用户名: 密码: 验证码:
城郊土水界面污染流污染特征、空间分布及其生态风险
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
源于污染土壤的土水界面污染流是非点源污染发生的一种特殊形式,其是在降雨或溶雪等冲刷作用下,土壤中的污染物通过扩散、弥散、解吸、解离等化学反应和多种作用过程进入地表径流中,最终形成携带着包括重金属、持久性有机污染物以及N、P营养元素在内的多种污染物的一种特殊污染流体。城市郊区是介于城市与乡村的交错、过渡地带,具有农业生产化程度高,土地利用结构复杂,受城市城市化、工业化发展和乡村多重影响等特点,且受人类高强度活动的干扰和改造,是区域响应最为敏感的地带。本文以我国北方重要工业城市天津市郊西青区为典型研究区,通过资料收集、大规模野外定点采样和试验分析,将常规数据统计与数据挖掘技术相结合,深入系统地分析了研究区土水界面污染流重金属和多环芳烃等污染物污染特征、分布规律及其污染来源。以地统计学的理论与方法为基础,对重金属和多环芳烃的空间变异和分布规律进行了研究,构建了基于Monte-Carlo模型的土水界面污染流的生态风险评价方法,并对其生态风险进行了评价。主要研究结论如下:
     (1)通过大规模的系统取样调查和分析,揭示了研究区土水界面污染流重金属及多环芳烃等污染物的污染特征。统计分析结果显示:
     Cr、Ni、Cd、Zn等四项重金属服从对数正态分布,Cu、As、Pb等三项重金属为偏态分布。重金属变异系数普遍较高,表明重金属数据离散程度较大,各监测点污染流重金属含量的差异性较大。除As外,重金属之间具有显著相关性;主成分分析结果显示研究区土水界面污染流重金属可提取3个主成分,第一主成分包含Cr、Ni和Zn,第二主成分包含Cu、Cd、Pb,第三主成分则集中反映了As的作用。
     研究区土水界面污染流中的多环芳烃以三环、四环和五环多环芳烃为主,分别占总量的36.49%、26.34%和27.85%,两环和六环的多环芳烃含量则相对较低。除高环多环芳烃外,低环、中环和多环芳烃总量均服从对数正态分布,各多环芳烃组分变异系数较高,在中等变异性以上。除Dba和Inp外,其他14种组分的多环芳烃与总量之间存在显著相关性,其中四环的Flu、Pyr、BaA和Chr与总量的相关性最强,在0.01的置信水平上,相关系数分别达到了0.90、0.84、0.87和0.89,而低环的Nap、Acy、Ace和Phe与总量的相关性相对较弱。
     利用主成分分析技术、比值法和典型源三角图判别法对研究区土水界面污染流中多环芳烃来源进行了解析。主成分分析结果显示,可以提取5个主成分,第一主成分主要由高环数的多环芳烃组成,是交通源和燃煤源共同作用的综合体现:第二主成分主要由低环数的多环芳烃组成,主要代表气态多环芳烃的沉降过程;第三主成分集中反映了Flu、Phe和Pyr三种多环芳烃的作用,具有典型焚烧源的特征;第四主成分集中反映了Acy和Inp两种多环芳烃的作用,集中代表了秸秆燃烧和油燃烧源的多环芳烃来源;第五主成分则反映了Dba的作用。
     研究区Phe/Ant的比值分析结果表明,多环芳烃主要来源于不完全燃烧;所有样点Flu/Pyr的比值均大于1,表明多环芳烃主要来源于煤炭/生物质的不完全燃烧等;研究区部分样点BaA/Chr的比值大于0.5,表明这部分样点的多环芳烃主要来源于燃烧源;部分样点BaA/Chr的比值在0.25~0.35之间,表明多环芳烃来源于石油和燃烧的混合源;极少部分样点Bar/Chr的比值小于0.25主要指示石油源。
     典型源三角图判别法的分析结果表明,多环芳烃主要来自燃烧过程,除煤炭燃烧外,还存在木质材料如秸秆焚烧,发动机高温燃烧、油燃烧以及生物质燃烧等。低、中、高环多环芳烃各组分在多环芳烃总量中都没有占绝对优势,表明研究区污染流各监测样点多环芳烃不是来自于单一污染源,而可能是多污染源共同复合累加的结果。
     (2)利用地统计技术对研究区土水界面污染流重金属和多环芳烃的空间变异和空间分布进行了研究。
     研究表明,七项重金属元素均表现为各向同性,变程在4040~7404米之间,As和Cd在小区域范围内表现出极强的空间相关性,Zn、Ni、Cr为中等程度的空间相关。除As外,其他重金属在原点处均表现出明显的块金效应,As、Zn、Cr、Pb和Cu等采用球形模型拟合半变异函数,Ni和Cd采用指数模型拟合半变异函数。Cu和Pb具有明显的空间趋势,采用具有趋势的克里格进行插值,其他重金属采用普通克里格进行插值。
     低环和高环多环芳烃表现为各向同性,均采用球形模型拟合其经验半变异函数。低环多环芳烃为弱空间相关性,高环多环芳烃为中等程度空间相关,而中环多环芳烃空间相关极弱。采用普通克里格插值方法对低环和高环多环芳烃的空间分布进行预测,采用反距离插值对中环多环芳烃的空间分布进行预测,利用叠置分析技术获取多环芳烃总量的空间预测结果。
     (3)建立了基于概率密度函数和Monte-Carlo模型的土水界面污染流的生态风险评价方法,并对研究区土水界面污染流重金属和多环芳烃的生态风险进行了评价。
     结果表明,Cu造成生态风险的概率较高,生态风险的可能性为80.74%,Cd造成生态风险可能性为43.09%,而Pb造成生态风险总体的可能性概率为16.49%。基于Rapant指数的重金属生态风险评价结果显示,研究区50.3%的区域为无生态风险和低生态风险,13.75%的区域为中等生态风险,13.61%的区域为高生态风险区域。
     Phe、Ant、Pyr、BkF、Bghip等多环芳烃组分生态风险较低,对生态系统的危害较小;Nap、Ncy、BbF、Bap等多环芳烃组分具有一定的生态风险,对生态系统有一定危害,但尚不足以产生严重的生态风险;Ace、Fl、Flu、BaA、Chr、DahA等多环芳烃组分,造成严重生物危害影响的概率非常高,已具有极为严重的生态风险。而多环芳烃总量高于ERL或ESQVL的风险概率极高超过了90%,而高于ERM或ISQVH的风险概率较低,为11.21%,已经具有一定的生态风险。
Contaminated flow from soil-water interfaces is a special form of non-point pollution source. Under erosion of rainfall or snow melt, chemical reactions as diffusion, dispersion, desorption, dissociation and multiple processes resulted in the entrance of soil pollutants into surface runoff and the special effluent occurred including multiple pollutants such as heavy metals, persistent organic pollutants, nitrogen and phosphorus. The suburb area, as a typical transitional zone between city and country, is a multifunctional and complex ecosystem with high level agricultural producing, complex land use structure. Due to the interaction of city and country, the suburb area is one of highly human activities zone and affected by urbanization、industrialization and country development. So taking the Xiqing area of Tianjin suburb as a research object, pollution characters of heavy metals and PAH, spatial distribution and pollution sources have been discussed in this work through information collection, extensive systematic investigation and analysis. Based on the geostatistical method, the spatial variability and spatial distribution of heavy metal and PAHs were analyzed in the paper. In addition, ecological risk method was designed by Monte-Carlo model and assessed the risk of contaminated flow from soil-water interfaces of the study area. The main findings as follows:
     (1) Based on the extensive investigation and analysis, pollution characters of heavy metals and PAHs of contaminated flow from soil-water interfaces of the study area were discovered.
