用户名: 密码: 验证码:
多空间尺度下马铁菊头蝠生境选择与空间分布预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在长白山西南麓罗通山自然保护区,采用声学调查法监测马铁菊头蝠(Rhinolophus ferrumequinum)活动,基于3S技术、地统计学方法和加权秩神经网络模型分别在景观尺度、森林立地尺度和微生境尺度研究马铁菊头蝠生境选择,采用GIS栅格法在多空间尺度下预测马铁菊头蝠潜在空间分布,获得以下研究结果:
     1.用声学采样法分季节评估马铁菊头蝠在不同生境的活动。从相对开阔到相对复杂的生境,马铁菊头蝠总体活动频次有逐渐增加的趋势,在池塘、针叶林、复杂阔叶林、开阔阔叶林、山脊、草地、森林边缘7种生境活动具有显著季节差异(p < 0.05)。除了盛夏,在初夏、初秋和深秋,马铁菊头蝠活动均受到温湿度的影响(p < 0.05)。
     2.景观尺度下,用Logistic回归模型研究高程、小溪邻近度、林间小路长度、河道长度、斑块丰富度和边缘密度对马铁菊头蝠生境选择的影响,应用ΔAIC_c和Akaike权重(w)选择最优模型。共构建了包含景观变量的31个模型,林间小路长度、高程和小溪邻近度是预测马铁菊头蝠出现的最优变量。其中,林间小路长度在马铁菊头蝠出现和不出现地点具有显著差异(F = 4.787,p = 0.034)。
     3.森林立地尺度下,研究森林类型、林分郁闭度、林龄、林分平均树高和坡向对马铁菊头蝠生境选择的影响,共构建31个Logistic回归模型。其中,林分郁闭度、坡向和森林类型是马铁菊头蝠生境选择的最优预测变量,其中森分郁闭度贡献率最高(0.989),其次是坡向(0.633)和森林类型(0.596);树高(0.424)和林龄(0.37)具有较低的贡献率。只有林分郁闭度在马铁菊头蝠出现和不出现地点具有显著差异(U = 40.0,p = 0.032)。在马铁菊头蝠出现的52个地点中,18个地点坡向朝南,没有坡向朝北和西北的地点,表明向阳坡对于马铁菊头蝠捕食具有重要影响。
     4.微生境尺度下,在75个样地分季节测量对马铁菊头蝠活动具有重要影响的昆虫丰富度、植被结构和温湿度,记录月相。夏季总体昆虫丰富度显著高于秋季(F = 504.054,p < 0.001)。深秋,落叶使得树冠郁闭度显著低于初夏、盛夏和初秋(F = 17.03,p < 0.001)。Poisson广义线性模型结果表明,马铁菊头蝠微生境选择模式存在季节变化。初夏,总体昆虫丰富度、灌木高度和密度是重要影响因素;盛夏,灌木高度和密度是重要影响因素;初秋,总体昆虫丰富度和温度是重要影响因素;深秋,总体昆虫丰富度是重要影响因素。这表明食物丰度高的季节,植被覆盖比食物资源重要,而在食物丰度低的季节,食物资源比植被覆盖更重要,揭示马铁菊头蝠在食物和植被覆盖重要性间进行季节权衡。
     5.采用粪便分析法分析马铁菊头蝠的食性。马铁菊头蝠食物主要以鳞翅目和鞘翅目为主,各昆虫体积百分比随季节变化。初夏和盛夏以鳞翅目体积百分比最高,分别为73.97%和51.15%;初秋和深秋鞘翅目体积百分比最高,分别为42.03%和54.03%。
     6.运用GIS栅格计算法创建马铁菊头蝠分布可能性图,在景观和立地尺度下预测马铁菊头蝠潜在分布区,用留一交叉验证检验模型精度。景观尺度下的预测模型精度为62.5%;森林立地尺度下预测模型精度为69 %。
     论文的主要创新点:
     1.运用遥感和GIS技术,在不同尺度下预测蝙蝠潜在空间分布,为野生动物保护和管理提供新思路和方法;
     2.将加权秩神经网络模型应用于遥感数据处理,大大提高遥感数据处理精度,并将其应用于动物生境选择研究,具有一定的开创性;
     3.在国际范围内率先开展马铁菊头蝠微生境选择研究,阐明马铁菊头蝠活动与微尺度生态因子关系,在细尺度下揭示马铁菊头蝠生境选择机制。
     根据对马铁菊头蝠多尺度生境选择和空间分布预测结果,提出马铁菊头蝠种群与生境保护管理的主要建议:在距离小溪较近的地点和向阳坡种植具有大树冠的阔叶林;增加干扰,采用择伐的方式为其提供边缘生境,同时增加林窗昆虫丰富度;保护灌木层,为马铁菊头蝠提供保护覆盖。
We studied habitat selection by greater horseshoe bats (Rhinolophus ferrumequinum) from the scale of landscape, forest stand and microhabitat in Luotong Mountain natural reserve in southwest of Changbai Mountain, and form a set of quantitative methods for animal habitat selection and spatial distribution prediction from landscape, forest stand and microhabitat scale. Combined remote sensing and Geographical Information System (GIS) technique, we predicted the potential spatial distribution from multiple spatial scales. The main conclusions were as follows:
