用户名: 密码: 验证码:
结晶器铜板镀覆Ni-Fe合金新工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以实现在结晶器基体铜或铜合金上镀覆耐磨Ni-Fe合金镀层为目的。在对国内外结晶器表面镀覆技术研究现状进行深入分析的基础上,对Ni-Fe合金镀层制备中的工艺技术进行了研究。
     采用普通电沉积法和喷射电沉积法在铜或铜合金基体上镀覆了Ni-Fe合金镀层,然后将镀层连同基体一起在400℃下进行去氢处理,以保证镀层和基体之间具有良好的结合强度。
     在镀覆Ni-Fe合金的过程中,研究了电解液成分和工艺参数对Ni-Fe合金镀层组织和性能的影响;在喷射电沉积Ni-Fe合金的过程中,研究了喷射速度和电流密度对Ni-Fe合金镀层组织和性能的影响。通过调整镀液中Fe2+、Ni2+的浓度,可以获得不同铁含量的Ni-Fe合金镀层。
     运用X射线衍射的θ-2θ扫描对Ni-Fe合金镀层的相组成进行了分析;采用SEM和EDS分别对Ni-Fe合金镀层的表面形貌和成分进行了分析;采用MMU-5G型屏显式端面摩擦磨损试验机对Ni-Fe合金镀层的耐磨性进行了分析;采用DIL 402C热膨胀仪对Ni-Fe合金镀层的热膨胀系数进行了测定;采用STA 449 C/6G综合热分析仪对Ni-Fe合金镀层的高温氧化性能、过冷及结晶过程进行了分析。
     研究结果表明,利用孔隙适合的多孔材料处理铁阳极,添加自己合成的YD-JK添加剂,在适合的工艺条件下,可以获得晶粒尺寸在20 nm以下、镀层厚度2 mm以上的Ni-Fe合金镀层,镀层的耐磨性是相同厚度Ni镀层的2~3倍,改变镀液中浓度比,获得了铁含量为3~5 wt.%的纳米晶γ相Ni-Fe合金镀层;在喷射电沉积过程中,通过改变喷射速度和电流密度,可以获得铁含量3.54~5.02 wt.%,晶粒尺寸在10 nm以下的γ相纳米晶Ni-Fe合金镀层,沉积速率可达到7.0μm·min-1,电流效率可达到80 %,镀层显微硬度可以达到HV 565。
     热分析结果表明,Ni镀层熔体的最大过冷度为411 K,Ni-Fe合金镀层熔体的最大过冷度为426 K;过热度一定时,Ni镀层熔体和Ni-Fe合金镀层熔体的过冷度都随冷却速率的提高而增大,冷却速率越高,试样完全结晶所需时间越短;在冷却速率一定的情况下,在一定的温度范围内,可以通过增大过热度来实现Ni镀层熔体和Ni-Fe合金镀层熔体的深过冷。
The purpose of this dissertation, is to obtain excellent wear-resistance Ni-Fe alloy coating on the crystallizer bases: copper or copper alloys. With the extensive survey of the reported references of the coating technology on crystallizer surfaces, the preparation technology of Ni-Fe coating is intensively discussed.
     The conventional electrodepositing methods and jet electrodepositing methods are used to prepare the alloy coating on the copper substrate or copper alloys substrate. The coating with the substrate was then processed with de-hydrogenization at 400 centigrade to obtain the desirable binding strength between the coating and the substrate.
     For the coated Ni-Fe alloy, the effects of the electrolyte composition and the process parameters on the structure and properties of the coating are discussed, while for the jet eletrodeposited alloy coating, the effects of the jet rate and the current density are highlighted.
     The phases in the Ni-Fe coating are identified with X-ray diffraction, and SEM and EDS are used to determine the surface morphology and composition. The wear-resistance property is examined in a MPW wear test machine. The thermal expansion coefficient is determined by using a DIL 402C dilatometer, and the STA 449 C/6G analyzer is used to analyze the undercooling and crystallization processes as well as the oxidation behavior at high temperature.
     The results suggest that the desirable composition in this dissertation and certain processing technology together with the synthesized YD-JK additive facilitate the formation of a 2 mm thickness of Ni-Fe coating with grain sizes smaller than 20nm, whose wear-resistance is 2~3 times higher than that of the Ni coating of the same thickness. The adjustment of ratio of Fe2+/Ni2+ in the eletrolytes helps to obtain theγ-nanocrystalline containing Ni-Fe coating with 3~5% iron. The change of spray rate and current density helps to obtain theγ-nanocrystalline (grain size being smaller than 10nm) containing Ni-Fe coating with 3.54~5.02 wt % iron, and the deposition rate can reach 7.0μm·min-1 with the current efficiency being up to 80%, and the microhardness of the coating reaches HV 565. The thermal analyses suggest that while the Ni coating melt holds an undercooling degree of 411K, the Ni-Fe alloy coating melt has a value of 426K. With the superheating degree fixed, the undercooling degree of Ni and Ni-Fe coating melts rises with the cooling rates. The higher cooling rate leads to a shorter crystallization time. In parallel, with the cooling rate fixed, the deep undercooling can be reached in a certain temperature range by enhancing the superheating degree.
