an efficient, pollution-free grain refinement of magnesium alloy melt processing techniques to improve the mechanical properties of the alloy,thereby contributing to magnesium alloy in the Industry.
     Electromagnetic Suspension Casting device is designed and set-up based on the principle of electromagnetic stirring and the suspension casting.The effects of suspension particles on typical wrought magnesium alloys,such as AZ31 and AZ61 alloy are investigated systematically for the relationship of their chemical composition,microstructures,mechanical properties and their applications.
     The results show that ESC technique has been efficient in refining the microstructure and intensify the tensile properties characterization of magnesium alloys.The increase of the relative density of alloys caused by the reduction of micro porosity and gas cavity by ESC has advantage in improvement magnesium alloy following workability.
     The results indicated that proper additions of CaC_2 particulates concentration were found to be efficient in refining the microstructure of magnesium materials.0.26wt.%CaC_2 addition reduced the mean grain size of pure magnesium 2350μm to 125μm。With the CaC_2 addition AZ31 and AZ61 alloy,the microstructures have significant improvement,the grain refinement and the ultimate tensile strength and relative elongation increase remarkable.The 0.15wt.%and 0.36wt.%CaC_2 addition refines the grains and improves tensile properties of AZ31 and AZ61 alloy most effective,respectively.The ultimate tensile strength is 195.3MPa, elongation is 12.9%of AZ31 alloy,which increased by 18.72%and 48.28%respectively compared to the die-casting AZ31 alloy.The ultimate tensile strength is 211.36MPa, elongation is 8.5%of AZ61 alloy,which increased by 24.2%and 46.6%respectively compared to the die-casting AZ61 alloy.
     Zr can be added to magnesium alloy not containing Al for grain refinement because of hypothesis relates to the lattice disregistry between Zr and Mg.Considering the Al element interferes with the grain refinement process by the Zr,the ESC technique has been used for casting.The Zr particles refined AZ31 and AZ61 magnesium alloy have been successfully fabricated by ESC technique.Appropriate amount of Zr are mainly dissolved inα-Mg or exist in the form of particles,and the size of Zr particles is less than 10μm.It is believed that Zr particles or elemental in solid solution may be a powerful nucleant of magnesium because of similarity in the lattice parameters,therefore providing efficient nucleation,improving mechnical properties.However,more amount of Zr can react with Al to Al3Zr,which weaken the strengthening effect of Al to magnesium alloy.Moreover,Al3Zr can not play the role of grain refinement due to no lattice match with magnesium.The grain of alloys coarsens with the more Zr addition.Consequently,it is allimportant of controlling the amount of Zr addition. The adding amount of Zr of about 0.07wt.%is appropriate.
     The effects of small amounts of rare-earth element Erbium on the microstructure and the mechanical properties of AZ31 and AZ61 magnesium alloy via the electromagnetic stirring(EMS) process have been studied.The results show that small amount of Er addition obviously refine the grain size,make alloy microstructure homogeneous,increase the rate of equiaxed grains,and improve the mechanical properties.More addition of Er obviously decrease mechanical properties of AZ31 based alloy because of the grain coarsening. Observed a small amount of rare earth Er in magnesium alloy to form solid solution atoms,an excessive amount of Er and alloys in the Al reaction generates Al_2Er phase,which weaken the strengthening effect of Al to magnesium alloy.Moreover,Al_2Er phase is face centered cubic structure,which is different with the structure of Mg(Hexagonal Close-Packed).It cannot be the heterogeneous nuclei and have no effect on the grain growth.During deformation,the constituents with Er and Al will fracture first and act as the microcrack sources due to the stress concentration,which would descent the mechanical properties.Research results show that the Er content 0.03—0.05wt.%is appropriate
     The elecrtromagnetic casting(EMC) and electromagnetic Suspension Casting(ESC) magnesium alloy have been deformed by dynamic upsetting.The deformation limits and behavior of thermal deformation have been studied to provide the basis for the establishment of magnesium alloy hot-working forming crafts formulation.Due to the high strain rate, magnesium alloy deformation occur the dynamic recrystallization based on twinning during dynamic upsetting process.The dynamic recrystallization grains take the twin boundary as in the place to nucleation and growth.Nucleation of recrystallized grains of alloy increase in the volume with the upsetting deformation increases,twin organizations and large grains decrease, recrystallized grains increased gradually refined grain alloy.