     1. We assessed the seasonal activity of greater horseshoe bats in different habitats using acoustic survey. From relatively open habitat to relatively clutter habitat, there was an increase trend in the activity of greater horseshoe bats. The use frequency of different habitat was as follows: mixed woodland > cluttered broadleaved woodland > forest edge > pond > trail > oak woodland > stream > open broadleaved woodland > ridge line > rock > coniferous woodland > grassland > resident sites. We didn’t detect any bats in farmland and treeline habitat. There were significant seasonal differences (p < 0.05) in pond, coniferous forest, cluttered broadleaved forest, open broadleaved forest, ridge, grassland and forest edge. There were high level activity of greater horseshoe bats in cluttered forest and trail in early summer, late summer, early autumn and late autumn, respectively. Except in late summer, the activity of greater horseshoe bats was affected by temperature and humidity in early summer, late autumn and late autumn, respectively (p < 0.05).
     2. In landscape scale, we used logistic regression model to study the effects of elevation, distance from the nearest stream, the length of terrestrial flyway, the length of riparian flyway, patch richness and edge density on habitat selection by greater horseshoe bats. We usedΔAICc and Akaike weight to assess and select the model with the lowestΔAICc. We constructed 31 habitat models including the variables in landscape scale. The model with the lowestΔAIC_c showed that elevation and distance from the neareast stream were the best predictors of the presence of greater horseshoe bats. In all the landscape variables, only the length of terrestrial flyway was significantly different in the presence sites and the absence sites (F = 4.787, p = 0.034).
     3. In forest stand scale, we studied the effects of forest type, forest cover, forest age, tree height and aspect on habitat selection by greater horseshoe bats, and constructed 31 habitat models including the variables in forest stand scale. Forest cover, aspect and forest type were the best predictor of habitat selection by greater horseshoe bats. The importance of forest cover was the highest (0.989), then aspect (0.633) and forest type (0.596), and the importance of height (0.424) and age (0.37) was low. In all the forest stand variables, only forest cover was significantly different in the presence sites and the absence sites (U = 40.0, p = 0.032). At the 52 presence sites of greater horseshoe bats, the aspect was south facing at 18 sites. There were no sites where the aspect was north or northwest. The results showed that eutropic aspect was important for foraging greater horseshoe bats.