引文
1青谷熏.合金电镀[M].东京:桢书社, 966: 4-5
    2 A. Brenner. Electrodeposition of Alloys. New York and London: Academic press. 1963: 15-35
    3屠振密.电镀合金原理与工艺.北京:国防工业出版社, 1993: 56-204
    4上海轻工业专科学校.电镀原理与工艺.上海:上海科学技术出版社, 1982: 35-60
    5黄子勋,吴纯素.电镀理论[M],北京:中国农业机械出版社,1982:49-120
    6 T.J. Natorsk. Zinc and Zinc Alloy Plating in the’90s. Metal Finish, 1992, 90(3): 15-19
    7 A. Watson, YJ. Su, M R. El-Sharif, C U. Chisholm. Electrodeposition of Zinc Chromium Alloys and the Formation of Conversion Coatings without Use of Chromate Solutions. Transactions of the Institute of Metal Finishing, 1993, 71(1): 15-20
    8黄成德,张宏祥,赵秉英.合金电沉积的发展.材料保护, 1997, 30(5): 13-15
    9 G. Barcelo, J. Garcia, M. Sarret, C. Muller, J. Pregonas. Properties of Zn-Ni Alloy Deposits from Ammonium Baths. Journal of Applied Electrochemistry, 1994, 24(12): 1249-1255
    10 R N. Duncan. Corrosion Resistance of High-Phosphorus Electroless Nickel Coatings. Plating and Surface Finishing, 1986, 73(7): 52-57
    11 D. Mukherjee, C. Rajagopal. Electrodeposition of Amorphous Nickel Alloys. Metal Finishing, 1992, 90(1): 15-19
    12 L G. Mayer. Past, Current and Future Applications for Palladium-Nickel. Metal Finishing, 1990, 88(8): 53-56
    13 S. John. Electrodeposition of Ni-Cd Black Alloy. Solar Energy Materials, 1994, 33(4): 505-513
    14 T M. Harris, G M. Whitney, I M. Croll. Electrodeposition of Ni-Fe-Cr Alloys for Magnetic Thin Film Applications. Journal of the Electrochemical Society, 1995, 142(4): 1031
    15 S N. Srimathi. S M. Mayanna. Nickel-Iron Alloy Deposition: Alkaline Sulfate-Chloride Bath Containing Triethanolamine. Metal Finishing, 1985, 83(3): 45-48
    16 A M. Abd El- Halim, M H. Fawzy. Electroplating of Co-Fe Alloys from Aqueous Sulphate Baths. Transactions of the Institute of Metal Finishing, 1993, 71(4): 125-128
    17 Y. Sato. Electrolytic Preparation of Sm-Co Thin Films and Their Magnetic Properties. Plating and Surface Finishing, 1993, 80(4): 72
    18 P. Pouderoux, I. Chassaing, J P. Bonino, A. Rousset. Plating of Nickel-Phosphorus MultilayerAlloys. Surface and Coating Technology, 1991, 45(1-3): 161-170
    19 Y P. Lin, J R. Selman. Periodic-Current-Modulation Effects in Alkaline and Acidic Electrodeposition of Zinc. Journal of the Electrochemical Society, 1991, 138(12): 3525-3529
    20 E. Chassing, V K. Quang. High-Temperature Ni-Mo Electrodeposited Alloys Structure and Properties. Plating and Surface Finishing, 1990, 77(8): 60-66
    21 M. Eyraud, A. Garnier, F. Mazeron, J. Crousier. Morphology and Composition of Electrodeposited Zinc-Manganese Alloys. Plating and Surface Finishing, 1995, 82(1): 190-198
    22 M. Yamamoto, K. Shirai, N. Watanabe. Process of Structural Transformation of Electrodeposited Amorphous Ni-P Alloy by Heating. Journal of the Electrochemical Society, 1991, 138(7): 2082-2086
    23 K J. Shimizu. High Resolution Transmission Electron Microscopy of Electrodeposited Nickel-Phosphorus Alloys. Surface Finishing, 1991, 42(1): 122
    24 P M. Andersen, E T. Jens, P. Moller. Growth of a Copper-Gold Alloy Phase by Bulk Copper Electrodeposition on Gold Investigated by in Situ STM. Journal of the Electrochemical Society, 1995, 142(7): 2225-2232
    25 A. Bernner. Electrodeposition of Alloys. New York and London: Academic Press, 1963: 178
    26仓知三夫,迫田章人.合金.金属表面技术, 1980, 32(10): 152
    27蔡加勒,周绍民.添加剂对Zn-Ni异常共沉积的作用.厦门大学学报, 1992, 31(1): 52
    28蔡加勒,周绍民.碱性锌镍合金电沉积中Tetren的基本效应.厦门大学学报, 1994, 33(3): 345
    29 J M. Bockris, B T. Rubin. The Electrodissolution of Copper-Nickel Alloys. Electrochimica Acta, 1972, 17(5): 937
    30 J S. Sallo, R D. Fisher. Effect of Addition Agents on Tungsten Co-deposition. Journal of the Electrochemical Society, 1960, 107: 277
    31曾跃,姚素薇,郭鹤桐.从氨性柠檬酸溶液中电沉积Ni-Mo的机理研究.物理化学学报, 1995, 11(4): 351-354
    32 E. Chassaing, K V. Quang, R. Wiart. Mechanism of Nickel-Molybdenum Alloy Electrodeposition in Citrate Electrolytes. Journal of Applied Electrochemistry, 1989, 19(6): 839-844
    33王鸿建.电镀工艺学.第二版.哈尔滨:哈尔滨工业大学出版社, 1995: 158-159
    34 A M.Nguyen, S. Cercelaru, G. Tremblay, J C. Perron, P. Hest, Magenetic and electrical characterizations of thin Ni-Fe and Ni-Fe-Mo films. Thin solid fimls, 1996, 275(1-2): 231-234
    35 E. Santner, G. Meier zu Kocker, Utility and limitations of tribosimulation for quality control and material preselection. 10th Internationl Conference on Wear of Materials, Boston, Massachusetts, USA, 9-13 Apr. 1995, 181-181(I): 350-359