     The concentrations of Cr, Ni, Cd and Zn in the contaminated flow from soil-water interfaces were in lognormal distribution. The concentration of Cu, As and Pb were in skew distribution. The coefficients of variation of heavy metals were almost big, which indicated that the degrees of scatter of havy metal datum were greater and the concentrations of heavy metal varied greatly. There were significant relationships between heavy metals except As. The results of principal component analysis revealed that three components could be chosen to represent the data set. The first factor include Cr, Ni and Zn, the second factor include Pb and Hg, while As was strongly related to the third component
     PAHs with 3-ring, 4-ring and 5-ring numbers were dominated in the contaminated flow from soil-water interfaces of study area, the contribution of which were quantified as 36.49%、26.34% and 27.85%, respectively. Except PAHs with high-ring, the concentrations of PAHs with low-ring, median-ring and total PAHs were in lognormal distribution. The coefficients of variation of each PAHs were almost big. The relationships between fourteen PAHs and total PAHs were significant except for Dba and Inp. The relationships of Flu, Pyr, BaA and Chr to total PAHs were the strongest, which belongs to PAHs with 4-ring. At confidence levels of 0.01, the relationships coefficients were 0.90、0.84, 0.87 and 0.89 respectively.
     PAHs sources of contaminated flow from soil-water interfaces of study area were examined using principal component analysis, ration method and typical source of triangle plot. The results of principal component analysis revealed that five components could be chosen to represent the data set. The first factor mainly includes PAHs with high-ring, which reveals the synthetical contribution by traffic exhausts and coal combust, ion source. The second factor mainly includes PAHs with low-ring, which represents the process of atmospheric deposition. The third factor reflected the effect of Flu、Phe and Pyr and shows the typical character of combustion source. The forth factor include Acy and Inp, which reflected the straw combustion and petrolic source. In the end, Dba was especially reflected by the fifth component.
     Phe/Ant ratio showed that incomplete combustion was the primary source of PAHs. All Flu/Pyr ration was bigger than 1.0 in the study area, which inferred that coal combustion and biomass burning were the main sources. Bar/Chr ration was bigger than 0.5 in some of the samples, which concluded that the primary source of these samples was combustion source. Some Bar/Chr ration was 0.25-0.35 reflected that mixed source of petroleum and combustion. Few Bar/Chr ration was lower than 0.25 that indicated petroleum source.
     The analysis result of typical source of triangle plot included that combustion process was the primary source that contains coal combustion, straw burning, high-temperature combustion of engine, oil combustion and biomass burning. It was clear that low-ring, median-ring and high-ring PAHs did not dominate total PAH burden. The results showed that PAHs in the samples were not come from the single source and may be affected by the joint of multiple pollution sources.
     (2) Based on geostatistical technique, spatial variability and distribution of heavy metal and PAHs were analyzed.
     The results showed that the spatial structures of seven heavy metals were isotropy and the ranges were 4040-7404 meters. As and Cd were strong spatial relationship in a small scale and it was median spatial heterogeneity of Zn, Ni, Cr. Except As, other heavy metals obvious showed nugget effect. Semivariogram of As, Zn, Cr, Pb and Cu could be fitted well with spherical model. And semivariogram of Ni and Cd could be fitted well with exponential model. The spatial structure of Cu and Pb were obvious spatial trend, kriging with trend was used to estimate spatial distribution.
     The spatial structures of low-ring and high-ring PAHs were isotropy and semivariogram could be fitted well with spherical model. Result form geostatistical analysis demonstrated that low-ring PAHs have a weak spatial heterogeneity, high-ring PAHs have a median spatial heterogeneity and median-ring PAHs have no spatial heterogeneity. Ordinary kriging was used to estimate spatial distribution of low-ring and high-ring PAHs. IDW was used to estimate spatial distribution of median-ring PAHs. Overlay analysis was used to attain spatial distribution of total PAH.
     (3) Based on probability density function and Monte-carlo model, ecological risk method was constructed to assess the ecological risk of heavy metal and PAHs in study area.
     The results showed that the ecological risk probability of Cu, Cd and Pb were 80.75%, 43.09% and 16.49%, respectively. Based on Rapant index, the results of ecological risk assessment showed that 50.3% of study area was in degree of none or low ecological risk, 13.75% of study area was in degree of moderate ecological risk and 13.61% of study area was in degree of high ecological risk.
     The potential ecological risk of Phe、Ant、Pyr、BkF and Bghip was low, which had small harm to ecosystem. The potential ecological risk of Nap、Ncy、BbF、Bap existed and could harm to ecosystem. By contrast, the potential of Ace、Fl、Flu、BaA、Chr、DahA was high and the probability harm to ecosystem was also high. For total PAH, the risk probability of 90% was higher than ERL or ESQVL and the risk probability of 11.21% was higher than ERM or ISQVH.
引文
[1]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [2]陈煌,郑袁明,陈同斌.面向应用的土壤重金属信息系统(SHMIS)—以北京为例.地理研究.2003,22(3):272-280.
    [3]Fent K.2004.Ecotoxicological effects at contaminated sites.Toxicology,205(3):223-240.
    [4]Paton G I,Viventsova E,Kumpene J,et al.2006.An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula.Science of the Total Environment,355(1-3):106-117.