     The results of research shows that the appropriate foring deformation condition of EMC AZ31 alloy is temperature of 380℃—430℃,maximum deformation of 40%.Extrusion process can extend the EMC AZ31 alloy forging temperature range to 350℃—450℃,which make alloy get a larger deformation at lower temperatures.The appropriate foring deformation condition of as-cast EMC AZ61 is temperature of 315℃—370℃,maximum deformation of 30%.Extrusion process extend the EMC AZ61 alloy forging maximum deformation to 40%,which make the alloys have a relatively large deformation while the forging temperature is essentially the same circumstances.The appropriate deformation condition of permanent mould casting AZ31 and AZ61 alloy is temperature of 380℃—410℃and 300℃C—350℃,respectively,maximum deformation of 40%and 30%,respectively. ESC technology can improve the plastic properties of alloys to enhance the maximum deformation of alloy,expand deformation temperature range.The maximum deformation of can be improved and the forging deformation temperatures range can be extend to 300℃—410℃with the Zr and Er addition.
引文
[1]左铁镛.21世纪的轻质结构材料_镁及镁合金发展[J].新材料产业,2007,(12):22-25.
    [2]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [3]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004.
    [4]Hoy Petersen N.Proc.47~(th) Annual world magnesium conf.[C],International magnesium association,1990,18.
    [5]H E.Friedrich,B L.Mordike,Magnesium Technology:metallurgy,design data,applications[M],Springer Science & Business,2006.
    [6]阎启翔.镁的传奇[J].有色金属工业,2005,(5):80.
    [7]潘复生,王敬丰,章宗和,丁培道.中国镁工业发展的机遇、挑战和责任[J].中国金属通报,2008,2.
    [8]Asm International,Magnesium And Magnesium Alloy[M].OH:Metal Park,1999.1.
    [9]Polmear I J.Magnesium alloys and applications[J].Mater Sci &Tech.,1994,10:1-14.
    [10]Ku K.Magnesium Alloys and Their Applications[M].Oberursel,FRG:DGM Information sgesellschaft,1992.
    [11]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [12]B.L.Mordike,T.Ebert.Magnesium Properties-applications-Poteniial[J].Materials Science and Engineering A,2001,302:37-45.
    [13]张洪杰,孟键,唐定骤.高性能镁-稀土结构材料的研制、开发与应用[J].中国稀土学报,2004,22(1):40-47.
    [14]K.U.Kainer,magnesium alloys and technologies[M].,Wiley-VCH Verlag CmbH and Co.,KGaA,Weinheim,Germany.2003.
    [15]A.M.CAMERON,L.A.LEWIS,C.F.DRUMM.The thermodynamics and economic modelling of a novel magnesium production process[A].Proceedings of the 3rd International Magnesium Conference[C].Manchester.1996.
    [16]C.CELIK,AL.Magnola.An innovative process for magnesium production[A].Proceedings of the 3rd International Magnesium Conference[C].Manchester.1996.
    [17]阎峰云,张玉海.镁合金的发展及其应用[J].现代制造技术与装备,2007,(4):13-15.
    [18]Eliezer D,Aghion E,Froes F H.Magnesium Science,Technology and Applications[J].Advance Performance Materials,1998,(5):201-212.
    [19]刘兵.中国镁产业面临的发展机遇与挑战[J].新材料产业,2001,(11):12-14,18.
    [20]刘静安,徐河,镁合金材料的应用及其加工技术的发展[J].轻合金加工技术,2007,35:1-5,54.
    [21]张文毓.镁合金及其加工技术研究进展[J].稀有金属快报,2007,26:15-19.
    [22]王殊,师春生,赵乃勤.自行车车架材料以及镁合金的应用[J].Materials Review(材料导报),2006,20(8):87-90.
    [23]庾莉萍.我国镁金属产业前景光明[J].铝加工,2008,184:48-52.
    [24]黎文献.镁及镁合金[M].长沙,中南大学出版社.2005.
    [25]W H Rothery,G V Raynor.The Structure of Metals and Alloys[M].London:Institute of Metals,1962.