    36 R K.Ray, Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta metall. mater. 1995, 43(10): 3861-3872.
    37严东生.纳米材料的合成与制备.无机材料学报, 1995, 10(1): 1-6
    38李新勇,李树本.纳米半导体研究进展.化学进展, 1996 ,8(3): 231-239
    39卢柯,周飞.纳米晶体材料的研究现状.金属学报, 1997, 33(1): 99-106
    40杨剑,滕凤恩.纳米材料综述.材料导报, 1997, 11(2): 6-10
    41丁星兆,柳襄怀.纳米材料的结构、性能及应用.材料导报, 1997, 11(4): 1-5
    42王文中,李良荣,刘兴龙.纳米材料的性能、制备和开发应用.材料导报, 1994, 6: 8-10
    43张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2001: 196-198
    44 C A. Melendres, A. Narayanasamy, V A. Maroni, R W. Siegel. Raman Spectroscopy of Nanophase TiO2. Journal of Materials Research, 1989, 4(5): 1246-1250
    45 J A. Eastman, M R. Fitzsimmons, L J. Thompson, A C. Lawson, R A. Robinson. Diffraction Studies of the Thermal Properties of Nanocrystalline Pd and Cr. Nanostructured Materials, 1992, 1(6): 465
    46 J. Thomas, R W. Siegel, J A. Eastman. Grain Boundaries in Nanophase Palladium. High Resolution Electron Microscopy and Image Simulation. Scripta Metallurgica Materialia, 1990, 24(1): 201-206
    47 K A. Mauritz. Organic-Inorganic Hybrid Materials:Perfluorinated Ionomers as Sol-Gel Polymerization Templates for Inorganic Alkoxides. Materials Science and Engineering, 1998, 6(2-3): 121-133
    48 J C. Sánchez-López, A. Fernández. The Gas-phase Condensation Method for the Preparation of Quantum-sized ZnS Nanoparticles. Thin Solid Films. 1998, 317(1-2): 497-499
    49赵愚,余海湖,姜德生.技术创新与全球纳米自组装技术的发展.科技进步与对策, 2002, 5: 75-77
    50 C. Liu, A. Leyland, Q Bi, A. Matthews. Corrosion Resistance of Multi-Layered Plasma- AssistedPhysical Vapour Deposition TiN and CrN Coatings. Surface and Coatings Technology, 2001, 141(2-3): 164-173
    51谢松,孟广耀,彭定坤.微波等离子体化学气相淀积法生长取向性纳米氮化铝薄膜.材料研究学报, 1998, 12(40): 369-374
    52董立峰,崔作林.电弧等离子体制备纳米ZnO的气敏特性.材料研究学报, 1998, 12(4): 407-410
    53 W P. Tai. Synthesis and Characterization of Nanocrystalline Potassium Tantalum Oxide by Sol-Gel Processing. Materials Science Engineering, 2003, 103(1): 83-87
    54 H H. Huang, B. Yan. In-Situ Sol-Gel Synthesis of Luminescent Gd2SiO5:Tb3+ Nanophosphors Derived from Assembling Hybrid Precursors. Inorganic Chemistry Communications, 2004, 7(4): 595-597
    55 S D. Cheng, C H. Kam, W X. Que, Y L. Lam, Y C. Chan, W S. Gan. Sol-Gel Derived Nanocrystalline Thin Films of PbTiO3 on Glass Substrate. Thin Solid Films, 2000, 375(1-2): 109-113
    56陈彩风,陈志刚.超声场中湿法制备纳米粉末的原理和方法.机械工程材料, 2003, 27(4): 30-32
    57 R N. Viswanath, S. Ramasamy. Sol-Gel Derived YSTZ-Al2O3 and YSTZ-Al2O3-SiO2 Nanocomposites. Nanostructured Materials, 1999, 12(5-8): 1085-1088
    58董文庭,朱从善.表面修饰的CdO纳米粒子的光谱特性.材料研究学报, 2000, 14(3): 303-306
    59李来风,潘晓晴.纳米晶SnO2粉末的制备.材料研究学报, 2000, 14(1): 37-42
    60 K D. Woo, D L. Zhang. Fabrication of Al–7wt%Si–0.4wt%Mg/SiC Nanocomposite Powders and Bulk Nanocomposites by High Energy Ball Milling and Powder Metallurgy. Current Applied Physics, 2004, 4(2-4): 175-178
    61 R A. Varin, D. Wexler, A. Calka, L. Zbroniec. Formation of Nanocrystalline Cubic (L12) Titanium Trialuminide by Controlled Ball Milling. Intermetallics, 1998, 6(6): 547-557
    62 D L. Zhang, D Y. Ying. Solid State Reactions in Nanometer Scaled Diffusion Couples Prepared Using High Energy Ball Milling. Materials Science and Engineering, 2001, 301(1): 91-96
    63 M. Pekala, M. Jachimowicz, V I. Fadeeva, H. Matyja. Phase Transformations in Co-B-Si Alloys Induced by High-Energy Ball Milling. Journal of Non-Crystalline Solids, 2001, 287(1-3):360-365
    64 J X. Qiu, H G. Shen, M Y. Gu. Microwave Absorption of Nanosized Barium Ferrite Particles Prepared Using High-Energy Ball Milling. Powder Technology, 2005, 154(2-3): 116-119
    65 K. Lu, W D. Wei, J T. Wang. Microhardness and Fracture Properties of Nanocrystalline Ni-P Alloy. Scripta Metallurgica et Materialia, 1990, 24(12): 2319-2323
    66 J. Eckert, J C. Holzer, W L. Johnson. Thermal Stability and Grain Growth Behavior of Mechanically Alloyed Nanocrystalline Fe-Cu Alloys. Journal of Applied Physics, 1993, 73(1): 131-137
    67张敏刚,郭东城,孔海旺. Nd2Fe14B/α-Fe纳米晶双相复合永磁合金.金属学报, 1999, 35(7): 777-780