    [5]赵杰,秦明周,郑纯辉.城乡结合部土壤环境质量及其动态研究—以开封为例[J].资源科学.2001,23(3):42-46.
    [6]钟晓兰,周生路,赵其国.城乡结合部土壤污染及其生态环境效应[J].土壤.2006,38(2):122-129.
    [7]师荣光,刘凤枝,王跃华,赵玉杰,李玉浸,郑向群,姚秀荣.农产品产地禁产区划分中存在的问题与对策研究[J].农业环境科学学报.2007,26(2):425-429.
    [8]国家环境保护总局.中国环境状况公报,中国环境报.1999-06-17(2).
    [9]曹仁林.关于我国农业环境和农产品污染问题的思考[J].香山会议第162次学术讨论会筹备组(编).经济快速发展地区环境质量演变及持续发展,北京香山:2000,44-46.
    [10]曹仁林,贾晓葵.关于我国土壤重金属污染对农产品安全性影响的思考[J].厦门:第七次全国土壤与环境学术讨论会论文集.2001,11:2-5.
    [11]农业部环境监测总站.《2002年“五市三区”蔬菜生产基地环境质量监测报告》.2002.
    [12]曾希柏,李莲芳,梅旭荣.中国蔬菜地土壤重金属含量及来源分析[J].中国农业科学,2007,40(11):2507-2517.
    [13]柴世伟,温琰茂,韦献革,张云霓,董汉英,陈玉娟.珠江三角洲主要城市郊区农业土壤的重金属含量特征[J].中山大学学报(自然科学版).2004,7,43(4):90-94.
    [14]林玉锁.农产品产地环境安全与污染控制[J].科技与经济.2004.4,100(17):41-44.
    [15]曲健,宋云横,苏娜.沈抚灌区上游土壤中多环芳烃的含量分析[J].中国环境监测.2006.6,22(3):29-31.
    [16]Wang X L,Tao S,Xu F L,et al.Modeling the fate of benzo[a]pyrene in the wastewater irrigated areas of Tianjin with a fugacity model.Journal of Environmental Quality.2002,31(3):896-903.
    [17]郑一,王学军,李本纲,曹军,陶澍,刘瑞民.天津地区表层土壤多环芳烃含量的中尺度空间结构特征[J].环境科学学报.2003.5,23(3):311-316.
    [18]段永红,陶澍,王学军,李本纲,徐福留,刘文新,曹军,朱利中,骆永明.天津表土中多环芳烃含量的空间分布特征与来源[J].土壤学报.2005.11,42(6):942-947.
    [19]刘瑞民,王学军,郑一,陶澍,沈伟然,秦宝平,孙韧,张文具.天津地区表层土壤多环芳烃的分区特征研究[J].农业环境科学学报.2005,24(4):630-633.
    [20]吕晓男,孟赐福,麻万诸,陈晓佳.农用化学品及废弃物对土壤环境及食物安全的影响[J].中国生态农业学报.2005.10,13(4):150-153.
    [21]贺缠生,傅伯杰.非点源污染的管理与控制[J].环境科学,1998,19(5):87-91.
    [22]王晓燕.非点源污染及其管理[M].2003.北京:海洋出版社.
    [23]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [24]鲁如坤,谢建昌,蔡贵信等.土壤—植物营养学[J].北京:化工工业出版社,1998.139-140.
    [25]辜来章,郝淑英.农田径流污染特征及模型化研究[J].中国农村水利水电,1996.9:32-56.
    [26]Gayor J.D.and Van I.J.Atrazine and metolachlor loss in surface and subsurface runoff from three tillage treatments in corn.J.Environ.Qual.1993,24:246-256.
    [27]宋秀杰,陈博.北京市农药化肥非点源污染防治的技术措施[J].环境保护,2001,9:30-32.
    [28]郭旭东,陈利顶,傅伯杰.土地利用/土地覆盖变化对区域生态环境的影响[J].环境科学进展,1999,12,7(6):66-75.
    [29]王宁,朱颜明.松花湖水源地重金属非点源污染调查[J].中国环境科学,2000,20(5):419-421.
    [30]王文华,刘俊华,彭安.降水引起的地表径流中汞来源的研究[J].农业环境保护,2001,20(5):297-301.
    [31]李慧卿.城郊水土保持探讨[J].水土保持通报.1998.12,18(7):97-98.
    [32]李爱峰,张玉龙,宋佩茹,孟维忠,李春龙.城市水土流失特点及防治对策[J].水土保持科技情报,2002.2:35-36.
    [33]刘伟常.深圳市水土保持生态环境建设调查[J].水土保持通报,1999,19(5):49-53.
    [34]黄俊,张旭,彭炯等.暴雨径流污染负荷的时空分布与输移特性研究[J].农业环境科学学报,2004,23(2):255-258.
    [35]Wang XX,Zhang TL,Zhang B.Nutrinent cycling and balance of sloping upland ecosystems on red soil.Acta Ecology Sinica,1999,19(3):335-341.
    [36]周启星,程云,张倩茹,梁继东.复合污染生态毒理效应的定量关系分析[J].中国科学(C辑).2003.12,33(6):566-573.
    [37]周启星,孔繁翔,朱琳.生态毒理学[M].2004.北京:科学出版社.
    [38]D S Fisher,J L Steiner,D M Endate,etal.The relationship of land use practices to surface water quality in the Upper Oconee Watershed of Ceorgia[J].Forest Ecology and Management,2000,128:39-48.
    [39]Elizabeth Neoye,John F Machiwa.The influence of land use patterns in the Ruvu river watershed on water quality in the river system[J].Physics and Chemistry of the Earth,2004,29:1161-1166.
    [40]Gayor J.D.and Van I.J.Atrazine and metolachlor loss in surface and subsurface runoff from three tillage treatments in corn[J].J.Environ.Qual.1993,24:246-256.
    [41]St'ephane Gamaud.Heavy metal concentrations in dry and wet atmospheric deposits in Paris district:comparision with urban runoff.The Science of the Total Environment.1999,235:235-245.
    [42]KLOKE ADR,SAVERBBCK.Changing Metal Cycles and Human health[M].Berlin: Springer-verlag,1984,113-114.
    [43]张乃明.大气沉降对土壤重金属累积的影响[J].土壤与环境.2001,10(2):91-93.
    [44]叶兆贤,张干,邹世春,李军,祁士华,刘国卿.珠三角大气多环芳烃的干湿沉降[J].中山大学学报(自然科学版),2005.1,44(1):49-52.
    [45]周启星.健康土壤学—土壤健康质量与农产品安全[M].北京:科学出版社,2005.