     4. In microhabitat scale, we measured insect prey availability, vegetation structure, temperature and humidity data in different seasons in 75 sampling sites. These variables were extremely important to the activity of greater horseshoe bats. In trapped insects, total insect abundance in summer were higher than that in autumn (F = 504.054, p < 0.001). In late autumn, defoliation made the canopy cover lower than that in early summer, late summer and early autumn (F = 17.03, p < 0.001). We used Poisson Generalized Linear Model (GLM) to study the relationship between the activity of greater horseshoe bats and microhabitat variables, and found that the factors influencing habitat selection of greater horseshoe bats varied with seasons. In early summer, total insect abundance, shrub height and shrub density were the best predictors of habitat selection by greater horseshoe bats, thereinto insect resources were more important than shrub height and shrub density; in late summer, shrub height and density were the best predictors of habitat selection by greater horseshoe bats; in early autumn, total insect abundance and temperature were the best predictors of habitat selection by greater horseshoe bats; in late autumn, total insect abundance was the best predictor of habitat selection by greater horseshoe bats. This indicated that vegetation cover was more important than food when food resources were seasonally abundant, whereas food was more important than cover when food resources were seasonally scarce. These results revealed that there was a trade-off between the importance of food and cover for greater horseshoe bats.
     5. Fecal analysis was used to analyze the diet of greater horseshoe bats. Moths in the order Lepidoptera were the dominant component in the diet of greater horseshoe bats followed by Coleoptera. The percentage by volume of these insect groups changed with seasons. The volume percentage of order Lepidoptera was the highest in early summer (73.97 %) and late summer (51.15); the volume percentage of order Coleoptera was the highest in early autumn (42.03 %) and late autumn (54.03 %). Compared with other seasons, the volume percentage of order Hymenoptera has been improved (15.53 %) in early autumn, and the volume percentage of family Coccinellidae has been improved (12.2 %) in late autumn.
     6. GIS raster calculator was used to create the possibility map of distribution to predict the potential distribution area of greater horseshoe bat in multiple spatial scales. In landscape scale, we used elevation and distance from the nearest stream to create the potential distribution map. The results of leave-one-out cross-validation showed that the accuracy of the model in landscape scale was 62.5 %. Forest cover, aspect and forest type were used to create the potential distribution map in forest stand scale, and the accuracy of the model was 69 %.
引文
[1] Morris D W. Toward an ecological synthesis: a case for habitat selection[J]. Oecologia, 2003, 136: 1-13.
    [2] Block W M, Brennan L A. The habitat concept in ornithology: Theory and applications[J]. Current Ornithology, 1993, 11: 35-91.
    [3] Railsback S F, Stauffer H B, Harvey B C. What can habitat preference models tell us? Tests using a virtual trout population[J]. Ecological Applications, 2003, 13 (6): 1580-1594.
    [4] Immelmann K. Ecological significance of imprinting and early learning[J]. Annual Review of Ecology and Systematics, 1975, 6: 15-37.
    [5] Ford W M, Menzel M A, Rodrigue J L, et al. Relating bat species presence to simple habitat measures in a central Appalachian forest[J]. Biol Conserv, 2005, 126: 528-539.
    [6] Crome F H, Richards G C. Bats and gaps: microchiropteran community structure in Queensland rain forest[J]. Ecology, 1998, 69: 1960-1969.
    [7] Huey R B. Physiological Consequences of Habitat Selection[J]. The American Naturalist, 1991, 137: 97-115.
    [8] Morris D W, Davidson D L. Optimally foraging mice match patch use with habitat differences in fitness[J]. Ecology, 2000, 81: 2061-2066.
    [9] Forsman J T, M?nkk?nen M, Helle P, et al. Heterospecific attraction and food resources in migrants' breeding patch selection in northern boreal forest[J]. Oecologia, 1998, 115: 278-286.
    [10] Morris D W. Habitat-dependent estimates of competitive interaction[J]. Oikos, 1989, 55: 111-120.
    [11] Basille M, Calenge C. Assessing habitat selection using multivariate statistics: Some refinements of the ecological niche factor analysis[J]. Ecological Modeling, 2008, 211: 233-240.
    [12] MacArthur R H, Pianka E R. On optimal use of a patchy environment[J]. The American Naturalist, 1966, 100 (916): 603-609.
    [13] Charnov E L. Optimal foraging, the marginal value theorem[J]. Theoretical Population Biology, 1976, 9: 12-136.
    [14] Lawlor L R, Smith J M. The coevolution and stability of competing species[J]. The American Naturalist, 1976, 110: 79 - 99.
    [15] Holt R D. Population dynamics in two-patch environments :some anomalous consequences of an optimal habitat distribution[J]. Theoretical Population Biology, 1985, 28: 181 - 208.