    [26]M Michael,Avedesian,H Baker.ASM Speciality Magnesium and Magnesium alloys Handbook[M].OHIO ASM International Materials Park,1999.
    [27]Luo A,Pekguleryuz M O.Casting Magnesium alloys for elevated temperature applications[J].Journal of Materials Science,1994,29(20):5259-5271.
    [28]Aune T K,Westengen H,Ruden T J.The effect of varying Aluminum and rare-earth content on the mechanical properties of die cast magnesium alloys[J].SAE Transactions:Journal of Materials &Manufacturing(USA),1994,103:553-557.
    [29]I.J.波尔米尔著.陈昌麟,皱渝译.轻合金[M].国防工业出版社,1980.
    [30]有色金属及其热处理编写组,有色金属及其热处理[M],国防工业出版社,1981.
    [31]Yousuke TAMURA.Grain refining of pure magnesium by adding Mg-Zr master alloy[J].Light Metals,1998,47(12):679-684.
    [32]约瀚丁,波克等.超细晶粒金属IM].国防工业出版社,1982.
    [33]K.H.Matucha.in:R.W.Cahn,P.Haasen,EJ.Kramer(Eds.),Material Science and Technology:A Comprehensive Treatment[M],Weinheim,New York,Wiley-VCH,1996,8.
    [34]S.F.Hassan,M.Gupta,Development of high performance magnesium nanocomposites using solidification processing route[J].Mater.Sci.Technol.,2004,20(11):1383-1388.
    [35]R.Gunther,Ch Hartig,R Bormann.Grain refinement of AZ31 by(SiC)P:Theoretical calculation and experiment[J].Acta Materialia,2006,54:5591-5597.
    [36]蔡叶,苏华钦.SiC_p/AZ80镁基复合材料的界面与断口特征[J].复合材料学报,1997,14(2):76-79.
    [37]Nieh T G,Schwartz A J,Wadsworth J.Superplasticity in a 17 vol.%SiC particulate reinforced ZK60A magnesium composite(ZK60/SiC/17p)[J].Mater Sci Eng A.,1996,A208(1):30-36.
    [38]郝元恺,姜冀湘,赵恂.碳化硼颗粒/镁合金复合材料的工艺与性能[J].复合材料学报,1995,12(4):8-11.
    [39]H.Y.Wang,Q.C.Jiang,Y.Q.Zhao,F.Zhao,B.X.Ma,Y.Wang.Fabrication of TiB2 and TiB2-TiC particulates reinforced magnesium matrix composites[J].Materials Science and Engineering A,372(2004)109-114.
    [40]Yingxin Wang,Xiaoqin Zeng,Wenjiang Diag.Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy[J].Scripta Materialia,2006,54:269-273.
    [41]H.Y.Wang,Q.C.Jiang,Y.G.Zhao,F.Zhao.In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium[j].Journal of Alloys and Compounds.2004,379:4-7.
    [42]南宏强,袁森,王武孝,王志虎.颗粒增强镁基复合材料的制备工艺研究进展[J].铸造技术,2006,27(4):404-407.
    [43]王彦,王慧远,马宝霞,姜启川.颗粒增强镁基复合材料的研究现状[J].材料科学与工艺,2006,14(6):320-325.
    [44]洪成淼,申健,陈立佳,王越,刘正.颗粒增强镁基复合材料的制备及其性能[J].汽车工艺与材料,2005,(2):7-10.
    [45]Lioyd D J.Particle reinforced aluminum and magnesium matrix composites[J].International Materials Reviews,1998,39(1):1-23.
    [46]蔡叶,苏华钦.镁基复合材料研究的回顾与展望[J].特种铸造及有色合金,1996,(3):17-19.
    [47]Chang S.Y,TEZUKA H,KAMIO A.Mechanical properties and fracture process of SiCp/Mg composites produced by squeeze and extrusion[J].Materials Transaction JIM,1997,38(1):18-27.
    [48]刘子利,沈以赴,李子全.铸造镁合金的晶粒细化技术[J].材料科学与工程学报,2004,22(1):146-139.
    [49]李宏战,夏兰廷,师素粉,镁及镁合金的晶粒细化[J].铸造设备研究,2007,5:39-42.
    [50]刘峰,冯可芹,杨屹.镁合金晶粒细化的研究现状及发展[J].铸造技术,2004,25(6):450-452.