    [46]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J].生态环境,2005,14(1):1-5.
    [47]杨正亮,冯贵颖,呼世斌,郑雪斌.水体重金属污染研究现状及治理技术[J].干旱地区农业研究,23(1):219-222.
    [48]Corwin D.L.,Vaughan P.J.,and Loague K..Modelling non-point sources pollutants in the vadose zone with GIS[J].Environ.Sci.Technol,1997,31:2157-2175.
    [49]W U J S,ALLAN C J,et al.Characterization and pollutant loading estimation for highway runoff[J].J.Envir.Engrg,ASCE,1998,124(7):584-592.
    [50]Delietic A B,Maksimovic C T.Evaluation of Water Quality Factors in Storm Runoff from Paved Areas[J].J of Environ Eng,ASCE,1998,124(9):869-879.
    [51]Li H.,Shen J.Mathematic model of non-point source pollution[M].Northwestern Polytechnical University Press,Xi'an.1996,8-13.
    [52]Novotny V.A.,Olem H.Water Quality:Prevention,Identification and Management of Diffuse Pollution.Van Nostrand Reinhold,1994,New York,NY,1054p.
    [53]Gromaire M C,Gamaud S.Contribution of different sources to the pollution of wet weather flows in combined sewers[J].Water Research,2001,35(2):521-533.
    [54]Gromaire M C,Gamaud S.Characterization of urban runoff pollution in Paris[J].Water Science&Technology,1999,39(2):1-8.
    [55]赵剑强,孙奇清.城市道路路面径流水质特性及排污规律[J].长安大学学报(自然科学版),2002.3,22(2):1-23.
    [56]赵剑强,闫敏.城市路面径流污染的调查[J].中国给水排水,2001,17(1):33-35.
    [57]尹澄清,毛战坡.用生态工程技术控制控制农村非点源污染[J].水土保持学报.2002,13(2):229-232.
    [58]曹志洪,林先贵等.太湖流域土-水间的物质交换与水环境质量[M].北京:科学出版社.2006.
    [59]张路,范成新,王建军,郑超海.太湖水土界面氮磷交换通量的时空差异[J].环境科学,2006.8,27(8):1537-1543.
    [60]单保庆,尹澄清,白颖等.小流域磷污染物面源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37.
    [61]黄满湘,章申,张国梁等.北京地区农田氮素养分随地表径流流失机理[J].地理学报,2003,58(1):147-154.
    [62]Martinova M V.Nitrogen and Phosphor Compounds in Bottom Sediments-Mechanisms of Accumulation,Transformation and Release[J].Hydrobiologia,1993,25(1):1-22.
    [63]许峰,蔡强国,吴淑安.坡地农林复合系统养分过程研究进展.水土保持学报.2000,14(1):83-87.
    [64]Wang Q J,Robert H,Shao M.Effective energy influence on soil potassium transport into runoff[J].Soil Science,2002,167(6):369-376.
    [65]M.A.Z(o|¨)bisch,C.Richter,B.Heiligtag,R.Schlott.Nutrient Iossess from cropland in the Central Highlands of Kenya due to surface runoff and soil erosion.Soil and Tillage Research.1995.2,33(2):109-116.
    [66]陈子明,袁锋明,姚造华等.北京潮土硝态氮在土体中的迁移特点及其淋溶动态.土壤学报,1995,32(4):388-398.
    [67]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤.2000(4):188-193.
    [68]袁新民,王周琼.硝态氮的淋溶及其影响因素.干旱区研究.2000,17(4):46-52.
    [69]胡承孝,邓波儿,刘同仇.武汉市菜园土硝酸盐的持留和运移.土壤学报.1993,24(3):118-120.
    [70]Scholz M,Prepel M.Water quality characteristics of vegetated groundwater-fed ditches in a riparian peat land[J].Science of the Total Environment,2004,332:109-122.
    [71]Hooda P S,Moynagh M,Svoboda I F,et al.Stream water nitrate concentration in six agricultural catchments in Scotland[J].Science of the Total Environment,1997,201:63-78.
    [72]Wang X H,Yin C Q,Shah B Q.The role of diversified landscape buffer structures for water quality improvement in an agricultural watershed,North China[J].Agriculture,Ecosystems and Environment,2005,107:381-396.
    [73]Bergstrom L,Brink N.Effects of differentiated application of fertilizer N leaching losses and distribution of inorganic N in soil[J].Plant and Soil,1986,93(3):333-345.
    [74]Webb J,Henderson D,Anthony S G。Optimizing livestock manure applications to reduce nitrate and ammonia pollution:scenario analysis using the MANNER model[J].Soil Use and Management,2001,17:188-194.
    [75]Mulucen J,Rodgers M,Scally P.Phoshorus transfer from soil to surface waters[J].Agricultural Water Management,2004,10:1-15.
    [76]张淑荣,陈利顶,傅伯杰.农业区非点源污染敏感性评价的一种方法[J].水土保持学报,2001,15(6):56-59.
    [77]Pant H K,blair V D,Reddy K R,etal.Influence of flooding on phosphorus mobility in manure impacted soil[J].J Environ Qual,2002,31:1399-1405.
    [78]White J R,Reddy K R,Majer-Newman J.Hydrologic and vegetation effects on water column phosphorus in wetland mesocosms[J].Soil Sci Soc Am J,2006,70:1242-1251.
    [79]Sharpley A N.Soii phosphorus dynamics:agronomic and environmental impacts[M].Ecological Engineering,1995,5:261-279.
    [80]田娟,刘凌,丁海山,陈涛.淹水土壤土-水界面磷素迁移转化研究[J].环境科学,2008.7,29(7):1818-1823.
    [81]朱利中,陈宝梁,葛渊数,过春燕.对硝基苯酚在阴-阳离子有机膨润土/水间的界面行为研究.环境化学.2000.9,19(5):319-425.
    [82]刘维屏,许惠庆.丁草胺在水稻田植株-水体-表土系统的迁移降解规律.浙江大学学报.1990,24(1):83-92.
    [83]华珞,李俊波,蔡典雄等.不同地表状况、降雨强度与坡度对径流水中K、Na、Ca、Mg 流失量的影响[J].土水保持学报.2004,18(6):11-20.
    [84]李俊波,华珞,付鑫,蔡典雄,冯琰,朱凤云,马礼,周万荣.地表径流中K、Na流失量分析及其影响因素研究[J].中国水土保持,2005.2,5-7.
    [85]党秀丽,陈彬,虞娜,张玉玲,黄毅,张玉龙.温度对外源性重金属镉在土-水界面间形态转化的影响[J].生态环境,2007,16(3):794-798.