    [16] Boyce M S, McDonald L L. Relating populations to habitats using resource selection functions[J]. Trends in Ecology & Evolution, 1999, 14 (7): 268-272.
    [17]戴强,顾海军,王跃招.栖息地选择的理论和模型[J].动物学研究, 2007, 28 (6): 681-688.
    [18] Chapin F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity[J]. Nature, 2000, 405 (6783): 234-242.
    [19] Jablonski D. Extinction: past and present[J]. Nature, 2004, 427: 589.
    [20] Noss R F, Landscape connectivity: Different functions at different scales. In Landscape Linkages and Biodiversity, Hudson, W E, Ed. Island Press: Washington D C, 1991.
    [21]马建章,邹红菲,郑国光.中国野生动物与栖息地保护现状及发展趋势[J].中国农业科技导报, 2003, 5 (4): 3-6.
    [22] Mayor S J, Schneider D C, Schaefer J A, et al. Habitat selection at multiple scales[J]. Ecoscience, 2009, 16 (2): 238-247.
    [23]张明海,李言阔.动物生境选择研究中的时空尺度[J].兽类学报, 2005, 25 : (4): 395 - 401.
    [24] Hilden O. Habitat selection in birds[J]. Annales Zoologici Fennici, 1965, 2: 53-75.
    [25]姜广顺.多空间尺度下驼鹿和狍受人类干扰的生态效应及其适应机制研究[D]:[博士学位论文].哈尔滨:东北林业大学, 2007.
    [26]杨维康,钟文勤,高行宜.鸟类栖息地选择研究进展[J].干旱区研究, 2000, 17 (3): 71-78.
    [27]杨月伟,丁平,姜仕.针阔混交林内白颈长尾雉栖息地利用的影响因子研究[J].动物学报, 1999, 45 (3): 279-286.
    [28]陈小勇,罗兰,刘乃发.兰州大石鸡不同生活史阶段栖息地选择的初步研究[J].应用与环境生物学报, 1998, 4 (4): 368-373.
    [29]张泽钧,魏辅文,胡锦矗.大熊猫生境选择及与小熊猫在生境上的分割[J].西华师范大学学报, 2007, 28 (2): 111-116.
    [30] Simmons, N. B. 2005. Order Chiroptera [M].In: DE Wilson, DM Reeder (eds)–Mammal Species of the World. A Taxonomic and Geographical Reference. John Hopkins University Press, Baltimore. 312-529.
    [31]马建章,宗诚,吴庆明.凉水自然保护区松鼠(Sciurus vulgaris)贮食生境选择[J].生态学报, 2006, 26 (11): 3542-3548.
    [32]吴华,胡锦矗.四川唐家河羚牛、鬣羚、斑羚春冬季生境选择比较研究[J].生态学报, 2001, 21 (10): 1627-1633.
    [33]李迪强,蒋志刚,王祖望.普氏原羚的活动规律与生境选择[J].兽类学报, 1999, 19 (1): 17-24.
    [34] Fenton M B. Science and the conservation of bats[J]. Journal of Mammalogy, 1997, 78 (1): 1-14.
    [35] Hutson A M, Mickleburgh S P, Racey P A. Microchiropteran bats:global status survey and conservation action plan. IUCN / SSC Chiroptera Specialist Group.International Union for the Conservation of Nature and Natural Resources. Gland, Switzerland and Cambridge,UK[M]. 2001.
    [36] Kunz T H, Fenton M B. Bat ecology[M]. Chicago: The University of Chicago Press, 2003. 685-687.
    [37] Crighton E G, Krutzsch P H. Reproductive biology of bats[M]. New York: Academic Press, 2000. 363-414.
    [38] Stebbings R E, Arnold H R. Assessment of trends in size and structure of a colony of the greater horseshoe bat[J]. Symposia of the Zoological Society of London, 1987, 49: 161-173.
    [39] Ransome R D. Population changes of greater horseshoe bats studied near Bristol over the past twenty-six years[J]. Biol. J. Linn. Soc., 1989, 38: 71-82.