    68 A. Bund, A. Ispas. Influence of a Static Magnetic Field on Nickel Electrodeposition Studied Using an Electrochemical Quartz Crystal Microbalance, Atomic Force Microscopy and Vibrating Aample Magnetometry. Journal of Electroanalytical Chemistry, 2005, 575(2): 221-228
    69 M K. Roy, V S. Subrahmanyam, H C. Verma. Defect Studies in Fe–Cu Alloys Prepared by Electrodeposition. Physics Letters, 2004, 328(4-5): 375-379
    70 R C. Da. Silva, A A. Pasa, J J. Mallett, W. Schwarrzacher. Surface Morphology Evolution during Electrodeposition of Amorphous Co-P Films. Surface Science, 2005, 576(1-3): 212-216
    71 M K. Roy, H C. Verma. M?ssbauer Studies of Fe-Cu Alloys Prepared by Electrodeposition. Journal of Magnetism and Magnetic Materials, 2004, 270(1-2): 186-193
    72 M. Donten, H. Cesiulis, Z. Stojek. Electrodeposition of Amorphous/Nanocrystalline and Polycrystalline Ni-Mo Alloys from Pyrophosphate Baths. Electrochimica Acta, 2005, 50(6): 1405-1412
    73 T. Nasu, M. Sakurai, T. Kamiyama, T. Usuki, et al. Structural Comparison of M-W(M=Fe,Ni) Alloys Produced by Electrodeposition and Mechanical Alloying. Materials Science and Engineering, 2004, 375-377(Complete): 163-170
    74 A.G. Dolati, M. Ghorbani, A. Afshar. The Electrodeposition of Quaternary Fe-Cr-Ni-Mo Alloys from the Chloride-Complexing Agents Electrolyte. PartⅠ. Processing. Surface and Coatings Technology, 2003, 166(2-3): 105-110
    75吴俊,王龙彪,黄清安.纳米材料的进展.电镀与精饰, 1999, 21(6): 1-5
    76黄清安,王银平,张葵.电沉积法制备金属多层膜的述评.电镀与涂饰, 1998, 17(1): 48-51
    77游阳明,张国庆.电沉积制备纳米迭层薄膜材料.电镀与精饰, 1995, 17(4): 20-23
    78喻敬贤,陈永言,黄清安.纳米金属多层膜的电制备与性能研究现状.材料保护, 1997, 1(3): 313-315
    79徐承坤,杨中东.电沉积法制备纳米晶材料.材料导报, 1997, 11(4): 19-21
    80卢柯.金属纳米晶体的界面热力学特性.物理学报, 1995, 8(9): 1454-1460
    81 H. Gleiter. Deformation of Polycrystals, 2nd Riso Symp, 1980: 15
    82 X. Xia, J H. McQueen. TEM and SEM Investigation of Dynamic Recovery and Recrystallization in Hot Deformed Metal Matrix Composites Steels, and Other Engineering. Materials Microstructural Science, 1995, 22: 285
    83 K. Lucke, H P. Stuwe. Recovery and Recrystallization of Metals, Wiley, New York, 1963: 171
    84 I H. Marshall. Mechanical Properties and Deformation Behavior of Materials having Ultra-Fine Microstructures. Composite Structures, 1994, 28(2): 225
    85 H Q. Li, F. Ebrahimi. An Investigation of Thermal Stability and Microhardness of Electrodeposited Nanocrystalline Nickel-21% Iron Alloys. Acta Materialia, 2003, 51(13): 3905-3913
    86 J. Weissmüller, J. L?ffler, M. Kleber. Atomic Structure of Nanocrystalline Metals Studied by Diffraction Techniques and EXAFS. Nanostructure Materials, 1995, 6(1-4): 105-114
    87 T R. Malow, C C. Koch. Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition. Acta Materialia, 1997, 45(5): 2177-2716
    88 P. Knauth, A. Charai, P. Gas. Grain Growth of Pure Nickel and of a Ni-Si Solid Solution Studied by Differential Scanning Calorimetry on Nanometer-Sized Crystals. Scripta Metallurgica et Materialia, 1993, 28(3): 325-330
    89 H J. Hoefler, R S. Averback. Grain Growth in Nanocrystalline TiO2 and Its Relation to Vickers Hardness and Fracture Toughness. Scripta Metallurgica et Materialia, 1990, 24(12): 2401-2406
    90 U. Klement, U. Erb, A M. El-Sherik, K T. Aust. Thermal Stability of Nanocryastalline Ni. Materials Science and Engineering, 1995, 203(1-2): 177-186
    91 N. Wang, Z R. Wang, K T. Aust, U. Erb. Isokinetic Analysis of Nanocrystalline Nickel Electrodepositions upon Annealing. Acta Materialia, 1997, 45(4): 1655-1669
    92 G. Hibbard, K T. Aust, G. Palumbo, U. Erb. Thermal Stability of Electrodeposited Nanocrystalline Cobalt. Scripta Materialia, 2001, 44(3): 513-518
    93 A S. Khan, H Y. Zhang, L. Takacs. Mechanical Response and Modeling of Fully Compacted Nanocrystalline Iron and Copper. International Journal of Plasticity, 2000, 16(12): 1459-1476
    94 H W. Song, S R. Guo, Z.Q. Hu. A Coherent Polycrystal Model for the Inverse Hall-Petch Relation in Nanocrystalline Materials. Nanostructured Materials, 1999, 11(2): 203-210
    95 X Y. Qin, X J. Wu, L D. Zhang. The Microhardness of Nanocrystalline Silver. Nanostructured Materials, 1995, 5(1): 101-110
    96 N. Wang, Z R. Wang, K T. Aust, U. Erb. Effect of Grain Size on Mechanical Properties of Nanocrystalline Materials. Acta Metallurgica Materialia, 1995, 43(2): 519-528