    [86]Wilson M J,Bell N.Acid deposition and heavy metal mobilization[J].Applied Geochemistry,1996,11(1-2):133-137.
    [87]葛冬梅.太湖地区有机氯农药在土-水界界面中的迁移特点研究.扬州大学硕士学位论文.2002.
    [88]何艳.五氯酚的土水界面行为及其在毫米级根际微域中的消减行为.浙江大学博士学位论文.2006.
    [89]周修萍,江静蓉,梁伟,秦文涓.模拟酸雨对南方五种土壤理化性质的影响[J].环境科学,1992,9(3):6-12.
    [90]Haartikainen H S.Soil response to acid percolation:acid-base buffering and cation leaching[J].J.Environ.Qual.,1996,25:638-645.
    [91]Zeng G M,Zhang G,Huang G H,et al.Exchange of Ca~(2+),Mg~(2+) and K~+ and uptake of H~+,NH_4~+ for the subtropical forest canopies influenced by acid rain in Shaoshan forest located in Central South China[J].Plant Science,2005,168(1):259-266.
    [92]Jia-En Zhang,Ying OuYang,Da-Jiong Ling.Impacts of simulated acid rain on cation leaching from the Latosol in south China[J].Chemosphere,2007,67:2131-2137.
    [93]凌大炯,章家恩,黄倩春等.模拟酸雨对砖红壤盐基离子迁移和释放的影响[J].土壤学报,2007,44(3):444-450.
    [94]高连存.模拟酸雨条件下降尘中Cu,Pb,Zn,Cr各形态的溶出和转化研究[J].环境化学,1994,13(5):448-451.
    [95]金彩霞,周启星.pH对水-土界面镉迁移特征的影响[J].沈阳建筑大学学报,2007.7,22(4):626-652.
    [96]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999.1,19(1):81-86.
    [97]Wilson M J,Bell N.Acid deposition and heavy metal mobilization[J].Applied Geochemistry,1996,11(1-2):133-137.
    [98]Liao M,Huang C.Effect of pH on transfer of Cd through soil to water[J].Acta.Environ.Sci.1999,19(1):81-86.
    [99]Mench M,Baize D,Mocquor B.Cadmium availability to wheat in five soil series from the Yonne district,Burgunday,France[J].Environ.Pollut.1997,95:93-103.
    [100]蒋建清,吴燕玉.模拟酸雨对草甸棕壤中重金属迁移的影响[J].中国科学院研究生院学报,1995.10,12(2):185-190.
    [101]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及形态转化的影响[J].应用生态学报,2003.9,14(9):1547-1550).
    [102]许中坚,李方文,刘广深,刘维屏.模拟酸雨对红壤中铬释放的影响研究[J].环境科学研究,2005,18(2):9-12.
    [103]许中坚,刘广深.模拟酸雨对南方红壤镉释放的影响[J].农村生态环境,2004,20(4):1-5.
    [104]A talay A,Broniek C,Pao S,et al.Nutrient and Microbial Dynamics in Biosolids Amended Soils Following Rainfall Simulation[J].Soil &Sediment Contamination,2007,16:209-219.
    [105]张华,杨永奎,谢德体,等.酸雨对紫色土氮磷淋失的影响[J].土水保持学报,2007,21(1):22-25.
    [106]曾曙才,吴启堂,侯焕英,丘锦荣.模拟酸雨对施肥条件下赤红壤氮磷淋失特征的影响[J].水土保持学报,2007.12,21(6):16-20.
    [107]钱晓莉,王定勇.不同施肥条件下酸雨对土壤硝态氮淋失的影响[J].贵州工业大学学报,2005.2,34(1):99-102.
    [108]张伟,王进军.溶液pH值及模拟酸雨对两种磺酰脲类除草剂在土壤中行为的影响[J].应用生态学报,2007,18(3):613-619.
    [109]Young R A,Wiersma J L.The role of rainfall impact in soil detachment and transport[J].Water RESOURCES Research,1973,9(6):1629-1636.
    [110]Legret M,Colandimin V.Effects of a porous pavement with reservoir structure on runoff water:Water quality and fate of heavy metals.Wat Sci Technol,1999,39(2):111-117.
    [111]Keeney D R.The nitrogen circle in sediment-water systems[J].J Environ Qual,1973,2(1):15-291.
    [112]孙飞达,王立,龙瑞军,等.黄土丘陵区不同降雨强度对农地土壤侵蚀的影响[J].土水保持学报,2007,14(2):16-18.
    [113]高海鹰,黄丽江,张奇,徐力刚.不同降雨强度对农田土壤氮素淋失的影响及LEACHM 模型验证.农业环境科学学报,2008,27(4):1346-1352.
    [114]杨丽霞,杨桂山,苑韶峰,吴业.不同雨强条件下太湖流域典型蔬菜地土壤磷素的径流特征[J].环境科学,2007,8:1763-1769.
    [115]Sharpley A N,Smith S J,Jones O R.The transportation of bioavailabel phosphorous in agriculture runoff[J].J Environ Qual,1992,21:30-35.
    [116]Kleinman P J A,Srinivasan M S,Curtis D,et al.Role of rainfall intensity and hydrology in nutrient transport via surface runoff[J].J Environ Qual,2006,35:1248-1259.
    [117]江忠善,刘志.降雨因素和坡度对溅蚀影响的研究[J].水土保持学报,1989,3(2):29-35.
    [118]王瑄,李占斌,李雯,等.土壤剥蚀率与水流功率关系室内模拟实验[J].农业工程学报,2006,22(2):185-187.
    [119]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与试验研究[J].地理学报,1999.54(4):347-356.
    [120]李俊波,华珞,蔡典雄,等.降雨强度与坡度对径流中七种阳离子流失量的影响[J].土壤,2005,37(4):426-432.
    [121]Budhendra B,Jon H,Bernie E,et al.Assessing watershed-scale,long-term hydrologic impacts of land-use change using a GIS-NPS model[J].Environmental Management,2003,26(6):643-658.
    [122]高鹏,穆兴民.黄土丘陵区不同土地利用方式下土壤水分入渗的对比试验[J].中国水土保持科学,2005,3(4):27-31.
    [123]Vladimir Novotny.Integrating diffuse/nonpoint pollution control and water body restoration into watershed management[J].Journal of the American Water Resources Association,1999,35(4):717-722.
    [124]李恒鹏,杨桂山,李燕.太湖流域土地利用变化的营养盐输出响应模拟[J].水土保持学报,2006,20(4):179-182.