    [51]李姗,王伯健.变形镁合金的研究与开发应用[J].材料热处理,2007,36(6):65-68.
    [52]任红涛,许春香,贾振江,吕正玲.稀土Y对AZ31镁合金金相组织和力学性能的影响[J].铸造设备研究,2007,6:15-16,29.
    [53]Aida T,Hatta H,Ramesh C.Workability and mechanical properties of lighter-than-water Mg-Li alloy[A].Proc of the 3rd Inter Magnesium Confer Manchester[C].Manchster,1996:143-153.
    [54]Haferkamp H,Niemeyer M,Boehm R.Development processing and application range of Mg-Li alloy[J].Mater Sci Forum,2000,350-351:31-42.
    [55]Kamado S,Ashie T,Ohshima Y.Tensile properties and formability of Mg-Li alloy grain-refined ECAE process[J].Mater Sci Forum,2000,350-351:55-62.
    [56]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状[J].材料工程,1996(9):3-7.
    [57]Haferkamp H,Bach F W.Product,processing and properties of Li containing magnesium alloy[A].Proc of the 3rd Inter Magnesium Confer Manchester[C].Manchester,1996:177-192.
    [58]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [59]王渠东,曾小勤,吕宜振.高温铸造镁合金的研究与应用[J].材料导报.2000,(3):21-23.
    [60]Gokan Y,Suzuki A,Nozawa S.Development of heat resistant Mg-Zn-Al-Ca-RE diecasting alloys[J].Materials Science Forum,2003,419-422:451-456.
    [61]Dahle A K.Development of the as-cast microstructure in magnesium-aluminium alloys[J].Journal of Light Metals,2001,61:1201-1210.
    [62]Nave M D,Dahle A K.The role of zinc in the eutectic solidification of magnesium aluminum zinc alloys[C].Magnesium Technology,2000:243-250.
    [63]Rainer Sehmid-Fetzer,Joachim Grobner.Thermodynamic Database for Mg-alloys:Progress and Application to Mg-Al-Ca-Si Alloys Development.Magnesium and Their Applications[A].Proceedings of the 6th international conference[C],edited by Kainer K U.2004:12-17.
    [64]Lee Y C,Dahle A K.Grain Refinement of Magnesium.Magnesium Technology[A].The 2000 TMS Annual Meeting[J].Nashville,TN.USA.2000:211-218.
    [65]Bronfin B.Development of new magnesium alloys for advanxed applications.magnesium and their applicayions[A].Proceedings of the 6th international conference[C].edited by Kainer K U.2004:55-61.
    [66]E.F.Emley:Principles of Magnesium Technology[M],Pergamon,Elmsford,N,1966:260.
    [67]Jpolmer I.Magnesium Alloys and Applications[J].Materials Science and Technology,1994(10):1-16.
    [68]StJohn D H,Ma Qian,Mark A.Easton.Grain refinement of magnesium alloys[J].Metallurgical and Materials Transactions A,2005,36(7):1669-1679
    [69]Lee Y.C,Dahle A.K and StJohn D.H.The role of solute in grain refinement of magnesium[J].Metallurgical and Materials Transactions A,2000,31A(11):2895-2906.
    [70]Sukumoto M,Akiyama S,Hagio T.Mechanism of Non-combustibility and Ignition of Ca-bearing Mg Melt[C].in:Sun G.,Proceedings of the 5th Asian Foundry Congress,Nanjing,China,1997:380-389.
    [71]B.R.Powell,A.A.Lou,V.Rezhets,J.J.Bommarito,B.L.Tiwari.SAE Technical Paper,Soc.Automotive Eng[J].2001:406-413.
    [72]Guohua Wu,Yu Fan,Hongtao Gao.The effect of Ca and rare earth elements on the microstructure,mechanical properties and corrosion behavior of AZ91D[J].Materials Science and Engineering A,2005,408:255-263.
    [73]E.D.Morales,E.Ghali,N.Hort,W.Dietzel,K.U.Kainer.Corrosion behavior of magnesium alloys with RE additions in sodium chloride solutions[J],Mater.Sci.Forum,2003,(419-422):867-872.