    97 C A. Schuh, T G. Nieh, T. Yamasaki. Hall-Petch Breakdown Manifested in Abrasive Wear Resistance of Nanocrystalline Nickel. Scripta Materialia, 2002, 46(10): 735-740
    98卢柯.纳米晶体材料的Hall-Petch关系.材料研究学报, 1994, 8(5): 385-391
    99候碧辉,秦晓英,易俗. 1995年第三届全国纳米材料科学会议论文摘要集, 1995: 124
    100 G. Herzer. Magnetization Process in nanocrystalline ferromagnets. Materials Science and Engineering A, 1991, 133:1-5
    101 E. Chassing, V K. Quang. High-Temperature Ni-Mo Electrodeposited Alloys Structure and Properties. Plating and Surface Finishing, 1990, 77(8): 60-66
    102 M. Eyraud, A. Garnier, F. Mazeron, J. Crousier. Morphology and Composition of Electrodeposited Zinc-Manganese Alloys. Plating and Surface Finishing, 1995, 82(1): 190-198
    103都有为,倪刚.磁性纳米材料的新进展.物理, 1998, 27(9): 524-529
    104 G. Herzer. Soft Magnetic Nanocrystalline Materials. Scripta Metallurgica et materialia, 1995, 33(10-11): 1741-1756
    105夏本英颜.装饰、防护、功能性合金电镀.朱立群译.北京:航空工业出版社, 1988: 57-72
    106邵性波.实用电镀技术.北京:国防工业出版社, 1985: 32-43
    107周绍民.金属电沉积原理与研究方法.上海:上海科学技术出版社, 1985
    108沈宁一.表面处理工艺手册.上海:上海科学技术出版社. 1993: 31-387
    109曾华梁.北京:机械工业出版社. 1993: 31-806
    110川崎制铁株式会社、野村镀金株式会社.连续铸造用铸型的制造方法.日本.公开昭56-39151.昭56(1981) 4月14日
    111多田吉男.连铸结晶器长寿命化设计.川崎制铁技报, 1987
    112日本野村镀金株式会社.连续铸造用结晶器铜板的表面处理.日本.公开昭59-50760.昭1991
    113日本特许公报.连续铸造用铸型的制造方法. 1985, 8
    114郭赛蓉.镍铁合金电镀工艺.航天工艺. 1991, 8: 20-28
    115郭鹤桐,刘淑兰,柴建军,成旦红.稀土添加剂对镍铁合金镀液性能的影响.电镀与精饰, 1993, 15(2): 6-9
    116张义成.氨基磺酸盐镀Ni层内应力的影响因素分析.材料保护, 1996, 29 (3): 5-18
    117邝少林. BNF体系全光亮、高整平、低浓度的双层Ni-Fe合金电镀的研究.电镀与精饰, 1994, 28(5): 8-13
    118吴继勋.镍铁合金电析的研究.材料保护. 1992, 25(3): 9-12
    119姚士冰.高整平全光亮Ni-Fe合金电镀的研究.电镀与环保. 1989, 9(6): 1-4
    120吴平. NF光亮Ni-Fe合金.电镀与环保, 1993, 9(8): 25-28
    121于金库.电沉积厚层Ni-Fe合金的研究.表面技术, 1998, 27(6): 9-12.
    122 A. Brenner. Electro-deposition of Alloys. 1, 2. New York and London: Academic Press, 1963
    123 J. Harase. Coincidence Boundary and Secondary Re-crystallization in fcc and bcc Metals. Canadian Metallurgical Quarterly, 1995, 34(3): 185-193
    124 Till Krause, Lazar Arulnayagam, Mark Pritzker. Model for Nickel-Iron Alloy Electro-deposition on a Rotating Disk Electrode. J. Electrochemical. Soc. 1997, 144(3): 960-969
    125 Kieling, Virginia Cotta. Parameters Influencing the Elecrodeposition of Ni-Fe Alloys. Surface & Coatings Technology. 1997, 96(2-3): 135-139
    126 K M. Yin, B T. Lin. Effects of Boric Acid on the Electro-deposition of Iron, Nickel and Iron-nickel. Surface and Coatings Tech. 1996, (78): 205-210
    127 C. Brett Baker and C. Alan West. Electrochemical Impedance Spectroscopy Study of Nickel-Iron Deposition. J. Electrochem. Soc. 1997, 144(1): 164-169
    128 J K.丹尼斯,T E.萨奇.镀镍和镀铬新技术.北京:科学技术文献出版社, 1992: 1-385
    129陈秉彝,姚士冰.高整平全光亮镍铁合金电镀的研究.电镀与环保, 1989, 9(6): 1-5
    130 F. Czerwinski, Z. Kedzierski. On the Mechanism of Micro-crack Formation in Nano-crystalline Fe-Ni electrodeposits. Journal of Materials Science. 1997, (32): 2957-2961
    131 B S. Sheshadri, K. Vasantha, B. S. Prakash. Effect of the Superposition of an Alternating Current on a Direct Current on the Electro-deposition of Ni-Fe Alloys. Surface Technology. 1981,13(2): 111-117
    132黄子勋,吴纯素.电镀理论.北京:中国农业机械出版社, 1982: 49-120
    133李平.镍铁异常共沉积研究.物理化学学报. 1989, 5(6): 693-698
    134李荻.电化学原理.北京:北京航空航天大学出版社, 1989: 278-284
    135曾跃,姚素薇.电镀磁性镀层.天津:天津大学出版社, 1999: 36-44
    136 G. Y. Qiao, T F. Jing, N. Wang, Y W. Gao. High-Speed Jet Electrodeposition and Microstructure of Nanocrystalline Ni-Co Alloys. Electrochimica Acta, 2005, 51: 85-92
    137乔桂英,荆天辅,肖福仁,高聿为.喷射电沉积Co-Ni纳米合金沉积层的组织和性能.材料研究学报, 2004, 18(5): 542-548
    138乔桂英,荆天辅,高明,王艳,高聿为,韩东升.高速喷射电沉积块体纳米晶Co-Ni合金.材料热处理学报, 2004, 1: 61-65
    139 C. Karakus, D T. Chin. Metal Distribution in Jet Plating. Journal of the Electrochemical Society, 1994, 141(3): 691-697
    140 M.de. Vogelaere, V. Sommer, H. Springborn, U. Michelsen-Mohammadein. High-speed Plating for Electronic Applications. Electrochimica Acta, 2001, 47(1-2): 109-116
    141 A.M. El-Sherik, U. Erb. Synthesis of Bulk Nanocrystalline Nickel by Pulsed Electrodeposition. Journal of Materials Science, 1995,30(22):5743-5749