    [125]Ng H Y F,Drury C F,Serem V K,et al.Modeling and testing of the effect of tillage,Cropping and water management practices on nitrate leaching in clay loam soil[J].Agricultural and Water Management,2000,43:111-131.
    [126]Peter.John M.T.and correll D.I.Nutrient dynamics in an agricultural watershed:observations on the role a riparian forest[J].Ecology,1984,65(5):1466-1475.
    [127]袁冬海,王兆塞,陈欣等.不同土地利用方式红壤坡耕地土壤氮素流失特征[J].应用生态学报,2002,13(7):863-866.
    [128]郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响.环境科学进展,1999.12,7(6):66-75.
    [129]李兆富,杨桂山,李恒鹏.西苕溪流域土地利用对氮素输出影响研究[J].环境科学,2006,27(3):498-502.
    [130]梁涛,王红萍,张秀梅,等.官厅水库周边不同土地利用方式下氮、磷非点源污染模拟研究[J].环境科学学报,2005,25(4):483-489.
    [131]袁艺,史培军.土地利用对流域降雨-径流关系的影响—SCS 模型在深圳市的应用[J].北京师范大学学报(自然科学版),2001,37(1):131-136.
    [132]李怀恩,沈冰.流域暴雨产沙产污量过程的计算[J].土壤侵蚀与水土保持学报,1997.6,3(2):58-61.
    [133]李怀恩,沈晋.非点源污染数学模型[M].西安:西北工业大学出版社,1996.
    [134]陈西平,黄时达.涪陵地区农田径流污染输出负荷定量化研究[J].环境科学,1991,12(3):6-11.
    [135]李定强,王继增,万洪复,邓南荣,刘平.广东省东江流域典型小流域非点源污染物流失规律研究[J].土壤侵蚀与水土保持学报,1998,4(3):12-18.
    [136]贺宝根,周乃冕,胡雪峰,高效江,王少平.农田降雨径流污染模型探讨—以上海郊区农田氮素污染模型为例[J].长江流域资源与环境.2001.10(3):159-165.
    [137]CSATHO P,SISAK I,ADIMSZKY L,et al.Agriculture as a source of phosphorus causing eutrophication in Central and Eastern Europe[J].Soil Use and Management,2007(23):36-56.
    [138]BOTE S P C M.Nutrient emissions from agriculture in the Netherlands.Causes and remedies[J].Water Science and Technology,1996(23):183-190.
    [139]Donigian A S et al.Agricultural runoff management(ARM) model.Version 2:Refinement and testing.EPA 600/3-77-098.Environmental Research Laboratory,U.S.EPA.Athens.GA,1997,293.
    [140]胡雪涛,陈吉宁,张天柱.非点源污染模型研究[J].环境科学,2002,23(3):124-128.
    [141]NeitSch S.L,Aronld J.Q Williains J.R.Soil and Water Assessment Tool User's Manual 99.2[M].1999,808 East Blackland Rd,Temple,Texas:USDA,Agriculture Research Service and Grassland Soil and Water Research Laboratory.
    [142]Williams JR,Jones CA.Dyke PT.A modeling approach to determining the relationship between erosion and soil productivity[J].Transactions of the ASAE,1984,27(1):129-144.
    [143]Leonard R A,Knisel W G,Still D A.GLEAMS:ground-water loading effects of agricultural management systems[J].Trans ASAE,1987,30(5):1403-1418.
    [144]Williams J R,Nicks A D,Arnold JG.Simulator for water resources in Rural Basins[J].J Hydraul Eng,1985,111(6):170-196.
    [145]A mold J G,Simivasan R,Muttiach T S.Larage area hydrologic modeling assessment part Ⅱ:Model application[J].JAWAR,1998,43(1):91-101.
    [146]R.A.Young,C.A.Onstad etc.,AGNPS:A nonpoint source pollution model for evaluating agricultural watersheds[C].Soil and Water Conservation,March-April,1989,1:168-173.
    [147]李怀恩,沈晋.非点源污染数学模型[M].西安:西北工业大学出版社,1996.
    [148]章北平.东湖农业区径流污染的黑箱模型[J].武汉城市建设学院学报,1996,13(3):105.
    [149]焦荔.USLE模型及营养物流失方程在西湖非点源污染调查中的应用[J].环境污染与防治,1991,13(6):5-8.
    [150]王宏,杨为瑞.中小流域综合水质模型系列的建立[J].重庆环境科学,1995,(1):45-50.
    [151]HESSIOA W C.A geographic information system for targeting nonpoint source agricultural pollution[J].Journal of Soil and Water Conservation,1998(3):264-266.
    [152]Arhonditsis G,Tsirtsis G,Angelidis M O,et al.Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication:Applications to a semi-enclosed gulf in the Mediterranean Sea[J].Ecological Modeling,2000,129:209-227.
    [153]JOAO E M.GIS implications for hydrologic modeling:simulation of nonpoint scenarios[J].Comput Environ and Urban System,1992,16:42-63.
    [154]BHASKAR N P.Hydrologic parameter estimation using geographical information system[J].Journal of water Resources Planning and Management,1992,118:492-512.
    [155]SMITH M B,VIDAMAR A.Data set derivation for GIS-based hydrological modeling[J].Photogrammetric Engineering and Remote Sensing,1994,60:67-76.
    [156]HESSLING M.Hydrological modeling and a pair basin study of Mediterranean catchments [J].Physics and Chemistry of the Earth,Part B:Hydrology,Oceans and Atmosphere,1999,24(1-2):59-63.
    [157]Srinivasan R,Amold J,etal.Hydrologic modeling of Texas gulf basing using GIS[A].In:Goodchild M F,Steyaert L T,Park B O,eds.GIS and Environmental Modeling:Progress and Research Issues[C].USA:Fort Collins,1996:213-217.
    [158]Engel Bemard A.Methodologies for development hydrologic response units based on terrain,land cover,and soil data[A].In:Goodchild M F,Steyaert L T,Park B O,eds.GIS and Environmental Modeling:Progress and Research Issues[C].USA:Fort Collins,1996:123-128.
    [159]沈晓东,王腊春,谢顺平.基于栅格数据的流域降雨径流模型[J].地理学报, 1995,50(3):264-271.
    [160]董亮.GIS支持下西湖流域水环境非点源污染研究[D].浙江大学博士学位论文.2001.
    [161]梁天刚,张胜雷,戴若兰,徐雨清.基于GIS栅格系统的集水农业地表产流模拟分析[J].水利学报,1998(7):26-29.