    [74]G Song,A Atrens,D Stjohn,J Naim,Y Li.The electrochemical corrosion of pure magnesium in 1 N NaCl[J].Corrosion Science,1997,39(5):855-875.
    [75]Nakatsugawa,S.Kamado,Y.Kojima,R.Ninomiya,K.Kubota.Corrosion of magnesium alloys containing rare earth elements[J].Corrosion Reviews,1998,(16):139-157.
    [76]Murray J L.The Al-Mg system[J].Bulletin of Alloy Phase Diagrams,1982,3(1):60-64.
    [77]Itkin V P,Alcock C B,Van P J,et al.The Al-Ca system[J].Bulletin of Alloy Phase Diagrams,1988,9(6):652-657.
    [78]张世军,黎文献,余琨.添加含碳熔剂细化镁合金晶粒的方法[J].特种铸造及有色合金,2002,(4):18-19.
    [79]郑来苏.铸造合金及其熔炼[M].西安:西北工业大学出版社,1994.
    [80]杨素媛,张丽娟,张堡垒.稀土镁合金的研究现状及应用[J].稀土,Chinese Rare Earths,2008,(29):81-86.
    [81]李娜,刘建睿,王栓强,沈淑娟,黄卫东,逢玉台.稀土在镁及镁合金中的应用[J].铸造技术,2006,(27):1133-1136.
    [82]范才河,陈刚,严红革.稀土在镁及镁合金中的作用[J].材料导报,2005,19(7):61-63,68.
    [83]韩英芬,刘建睿,沈淑娟.镁合金中非金属夹杂物及其净化方法[J].铸造技术,2006,27(6):613-616.
    [84]裴利霞,张金山,高义斌.稀土元素镧对AZ91镁合金显微组织及硬度的影响[J].铸造设备研究,2005,(1):20-23.
    [85]S H Wang,H P Zhou,Y P Kang.The influence of rare earth elements on microstructures and properties of 8061 aluminum alloy vacuum-brazed joints[J].Journal of Alloys and Compounds,2003,(352):79-83.
    [86]黄晓锋,王渠东,曾小勤.稀土对AM50力学性能及高温蠕变的影响[J].中国稀土学报,2004,22(4):493-496.
    [87]段汉桥,王立世,蔡启舟.稀土对AZ91镁合金耐腐蚀性能的影响[J].中国机械工程,2003,14(20):1789-1792.
    [88]邢泽炳,聂祚仁,邹景霞,高旭东.Al-Er合金铸锭中铒的存在形式及作用研究[J].中国稀土学报,2007,25(2):234-238.
    [89]Bamberger M.Structural refinement of cast magnesium alloys[J].Mater Sci Tech.,2001,(1):15-24.
    [90]Tamum Y,Kono N,Motigi T,et al.Grain refinement of cast Mg-Al alloys[J].Japan institute of Light Metals.1998,48(4):395-399.
    [91]詹美燕,李元元,陈维平.电磁搅拌铸造及其在镁合金上的应用[J].轻合金加工技术,2007,35(8):6-10,53.
    [92]王学东,张伟强,时海芳.电磁搅拌技术的国内外发展现状[J].辽宁工程技术大学学报,2001,(20):82-84.
    [93]曹志强.电磁搅拌对灰铸铁宏观偏析的影响[J].金属学报,1992,28(2):80-83.
    [94]W.D.Griffiths,D.G McCartney.The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys[J].Mater.Sci.Eng.A.,1996,216:47-60.
    [95]Shigco ASAI,Nobuyuki NISHIO,lwao MUCHIl.Theoretical analysis and model experiments on electromagnetically flow in continuous casting[J].Transactions of the Iron and Steel Institute of Japan,1982,22:126-133.
    [96]任忠鸣.合金在电磁场中凝固时生成的特殊表面[J].金属学报,1990,26(4):374-376.
    [97]Charles Vives.Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes[J].Metall.Trans.B,1992,(23B):189-206.
    [98]J M M Molenaar,W H Kool,Solute redistribution in stir-cast Al-6Cu[J].J.Mater.Sci.1989,24:1782-1794.
    [99]胡汉起,郑日琪.电磁搅拌对低硫钢枝晶组织及机械性能的影响[J].金属学报,1990,26(4):313-316.