    142 J C. Fletcher. NASA. U. S. Patent, No. 3810829. 1974, May.
    143 J K. Dorey, D. Haynes, R E. Stinitski, R E. Woods. Thermocompression Bonding Using High-Speed Selective Gold Plating. Plating and Surface Finishing, 1980, 67(5): 80-85
    144 D T. Chin, C H. Tsang. Mass Transfer to an Impinging Jet Electrode. Journal of the Electrochemical Society, 1978, 125(9): 1461-1470
    145 A A. Sonin. Jet Impingment Systems for Electroplating Applications: Mass Transfer Correlations. Journal of the Electrochemical Society, 1983, 130(7): 1501-1505
    146 D T. Chin, M. Agarwal. Mass Transfer from an Oblique Impinging Slot Jet. Journal of the Electrochemical Society, 1991, 138(9): 2643-2650
    147 R C. Alkire, C. Tan-Jen. High-Speed Selective Electroplating with Single Circular Jets. Journal of the Electrochemical Society, 1982, 129(11): 2424-2432
    148 C C. Bocking. Laser Enhanced and High Speed Jet Selective Electrodeposition. Transactions of the Institute of Metal Finishing, 1988, 66: 50-54
    149 R. Alkire, J B. Ju. High Speed Selective Electroplating with Impinging Two-Dimensional SlotJet Flow. Journal of the Electrochemical Society, 1987, 134(2): 294-299
    150 D T. Chin, K L. Hsueh. Analysis Using the Chilton-Colburn Analogy for Mass Transfer to a Flat Surface from an Unsubmerged Impinging Jet. Electrochimica Acta, 1986, 31(5): 561-564
    151 C. Bocking, B. Cameron. Use of High Speed Selective Jet Electrodeposition of Gold for the Plating of Connectors. Transactions of the Institute of Metal Finishing, 1994, 72(1): 33-40
    152 U. Cohen, G. Tzanavaras. Solid State Technology, 2001, 44: 61
    153 U. Cohen, G. Tzanavaras. 2000 Proc. 17th Int, I VLSI. Multrlevel Interconn. Conf VMIC Conference. 2000, 27: 21
    154 U. Cohen, G. Tzanavaras. SEMI Technical Symposium (STS) Innovations In Semiconductor Manufacturing SEMICON West, 2001
    155 G. Tzanavaras, U. Cohen, US Patent 5, 421, 987(issued June 6, 1995)
    156邵光杰,马焕明,王海燕.离心高速电镀镍工艺研究.电镀与涂饰, 2000, 19(2): 10-12
    157赵阳培,黄因慧.扫描喷射电沉积纳米晶铜的试验研究.电加工与模具, 2004, (5): 26-29
    158熊毅,荆天辅.高速喷射电沉积镍工艺研究.电镀与涂饰, 2000, 19(5): 1-3
    159熊毅,荆天辅.喷射电沉积纳米晶镍的研究.电镀与精饰, 2000, 22(5): 1-4
    160熊毅,荆天辅.脉冲喷射电沉积镍工艺研究.电镀与涂饰, 2000, 19(6): 11-13
    161韩东生,荆天辅,乔桂英.喷射电沉积镍阴极极化行为研究.中国腐蚀与防护学报, 2005, 25(1): 30-33
    162刘永强,赵剑锋,黄因慧.射流电沉积快速成形控制系统的研究.电加工与模具, 2004, (2): 31-33
    163陈国华,王光信.电化学方法应用.北京:化学工业出版社, 2003: 350-351
    164 I. Bakonyi, E. Tóth-KáKár, L. Pogany,á. Cziráki, et. al. Preparation and Characterization of D.C-plated Nanocrystalline Nickel Electrodeposits. Surface and Coating Technology, 1996, 78(1-3): 124-136
    165姚素薇,刘冰,张卫国,郭鹤桐,杉山孝雄.电沉积Ni-Co合金及其结构研究.电镀与精饰, 1996, 18(5): 7-10
    166 Y. Naknmurn, N. Kaneko, M. Watanabe et. al. Influence of Noncoherent Nucleation on the Formation of the Polycrystalline Structure in the Presence of Surface-active Agents. Appl. Electro., 1994, 24: 227-234
    167孔纲,卢锦堂,陈锦虹.碱性锌镍合金电沉积过程阴极极化的研究.材料保护, 1999, 32(6):6-7
    168 F. Lallemand, L. Ricq, M. Wery. Kinetic and Morphological Investigation of CoFe Alloy Elecreodeposition in the Presence of Organic Additives. Surface and Coatings Technology, 2004, 179: 314-323
    169高灿柱,鹿玉理,李树本.缓冲剂对镀镍过程作用机理的研究.电化学, 1998, 4(2): 223-227
    170 S. Kaja, H.W. Pickering, W.R. Bitler. Influence of pH Value in the Processing of Metals Electrodeposited. Plating and Surface Finishing, 1998, 1: 58