    [162]蔡崇法,丁树文.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量研究[J].水土保持学报,2000,14(2):19-24.
    [163]游松财,李文卿.GIS支持下的土壤侵蚀量估算[J].自然资源学报,1999,14(2):63-68.
    [164]Pullar D,Springer Darren.Towards integrating GIS and catchment model[J].Environmental Modelling & Software,2000,15:451-459.
    [165]BECK M B.Water quality modeling:a review of the analysis of uncertainty[J].Water Resource Research,1987,23(8):1393-1442.
    [166]WARWICK J J,WILSON J S.Estimating uncertainty of stormwater runoff computations [J].Water Resources Planning and Management,1990,116(2):187-204.
    [167]LEI Jian-hua,SCHILLING W.Parameter uncertainty propagation analysis for urban rainfall modeling[J].Water Resources Planning and Management,1994,29(1-2):145-154.
    [168]PARSON S C.The impact of input parameter uncertainty on decision making with the agricultural nonpoint source pollution model[D].University Park:The Pennsylvania State University,1995.
    [169]MURDOCH E C,WHELAN M J,CRIEVE I C.Incorporating uncertainty into predictions of diffuse-source phosphorus transfers(using readily available data)[J].Water Science and Technology,2005,51(3-4):339-346.
    [170]M.Meul,M.Van Meirvenne.Kriging soil texture under different types of nonstationarity [J].Geoderma,2003,112:217-233.
    [171]Andrew W,Western,G(u|¨)nter Bl(o|¨)schl,Rodger B.Grayson.Geostatistical characterization of soil moisture patterns in the Tarrawarra catchment[J].Journal of Hydrology,1998,205:20-37.
    [172]LIN Y P.Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals[J].Environmental Geology,2002,42:1-10.
    [173]Bloschl G,Sivapalan M.Scale issues in hydrological modeling:a review[J].Hydrol.Proc.,1995,9(3-4):251-290.
    [174]Ngabe B.Terry F B,Geoffrey I S.Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina[J].Science Total Environment,2000,255:1-9.
    [175]Noss R.F.High-risk ecosystems as foci for considering biodiversity and ecological integrity in ecological risk assessments[J].Environmental Science and Policy,2000,3(6):321-332.
    [176]Gough M.Human and ecological risk assessment theory and practice[J].Regulatory Toxicology and Pharmacology,2003,37(2):341-342.
    [177]Lipton J,Galbraith H,Burger J,et al.A Paradigm for Ecological Risk Assessment[J].Environmental MManagement,1993(17):1-5.
    [178]Hunsaker C T,Grahm R L,Surer G W,et al.Assessimg Ecological Risk on a Regional Scale[J].Environmental Management,1990,(14):325-332.
    [179]Barata C,Markich S J,Baird D J,et al.Genetic variability insublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus[J].Aquatic Toxicology,2002,60:85-99.
    [180]Behnisch P A,Hosce K,Sakai S.Combinatorial Bio/Chemical Analysis of Dioxin and Dioxin and Dioxin-Like Compounds in Waste Recycling,Feed/Food,Humans/Wildwife and the Enviornment.Environ Int,2001,27(6):441-442.
    [181]Gawel J E,Ahner B A,Fredland A J et al.Role for Heavy Metal in Forests Decline Indicated by Phytochelatin Measurements.Nature,1996,381:64-65.
    [182]Van der Oost R,Beyer J,Vermeulen N P E.Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment a Review.Environmnental Toxicology and Pharmacology,2003,13:57-149.
    [183]Aurand D.The application of ecological risk assessment principles to dispersant use planning[J].Spil Science & Technology Bulletin,1995,2(4):241-247.
    [184]Duvall SE,Barron MG A screening level probabilistic risk assessment of mercury in Florida Everglades food webs[J].Ecotoxicol.Environ.Safe,2000,47:298-305.
    [185]马德毅,王菊英.中国主要河口沉积物污染及潜在生态风险评价[J].中国环境科学,2003,23(5):521-525.
    [186]Weyers A,Sokuli-kl(u|¨)ttgen B,Knacker T,Martin S and C.A.M.Van Geste.Use of Terrestrial Model Ecosystem Data in Environmental Risk Assessment for Industrial Chemicals,Biocides and Plant Proteciton Products in the EU[J].Ecotoxicology,2004,13:163-176.
    [187]Iwasa Y,Hakoyama H,NNakamaru M,Nakanishi J.Estimate of population extinction risk and its application to ecological risk management[J].Population ecology,2000,42(1):73-80.
    [188]Lammert K,Leuven R S,Nienhuis P H,Wehrens R,Lutgarde M.C.Buydens.A procedure for incorporating spatial variability in ecological risk assessment of Dutch river flood plains[J].Envrionmental Management,2001,28(3):359-373.
    [189]李谢辉,李景宜.我国生态风险评价研究.2008.3,22(3):70-74.
    [190]殷浩文.水环境生态风险评价程序[J].上海环境科学,1995,14(11):11-14.
    [191]刘永兵,岳德鹏,李海龙,王计平,黄月艳.基于GIS技术的县域尺度土地利用生态风险评价研究[J].应用基础与工程科学学报,2006.12,14(s):291-297.
    [192]张学林,王金达,张博,洪梅.区域农业景观生态风险评价初步构想[J].地球科学进展,2000,15(6):712-716.
    [193]付在毅,许学工.区域生态风险评价[J].地球科学进展,2001,16(2):267-271.
    [194]孙心亮,方创琳.干旱区城市化过程中的生态风险评价模型及应用[J].干旱区地理,2006,29(5):668-674.
    [195]Wu J S,Allan C J.Characterization and pollutant loading estimation for highway runoff[J].J of Envir Engrg ASCE,1998,124(7):584-592.
    [196]郑一,王学军,刘瑞民,陶澍.天津地区土壤多环芳烃的克里格插值与污染评价[J].中国环境科学,2003,23(2):113-116.
    [197]Chung,M.K.,Hu,R.,Cheung,K.C.,et al.Pollutants in Hong Kong soils:Polycyclic aromatioc hydrocarbons[J].Chemosphere.,2007,67(3):464-473.
    [198]Ma,L.L.,Chu,S.G,Wang,X.T.,et al.Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing,China[J].Chemosphere,2005,58(10):1355-1363.
    [199]Beg M U,Saeed T,Al-Muzaini S,et al.Distribution of petroleum hydrocarbon in sediment from coastal area receiving industrial effluents in Kuwait[J].Envrionmental Safety,2003,5447-55.