    [100]韩维新.电磁搅拌对离心铸造0Cr17Mn14Mo2N管坯组织和性能的影响[M].铸造,1998,(12):7-9.
    [101]袁晓光,刘正,许沂.电磁铸造对AZ91D合金组织及力学性能的影响[J].中国有色金属学报,2002,12(4):784-789.
    [102]赵红岩,石广新,翁康荣.电磁场对AZ91镁合金凝固态组织的影响[J].轻合金加工技术,2006,34:14-16.53.
    [103]Fang C F,Zhang X G,Ji SH H,Hao H,Jin J Z,.Research on AZ61 Magnesium Alloy by Electromagnetic Stirring and Force Field Analysis[J],Rare Metal Material and Engineering.稀有金属材料与工程,2007,36:170-173.
    [104]毛卫民,甄子胜,陈洪涛.电磁搅拌对半固态AZ91D镁合金组织的影响[J].材料研究学报,2005,19(3):304-309.
    [105]甄子胜,毛卫民,陈洪涛,钟雪友.电磁搅拌工艺参数对半固态AZ91D镁合金组织的影响[J].北京科技大学学报,2003,25(4):341-345.
    [106]韩富银,杨巧莲,高义斌.电磁搅拌对镁合金AZ91D初生相形貌的影响及机理[J].中国铸造装备与技术,2005(1):11-13.
    [107]邹晓强,刘生发,吕亚清.轻合金中电磁搅拌技术的研究与应用现状[J].轻合金加工技术,2006,34:5-10.
    [108]王金华.悬浮铸造[M].北京:国防工业出版社,1982:69.
    [109]樊铁船,黄九连.悬浮浇注和变质对A356合金组织性能的影响[J].热加工工艺,1997(6):40-41.
    [110]周春明,徐建辉.悬浮浇注对铝铜合金组织性能的影响[J].热加工工艺,1992,(2):28-29.
    [111]周起玉,樊铁船.ZL105合金悬浮铸造工艺研究[J].热加工工艺,1993,(1):37-38.
    [112]李小平,陈振华.高硅铝合金悬浮铸造的组织细化[J].特种铸造及有色合金,1999,(6):20-21.
    [113]王晓东,电磁力对金属熔体驱动与运动形态控制的研究[D].大连:大连理工大学,2002.
    [114]闵学刚,朱曼,孙扬善,薛烽.Ca对AZ91显微组织及力学性能的影响[J].材料科学与工艺,2002(1).
    [115]Fang X Y.Yi D Q,Wang B,Luo W H,Gu W.Effect of yttrium on microstructures and mechanical properties of hot rolled AZ61 wrought magnesium alloy[J].Trans.Nonferrous Met.Soc.China.2006,16:1053-1058.
    [116]马图哈KH.非铁合金的结构与性能.材料科学与技术丛书(第8卷)[M].丁道云译.北京:科学出版社.1999.
    [117]Nussbaum.P.Bridot,Warner T J,etal.In magnesium alloys and their applications[Z].B.L.Mordikeand,K.U.Kainer,ed.,Werkstoff-Information-sge-sellschaft,1998.
    [118]杨明波,潘复生,李忠盛,张静.镁合金铸态晶粒细化技术的研究进展[J].铸造 2005,54(4):314-319.
    [119]屠怡范,陈晶益,张波萍,李鹏喜,铃木洋夫.AZ31铸造镁合金的物相和显微组织[J].铸造,2006,55(5).
    [120]Yu Zhong,Jing Liu,Ron A.Witt,Yong-ho Sohnb,Zi Kui Liu.Al_2(Mg,Ca) phases in Mg-Al-Ca ternary system:First-principles prediction and experimental identification[J].Scripta Materialia,2006,55:573-576.
    [121]M.Aljarrah,M.Medraj,X.Wanga.Experimental investigation of the Mg-Al-Ca system[J].Journal of Alloys and Compounds,2007,436:131-141.
    [122]Ninomiya R,Ojiro T,Kubot K et al.Improved Heat Resistance of Mg-Al Alloys by The Ca Addition[J].Acta Metallurgica et Materialia,1995,43(2):669-674.
    [123]K.Ozturk,Z.-K.Liu and A.A.Luo,H.Kaplan,Ed.,Magnesium Technology 2003[C],2003 TMS Annual Mecting.San Diego,CA,USA,2003,195-200.