    171魏杰,周定.甲酸盐镀液性能的研究.电镀与环保, 1997, 17(5): 10-12
    172武汉大学.第一届全国电镀技术年会交流资料.武汉:电镀协会, 1985
    173 K H. Wong, P C. Andricacos, L T. Romankiw. Effect of Fe(II) Concentration on the Electrodeposition of Nickel-iron Alloys. Electrochemical Soc. 1990, 90(8): 387-396
    174 A M. EL-SHERIK, U.ERB. Synthesis of Bulk Nano-crystalline Nickel by Pulsed Electro-deposition. J. Mater. Sci. 1995, 30: 5743-5749
    175 S K. Gogia, S C. Das. Effect of Co2+, Cu2+, Fe2+ and Fe3+ During Electro-winning of Nickel. Journal of Applied Electrochemistry. 1991, 21(1): 64-72
    176 S. Biallozor, M. Lieder. Study of the Electrodeposition Process of Ni-Fe Alloys from Chloride Electrolytes: II. Surface Tech. 1985, 26: 23-34
    177冯皓.镀液成分对电镀结晶器用Ni-Fe合金的影响.河北: [燕山大学硕士学位论文]. 2000: 34-45
    178舒余德,张昭,唐瑞仁,彭世恒,李劲风.电镀添加剂作用机理的发展概况.电镀与环保, 1999, 6: 27-31
    179朱光保.电化学数学手册.长沙:湖南科学技术出版社, 1985: 273-278
    180电镀手册编写组.电镀手册(上册).北京:国防工业出版社, 1988: 671-689
    181李平. Ni-Fe合金共沉积研究.福建: [厦门大学硕士学位论文]. 1988: 54-63
    182徐盘明,赵祥大.实用金属材料分析方法.合肥:中国科学技术大学出版社, 1990: 576-577
    183张允诚.电镀手册.北京:国防工业出版社, 1996: 22-31
    184范雄.金属x射线学.北京:机械工业出版社, 1996: 43-50
    185于金库.氨基磺酸盐镀Ni-Fe合金层内应力影响因素分析.电镀与精饰, 1999, 21(2): 22-24
    186 P. Egberts, P. Brodersen, G D.Hibbard. Mesoscale Structure in Electrodeposited Nanocrystalline Ni-Fe Alloys. Material Science and Engineering A. 2006, 441: 336-341
    187 H. Dahms. The Influence of Hydrolysis on the Deposition and Co-deposition of Iron-group Metals (Fe, Co, Ni) at the Dropping Mercury Electrode. Electroanal.Chem., 1964, 8: 5-12
    188 I M. Croll., H. Dahms. The Anomalous Co-deposition of Nickel-iron Alloys. Electrochem.Soc.. 1965, 112: 771-775
    189黄惠忠.纳米材料分析.北京:化学工业出版社, 2003: 243-246
    190郑华均,马淳安,张荣强.电沉积Fe-Co-Ni合金工艺.电镀与涂饰, 2004, 23(1): 16-18
    191 Y Zhuang, E J Podlaha. FeNiCo Ternary Alloy Deposition I: an Experimental Kinetic Study. Journal of the Electrochemical Society, 2000, 147(6): 2231-2236
    192 A Afshar, A G Dolati. Electrochemical characterization of the Fe-Ni alloy electrodeposition from chloride-citrate glycolic acid solution. Materials. Chemistry and Physics, 2002, 77: 352-358
    193 J Horkan. On the role of buffers and anions in Ni-Fe electrodeposition. Electrochem.Soc.. 1979, 126: 1861-1867
    194 K M Yin, S L Jan. Current pulse plating of nickel-iron alloys on rotating disk electrodes. Surface and Coating Technology, 1996, 79: 252-262
    195 I Bakonyi, E Toth-Kadar. Preparation and characterization of D.C-plated nanocrystalline nickel electrodeposits.Surf. Coat Tech., 1996, 78: 124-136
    196江山,潘勇.喷射电沉积纳米晶镍镀层的制备与表征.湘潭大学自然科学学报, 2004, 26(3): 61-65.
    197 R T. C. Choo, J M. Toguri, A M. EI-Sherik. Mass Transfer and Electrocrystallization Analysis of Nanocrystalline Nickel Production by Pulse Plating. Appl Electrochem., 1995, 25: 384-403
    198李树堂.晶体X射线衍射学基础.北京:冶金工业出版社, 1990: 146-148
    199 F C. Frank. Disc.Faraday Soc.. Crystal Growth, 1949, 5: 48-67
    200兰英斌,于金库.电镀Ni-Fe合金的实验研究.腐蚀与防护. 1999, 20(8): 355-357
    201武汉材保所.常用电镀液分析.北京:机械工业出版社, 1983: 169-177
    202王鸿.电镀工艺学.哈尔滨:工业先进技术交流会, 1980: 45-90
    203 Fereshteh E, Zunayed A. The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel[J]. Materials characterization, 2003, 49: 373-379.