    [40] Jones G, Rayner J M V. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros(Chiroptera, Rhinolophidae)[J].Behavioral Ecology and Sociobiology, 1989, 25: 183-191.
    [41] Jones G, DuvergéP L, Ransome R D. Conservation biology of an endangered species:field studies of greater horseshoe bats[J]. Symposia of the Zoological Society of London 1995, 67: 309-324.
    [42] Longley M. The Greater Horseshoe Bat Project: A species conservation success story[J]. British Wildlife, 2003, 15 (1): 1-6.
    [43] Ma J, Kobayasi K, Zhang S, et al. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192 (5): 535-550.
    [44] Liu Y, Feng J, Jiang Y L, et al. Vocalization development of greater horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera)[J]. Folia Zoologica, 2007, 56 (2): 126-136.
    [45] Rossiter S J, P. B, Dietz C, et al. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation[J]. Molecular Ecology 2007, 16 (22): 4699-4714
    [46]王应祥.中国哺乳动物种和亚种分类名录与分布大全[M].北京:中国林业出版社, 2003.
    [47] Rossiter S J, Jones G, Ransome R D, et al. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum[J]. Molecular Ecology, 2000, 9 (8): 1131-1135.
    [48] IUCN. The 2007 red list of threaten species. http://www.iucnredlist.org. Accessed 8 November 2007.[J]. 2007.
    [49] Jones G, Morton M, Radio-tracking studies on habitat use by Greater Horseshoe Bats Rhinolophus ferrumequinum. In Wildlife telemetry: remote monitoring and tracking of animals., Priede, I M,Swift S M, Eds. Ellis Harwood: London, 1992, 521-537.
    [50] Bontadina F. Conservation ecology in the horseshoe bats Rhinolophus ferrumequinum and Rhinolophus hipposideros.[J]. PhD dissertation, University of Bern, Berne, 2002.
    [51] Buchholz R. Behavioural biology: an effective and relevant conservation tool[J]. Trends in Ecology and Evolution, 2007, 22 (8): 401-407.
    [52] Hall L S, Krausman P R, Morrison M L. The habitat concept and a plea for standard terminology[J]. Wildlife Society Bulletin, 1997, 25: 173-182.
    [53] Franco A M A, Palmeirim J M, Sutherland W J. A method for comparing effectiveness of research techniques in conservation and applied ecology[J]. Biological Conservation, 2007, 134: 96-105.
    [54] Biscardi S, Russo D, Casciani V, et al. Foraging requirements of the endangered long-fingered bat: The influence of micro-habitat structure, water quality and prey type[J]. Journal of Zoology, 2007, 273 (4): 372-381.
    [55] Perry R W, Thill R E. Roost selection by male and female northern long-eared bats in a pine-dominated landscape [J]. Forest Ecol. Manag., 2007, 247 (1-3): 220-226.
    [56] Russo D, Jones G, Migliozzi A. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation[J]. Biol. Conserv., 2002, 107 (1): 71-81.
    [57] Vaughan N, Jones G, Harris S. Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method[J]. J Appl Ecol, 1997, 34 (3): 716-730.
    [58] Kofoky A, Andriafidison D, Razafimanahaka H J, et al. Habitat use, roost selection and conservation of bats in Tsingy de Bemaraha National Park, Madagascar[J]. Biodiversity and Conservation, 2007, 16 (4): 1039-1053.
    [59] Owen S F, Menzel M A, Edwards J W, et al. Bat activity in harvested and intact forest stands in the Alleghany Mountains[J]. Northern Journal of Applied Forestry, 2004, 21: 154-159.
    [60] Loeb S C, O'Keefe J M. Habitat use by forests bats in South Carolina in relation to local, stand, and landscape characteristics[J]. J Wildl Manage, 2006, 70 (5): 1210-1218.
    [61] Davidson-Watts I, Walls S, Jones G. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats[J]. Biological Conservation, 2006, 133 (1): 118-127.