    [200]Mai B X,Fu J M,Sheng G Y,et al.Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta,China[J].Environmental Pollution,2002,117(3):457-474.
    [201]Larsen,Randolph k.and Baker Joel E.Source Apportionment of polycyclic aromatic hydrocarbons in the ruban atmosphere:a comparison of three methods.Environmental Science and Technology,2003,37(9);1873-1881.
    [202]Venkataraman,Chandra,Lyons,James M.and Friedlander,Sheldon K.Size Distributions of Polycyclic Aromatic Hydrocarbons and Elemental Carbon.l.Sampling,Measurement Methods,and Source Characterization[J].Environmental Science and Technology,1994,28(4):555-562.
    [203]Duval,M.M.and Fredlander,S.K.Source resolution of polycyclic aromatioc hydrocarbons in the Los Angeles atmospheres Application of a CMB with Fisrst Order Decay.U.S.EPA Report EPA-600/2-81-161;U.S.Government Printing Office:Washington,DC,1981.
    [204]Harrison R M,Smith D J T,Luhana L.Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham[J].Environmental Science and Technology,1996,30(3):825-832.
    [205]Simick M F,Eisenrich S j,Lioy P J.Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and lake Michigan[J].Atmoshperic Environment,1999,33(30):5071-5079.
    [206]Gschwend,Philip M.and Hites,Ronald A.Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States[J].Geochimica et Cosmochimica Acta,1981,45(12):2359-2367.
    [207]Ynker,M B.,Macdonald,R.W.,Vingarzan,et al.PAHs in the Fraser River basin:a critical appraisal of PAH rations as indicators of PAH source and composition[J].Organic Geochemistry,2002,33(4):489-515.
    [208]McGraph D.,Zhang G.S.,Carton O.Geostatistical analyses and hazard assessment on soil lead in Silevermines,area Ireland[J].Environmental Pollution,2004,127:239-248.
    [209]师荣光,赵玉杰,周启星,李野,刘凤枝,孙丽.苏北优势农业区土壤砷含量空间变异性研究[J].农业工程学报,2008.1,24(1):80-84.
    [210]赵玉杰,师荣光,白志鹏,傅学起,刘凤枝,高怀友.山东淄博玉米产区土壤砷含量空间变异研究[J].环境科学,2006.8,27(8):1676-1681.
    [211]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [212]Juang K.W.,Lee D.Y.,Ellsworth T.R.Using rank order geostatistics for spatial interpolation of highly skewed data in a heavy-metal contaminated site[J].Envrionmenta Qualiy,2001,30:849-903.
    [213]丘昌恩.六种常见重金属对藻类的毒性效应概述[J].重庆医科大学学报, 2006,31(5):776-779.
    [214]杨红玉,王焕校.某些绿藻对镉的富集及其毒性反映[J].环境科学学报,2001,21(3):328-332.
    [215]Hutchinson T C et al.Effect of nahthalene and aueous crude oil extracts on the green flagellate chlamydomonas angulosa[J].Canadian Journal of Botany,1991,59:742-749.
    [216]王丽平,郑丙辉,孟伟.多环芳烃对海洋硅藻中肋骨条藻的光毒性效应.环境科学研究,2007.20(3):128-132.
    [217]Madoni P.The acute toxicity of freshwater ciliates[J].Environmental,2000,109(1):53-59.
    [218]Al-Yousuf M H,El-Shahawi M S,Al-Ghais S M.Trace metals in liver,skin and muscle of lethrinus lentijan fish species in relation to boby length and sex[J].The Science of Total Environment,2000,256(2-3):879-94.
    [219]Hose J E,Hannah J B,DiJulio D,Landolt M L,Miller B S,Iwaoka W T,Felton S P.Effects of Benzo(a) Pyrene on early development of flatfish.Archives of Environmental Contamination and Toxicology,1982,11:167-171.
    [220]Staples C A,Davis J W.An examination of the physical properties,fate,ecotoxicity and potential environmental risks for a series of propylene glycol ethers[J].Chemosphere,2002,49(1):61-73.
    [221]Duvall S E,Barron M G.A screening level probabilistic risk assessment of mercury in Florida Everglades food webs[J].Ecotoxicol Environ Safe,2000,47(3):298-305.
    [222]Verdonck F A M,Janssen C R,Jaworska J,Vanrolleghem P A.Geo-referencing of probabilistic risk of new chemicals in rivers[J].Water Science and Technology,2003,48(3):39-46.
    [223]Marcello Z,Claudia C,Jose V T.Probabilistic ecological risk assessment of 1,2,4-trichlorobenzene at a former industrial contaminated site[J].Environmental Science and Technology,2005,39(9):2920-2926.
    [224]Miguel A U.Applications to risk theory of a Monter Carlo multiple integration method.Mathematics and Economics,1998,23:71-83.
    [225]Thomas E.McKonel.Uncertainty and variability in human exposures to soil contaminants through home-grown food:A Monte Carlo assessment[J].Risk Analysis,1994,14(4):449-463.
    [226]Teresa S.Use of the output of a lead risk assessment model to establish soil lead cleanup levels[J].Environmental Geochemistry and Health,1994,16(3/4):191-197.
    [227]师荣光,周启星,刘凤枝,赵玉杰,郑向群,张浩.天津郊区土壤-蔬菜系统中Cd的积累特征及污染风险.中国环境科学,2008,28(7):634-639.
    [228]刘志全,李丽和,李秀金,曹云者,李广贺.石油化工污染土壤中萘的生态风险评价.中国环境科学,2006,26(6):746-750.
    [229]Rapant S,Kordik J.An environmental risk assessment map of the Slovak Repubilic:Application of data from geochemicalatlases[J].Environmental Geology,2003,44(4):400-407.
    [230]Long,Edward R.,MacDonald,Donald D.,Smith,Sherri L.,Calder,Fred D.Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J].Environmental Management,1995,19(1):81-97.
    [231]Chapman P.M.,Mann Gary S.Sediment Quality Values(SQVs) and Ecological Risk Assessment[J].Marine Pollution Bulletin,1999,38(5):339-344.
    [232]Ochoa-Loza F J,Noordman W H,Jannsen D B,et al.Effect of clays,metal oxides and organic matter on rhamnolipid biosurfactant sorptiun by soil[J].Chemosphere,2007,66:1634-1642.
    [233]Thomas W.Haster and Wesley P.James.Predicting Sediment Yield in Storm-Water Runoff from Urban Areas[J].Journal of Water Resources Planning and Management,1994.9,120(5):630-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700