    204 Eniko Toth-Kadar, Imre Bakonyi. Microstructure and electrical transport properties of pulsed-plated nanocrystalline nickel electrodeposits. Surface and Coating Technology 1996,(88): 57-65
    205熊毅,荆天辅,张纯江,邵光杰,于升学,张芳,张春玲.喷射电沉积纳米晶镍的研究.电镀与精饰, 2000, 225: 1-4
    206 U. Klement, U. Erb, A M. El-Sherik, K T. Thermal stability of nanocrystalline Ni Materials Science and Engineering A, 1995, 15: 177-186
    207张发伦.电沉积纳米晶Fe-Ni合金及其热稳定性. [燕山大学硕士学位论文]. 2007: 45-56
    208江山,潘勇.喷射电沉积纳米晶镍镀层的制备与表征.湘潭大学自然科学学报, 2004, 26(3): 61-65.
    209 T. Dei, R. Nakatani, K. Hoshino, Y. Sugita, Effects of buffer layer materials on magnetoresistance in Ni-Fe/Cu multi-layers. First International Symposium on Metallic Multiayers, Japan: Kyoto, 1991, 126(1-3): 489-491.
    210唐春华.国内Ni-Fe合金工艺的发展现状.电镀与环保, 1988, 8(1): 10-13
    211陈明贵. Ni-Fe合金电镀稳定剂GTR性能的研究.电镀与涂饰, 1991, 10 (3): 23-25
    212 M. Sato, S. Ishio, T. Miyazaki, Magnetoresistance in Ni-Fe/Cu multi-layers formed by sputtering. First International Symposium on Metallic Multilayers, Japan: Kyoto, 1993, 126(1-3): 460-462
    213张义成.氨基磺酸盐镀Ni层内应力的影响因素分析.材料保护, 1996, 29 (3): 10-18
    214于金库,王庚华,邢广忠,冯皓.铜合金上获得Ni-Fe合金镀层的电镀工艺研究.燕山大学学报. 1999, 23(2): 123-126
    215李发长,唐正廉,钟树桔.实用电镀分析.成都:四川科学技术出版社, 1987: 288-301
    216许家园,刘德尧,周绍民.镍和镍铁镀液中Ni2+、Fe2+和Cl-浓度的快速测定.材料保护, 1996, 29(11): 22-24
    217姚文锐,李真.镍铁合金镀液及镀液中铁离子价态的测定.材料保护, 1992, 25(3): 37-39
    218任慧娟,符连社,白建祥,成军,任英.铁(Ⅱ,Ⅲ)-邻苯二酚紫-表面活性剂双峰双波长分光光度法测定铁.东北师大学报, 1998, 2: 11-13
    219张淑芳,聂毅.一阶导数光谱法同时测量微量铁和钴.曲阜师范大学学报, 1999, 2: 22-26
    220李卫东. NaH2PO2与H3PO3对Ni2+与Fe2+电化学行为的影响.表面技术, 1995, 24(3): 11-13
    221李树棠.晶体X射线衍射学基础.北京:冶金工业出版社, 1990: 148-157
    222吴水清.浅谈电镀有机添加剂.电镀与环保, 1999, 4: 17-20
    223 J K. Dannis, T E. Such. Nickel and Chromium Plating,北京:科学技术文献出版社, 1992: 14-30
    224 X Y. Qin, X G. Zhu, S. Gao, L F. Chi and J S. Lee. Temperature dependence of compressive behavior of bulk nanocrystalline Ni–Fe. Scripta Materialia, 2002(46): 611-616
    225 Hongqi Li and Fereshteh Ebrahimi. Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Materials Science and Engineering A, 2003, 347: 93-101
    226 P K. Galenko, S. Reutzel, D M. Herlach, D. Danilov and B. Nestler. Modelling of dendritic solidification in undercooled dilute Ni–Zr melts. Acta Materialia, 2007, 55: 6834-6842
    227 G. Wilde, G P. G?rler and R. Willnecker. The specific heat of highly undercooled ( Co, Ni, Fe) -Pd melts. Journal of Non-Crystalline Solids, 1996, 205-207: 317-321
    228 Guiying Qiao, Tianfu Jing, Nan Wang, Yuwei Gao, Xin Zhao,Jifeng Zhou, Wei Wang, Effect of current density on microstructure and properties of bulk nanocrystalline Ni-Co alloys prepared by JED. Journal of the Electrochemical Society, 2006, 153: 305
    229 Y Z. Chen, F. Liu, G C. Yang, N. Liu, C L. Yang and Y H. Zhou. Suppression of peritectic reaction in the undercooled peritectic Fe–Ni melts. Scripta Materialia, 2007, 57: 779-782
    230 X J. Han, C. Yang, B. Wei, M. Chen and Z Y. Guo. Rapid solidification of highly undercooled Ni–Cu alloys. Materials Science and Engineering A, 2001, 307): 35-41
    231王健安.金属学与热处理-上册.北京:中国机械出版社, 1986: 45-48
    232 Koh H J, Rudolph P. The effect of various thermal treatments on supercooling of PbTemelts. Mater Sci Eng B, 1995, 34: 199-203
    233胡汉起.金属凝固.北京:冶金工业出版社出版, 1985: 69-84
    234周尧和.凝固技术.北京:中国机械出版社, 1998: 25-294
    235李余增.热分析.北京:清华大学出版社出版, 1987: 6-220
    236 C. Cheng, B. Fei, S W. Peng. Nonisothermal crystallization and melting behavior of poly (3-hydrobutyrate) and maleated poly(3-hydrobutyrate). J Euro Poly, 2002, 38: 1663-1670

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700