    [62] O'Donnell C F J. Influence of sex and reproductive status on nocturnal activity of long-tailed bats (Chalinolobus tuberculatus) [J]. Journal of Mammalogy, 2002, 83 (3): 794-803.
    [63] Walsh A L, Harris S. Foraging habitat preferences of vespertilionid bats in Britain[J]. J Appl Ecol, 1996, 33: 508-518.
    [64] Russo D, Jones G. Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: Conservation implications[J]. Ecography, 2003, 26 (2): 197-209.
    [65] Morrison M L, Marcot B G, Mannan R W. Wildlife-habitat relationships: concepts and applications[M]. Madison,Wisconsin: The University of Wisconsin Press, 1998.
    [66] Wickramasinghe L P, Harris S, Jones G, et al. Abundance and species richness of nocturnal insects on organic and conventional farms: Effects of agricultural intensification on bat foraging[J]. Conserv Biol, 2004, 18 (5): 1283-1292.
    [67] Goiti U, Garin I, Almenar D, et al. Foraging by Mediterranean horseshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat[J]. Journal of Mammalogy, 2008, 89 (2): 493-502.
    [68] Boyles J G. Describing roosts used by forest bats: The importance of microclimate[J]. Acta Chiropterologica, 2007, 9 (1): 297-303.
    [69] Svardson G. Competition and habitat selection in birds[J]. Oikos, 1949, 1: 157-174.
    [70] Jacobs D S, Barclay R M R, Walker M H. The allometery of echolocation call frequencies of insectivorous bats: Why do some species deviate from the pattern?[J]. Oecologia, 2007, 152: 583 - 594.
    [71] Aldridge H D J N, Rautenbach I L. Morphology, echolocation and resource partitioning in insectivorous bats.[J]. J. Anim. Ecol., 1987, 56: 763-778.
    [72] Neuweiler G. Foraging ecology and audition in echolocating bats[J]. Trends in Ecology & Evolution, 1989, 4 (6): 160-166.
    [73] Fenton M B, Audet D, Obrist M K, et al. Signal strength, timing, and self-deafening: the evolution of echolocation in bats[J]. Paleobiology, 1995, 21: 229-242.
    [74] Schnitzler H U, Kalko E K V. Echolocation by insect-eating bats[J]. Bioscience, 2001, 51 (7): 557-569.
    [75] Schnitzler H U, Moss C F, Denzinger A. From spatial orientation to food acquisition in echolocating bats[J]. Trends in Ecology & Evolution, 2003, 18: 386-394.
    [76] Thomas H K, Fenton M B. Bat ecology[M]. Chicago: The university of Chicago Press, 2003.
    [77] Chris R P, Jarreric G, Gerhard N. Foraging habitat and echolocation behavior of schneider's leaf-nosed bat Hipposideros speoris in a vegetation mosaic in Sri Lanka[J]. J. Behav. Ecol. Sociobiol., 2001, 50: 209-218.
    [78] Norberg U M, Rayner J M V. Ecological morphology and flight in bats (Mammalia; Chiroptera): Wing adaptations, flight performance, foraging strategy and echolocation[J]. Philosophical Transactions of the Roya Society of London, 1987, 57: 107-125.
    [79] Altringham J D, Bats: biology and behaviour. In Oxford University Press: Oxford, 1996.
    [80] Jiang T L, Feng J, Sun K, et al. Coexistence of two sympatric and morphologically similar bat species Rhinolophus affinis and Rhinolophus pearsoni[J]. Progress in Natural Science. 2008, 18 (5): 523-532.
    [81] Nicholls B, Racey P A. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus[J]. Ecography, 2006, 29 (5): 697-708.
    [82] Arlettaz R. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii[J]. Journal of Animal Ecology, 1999, 68 (3): 460 - 471.
    [83] Orians G H, Wittenberger J F. Spatial and temporal scales in habitat selection[J]. The American Naturalist, 1991, 137: 29-49.
    [84] Broders H G, Findlay C S, Zheng L G. Effects of clutter on echolocation call structure of Myotis septentrionalis and M-lucifugus[J]. Journal of Mammalogy, 2004, 85 (2): 273-281.