    [124]D.W.zhou,J.S.Lin,P.Peng,A first-principles study on the structural stability of Al_2Ca,Al_4Ca and Mg_2Ca phases[J].Mater.Lett.,2008,62(2):206-210.
    [125]贾光霖,庞维成.电磁冶金原理与工艺[M].东北大学出版社 2003,154.
    [126]张秋明.电磁搅拌法制备铝/电气石复合材料的研究[D].大连:大连理工大学,2001.
    [127]王雪敏,曾小勤,吴国松,姚寿山.合金元素对镁合金氧化性能的影响[J].材料导报,2006,20(11):69-72.
    [128]Sakamoto M,Akiyama S.Suppression of ignition and burning of molten Mg alloys by Ca bearing stable oxide film[J].J Mater Sci Lett.,1997,16(12):1048-1050.
    [129]黄晓锋,周宏,何镇明.阻燃镁合金起燃温度的研究[J].稀有金属材料与工程,2002,31(3):221-224.
    [130]周春明,冯建华,龙文元.悬浮浇铸对铝铜合金组织遗传性的影响[J].南昌航空工业学院学报,1998(4):13.
    [131]王红霞,常艳红,徐林.悬浮铸造对ZA27合金组织性能的影响[J].铸造设备研究,2002(2):5-6.
    [132]Peng Cao,Ma Qian,David H.StJohn,Native grain refinement of magnesium alloys[J].Scripta Materialia,2005,53:841-844.
    [133]Ma Qian,Peng Cao,Discussions on grain refinement of magnesium alloys by carbon inoculation[J].Scripta Materialia,2005,52:415-419.
    [134]Y.C.Lee,A.K.Dahle,D.H.Stjohn.The role of solute in grain refinement of magnesium[J].Metallurgical and Materials Transactions A,2000,31(11):2895-2906.
    [135]Mark Easton,David Stjohn.Grain refinement of aluminum alloys:part(Ⅰ)-the nucleate and solute patadigms-a review of the literature[J].Metallurgical and Materials Transactions A,1999,30(6):1613-1623.
    [136]Mark Easton,David Stjohn.Grain refinement of aluminum alloys:part(Ⅱ)-confirmation of,and a paradigms-A review of the literature[J].Metallurgical and Materials Transactions A,1999,30(6):1625-1633.
    [137]Ma Qian,David Stjohn.,Heterogeneous nuclei size in magnesium-zirconium alloys[J].Scripta Materialia,2004,50:1115-1119.
    [138]Ping D H,Hono K,Nie J F.Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy[J].Scripta Materialia,2003,48:1017.
    [139]Zhang M X,Kelly P M,Easton M A et al.Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J].Acta Materialia,2005,53:1427-1438.
    [140]Lee K,Losert W.Controlled dynamics of grain boundaries in binary alloys[J].Acta Materialia,2005,53:3503-3510.
    [141]刘红梅,陈云贵,唐永柏.Zr对Mg-5Sn合金显微组织与力学性能的影响[J].稀有金属材料与工程,2006,35(12):1912-1915.
    [142]张晶,唐靖林,齐祥超,曾大本.碳及电磁搅拌对AZ91D合金显微组织的影响[J].铸造技术,2009,30(8):1014-1018
    [143]张世军,黎文献.Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响[J]轻合金加工技术,2003,31(2):16-18.
    [144]任政,张兴国,房灿峰,郝海.电磁-悬浮铸造对变形镁合金晶粒细化的影响[J].材料研究学报,2007,21(5):491-495.
    [145]李大全,王渠东,丁文江.稀土在变形镁合金中的应用[J].轻合金加工技术,2006,34(2)
    [146]Lazar Leonovich Rokhlin,Magnesium alloys containing rare earth metals[M].Chemical Rubber Company Press 2003.
    [147]李华基,薛寒松.镧、铈和富镧混合稀土对镁合金起燃温度的影响[J].中国稀土学报,2001,119(增刊):188.
    [148]樊建锋,杨根仓,周尧和,等.Mg-3.5Y-0.8Ca阻燃镁合金的高温氧化特性[J].中国有色金属学报,2006,6(10):1716-1723.
    [149]张景怀,唐定骧,张洪杰,王立民,王军,孟健.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008,32(5):659-667.
    [150]Okamoto H.Phase Diagrams of Dilute Binary Alloys[M].ASM International,2002:157.
    [151]F.Rosalbinoa,E.Angelini,S.De Negri,A.Saccone,S.Delfino.Effect of erbium addition on the corrosion behaviour of Mg-Al alloys[J].Intermetallics,2005,13:55-60.
    [152]F.Rosalbinoa,E.Angelini,S.De Negri,A.Saccone,S.Delfino.Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys(RE=Ce,Er)[J].Intermetallics,2006,14:1487-1492.
    [153]王忠军,张彩碚,邵晓宏,崔建忠,乐启炽.添加稀土Er于熔剂中对铸态AZ91镁合金组织与性能的影响[J].中国有色金属学报,2007,17:181-187.
    [154]肖代红,黄伯云.铒对AZ91镁合金铸态组织与力学性能的影响[J]中国稀土学报,2008,26:78-81.
    [155]郑伟超,李双寿,汤彬,曾大本.混合稀土对AZ91D镁合金组织和力学性能的影响[J].金属学报,2006,42(8):835-842.
    [156]Zhang S C,Wei B K,Cai Q Z,Wang L S.Effect of mischmetal and yttrium on microstructures and mechanical properties of Mg-Al alloy[J].Trans.Nonfer.Met.Soc,Chin,2003,13:83-87.
    [157]A.Saccone,G.Cacciamani,S.De Negri,R.Ferro,The Al-Er-Mg Ternary System.Part Ⅰ:Experimental Investigation[J].J.Phase Equilibria,2002,23:29-37.
    [158]G.Cacciamaai,A.Saccone,S.De Negri,R.Ferro,The Al-Er-Mg Ternary System.Part Ⅱ:Thermodynamic Modeling[J].J.Phase Equilibria,2002,23:38-50.
    [159]V.Raghavan,Al-Er-Mg(Aluminum-Erbium-Magnesium)[J],J.Phase Equilib.2007,28:461-463.
    [160]高英俊,侯贤华.稀土Er对Al-Mg合金作用的价键分析[J].中国稀土学报,2005,23:116-120.
    [161]Getselev ZN.Method of continuous and Semi continuous Casting of Metals and a Plant for Same[P].US.Pat,3467166,1969.
    [162]Vives C.Electromagnetic refining of aluminum alloys by the CREM proeess:partⅠ working prinecple and metallurgiecal results[J].MetallurgicalTransactions B,1989,20B(10):623-629.
    [163]贾非.电磁连续铸造过程工艺优化及组织性能研究[D].大连:大连理工大学,2002.
    [164]钟皓,陈琪,闫蕴琪,张慧,翁文凭.AZ31镁合金的热挤压组织与力学性能分析[J].轻金属,2007,3:52-54.
    [165]张星,张治民.温变形对AZ31镁合金组织的影响[J].塑性工程学报,2004,11(3):52-54.
    [166]魏松波,蔡庆伍,唐荻,胡水平,孟强.挤压AZ31B镁合金板材高温轧制变形行为研究[J].塑性工程学报,2009,16(1):95-101.
    [167]S.M.Fatemi-Varzaneh,A.Zarei-Hanzaki,H.Beladi.Dynamic recrystallization in AZ31 magnesium alloy[J].Materials Science and Engineering A,2007,456(1):52-57.
    [168]刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12.
    [169]秦梅,张敏刚,郑建军,田香菊.AZ31变形镁合金性能与组织的研究[J].山西冶金,2008,2:16-17.
    [170]International A S M.Magnesium and Magnesium Alloy[M].OH:Metal Park,1999.
    [171]陈进化.位错与强化[M].沈阳:辽宁教育出版社,1991.
    [172]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086.
    [173]Brooks C R.Heat Treatment Structure and Properties of Nonferrous Alloys[M].OH:Metals Park,1982:324-360.
    [174]陈振华,许芳艳,傅定发,夏伟军.镁合金的动态再结晶[J].化工进展,2006,2:140-146.
    [175]张娅,马春江,卢晨.变形镁合金的塑性变形机制与动态再结晶[J].轻合金加工技术,2003,31(7):35-39.
    [176]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].科学出版社 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700