    [85] Broders H G, Forbes G J, Woodley S, et al. Range extent and stand selection for roosting and foraging in forest-dwelling northern long-eared bats and little brown bats in the Greater Fundy Ecosystem, New Brunswick[J]. Journal of Wildlife Management, 2006, 70 (5): 1174-1184.
    [86] Limpert D J, Birch D E, Scott M S, et al. Tree selection and landscape analysis of Eastern red bat day roost[J]. Journal of Wildlife Management, 2007, 71 (2): 478-486.
    [87] Mackie I J, Racey P A. Habitat use varies with reproductive state in noctule bats(Nyctalus noctula): Implications for conservation[J]. Biological conservation, 2007, 140: 70-77.
    [88] Kokurewicz T, Speakman J R. Age related variation in the energy costs of torpor in Daubenton's bats: effects on fat accumulation prior to hibernation.[J]. Acta Chiropterologica, 2006, 8 (2): 509-521.
    [89] Milne D J, Fisher A, Pavey C R. Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia[J]. Biological Conservation, 2006, 130: 370-385.
    [90] Jaberg C, Guisan A. Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment[J]. Journal of Applied Ecology 2001, 38: 1169-1181.
    [91] Greaves G J, Mathieu R, Seddon P J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus)[J]. Biological Conservation, 2006, 132: 211-221.
    [92] Schuller G. Influence of echolocation pulse rate on Doppler shift compensation control system in the greater horseshoe bat[J]. Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 1986, 158 (2): 239-246.
    [93]冯江,陈敏,李振新, et al.八种菊头蝠回声定位声波频率与体型的相关性[J].动物学报, 2002, 48 (6): 819-823.
    [94] Simmons J A, Howell D J, Suga N. Information content of bat sonar echoes[J]. Am Sci, 1975, 63 (2): 204-15.
    [95] Wilkinson G S, South J M. Life history, ecology and longevity in bats[J]. Aging Cell, 2002, 1 (2): 124-31.
    [96] Suga N. Echo-location and evoked potentials of bats after ablation of inferior colliculus[J]. J Physiol, 1969, 203 (3): 707-28.
    [97] Simmons J A, Moffat A J, Masters W M. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus[J]. J Acoust Soc Am, 1992, 91 (2): 1150-63.
    [98] Jones G, Ransome R D. Echolocation calls of bats are influenced by maternal effects and change over a lifetime[J]. Proc Biol Sci, 1993, 252 (1334): 125-8.
    [99] Catto C M C, Racey P A, Stephenson P J. Activity patterns of the serotine bat (Eptesidus serotinus) at a roost in southern England[J]. J Zool, 1995, 235: 635-644.
    [100] Fenzl T, Schuller G. Dissimilarities in the vocal control over communication and echolocation calls in bats[J]. Behav Brain Res, 2007, 182 (2): 173-9.
    [101] Metzner W. Anatomical basis for audio-vocal integration in echolocating horseshoe bats[J]. J Comp Neurol, 1996, 368 (2): 252-69.
    [102] Metzner W, Zhang S, Smotherman M. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency[J]. J Exp Biol, 2002, 205 (Pt 11): 1607-16.
    [103] Metzner W. A possible neuronal basis for Doppler-shift compensation in echolocating horseshoe bats[J]. Nature, 1989, 341 (6242): 529-32.
    [104]冯江.蝙蝠回声定位行为生态研究[M].长春:吉林科学技术出版社, 2001. 23-25.
    [105]朱旭.马铁菊头蝠不同生境回声定位声波研究[D]: [硕士学位论文].长春:东北师范大学, 2008.
    [106] Jones G. Echolocation[J]. Current Biology, 2005, 15 (13): 484 - 488.
    [107] Park K J, Jones G, Ransome R D. Winter activity of a population of greater horseshoe bats (Rhinolophus ferrumequinum)[J]. Journal of zoology, 1999, 248 (4): 419-427
    [108] Jensen M E, Moss C F, Surlykke A. Echolocating bats can use acoustic landmarks for spatialorientation[J]. J. Exp. Biol., 2005, 208: 4399-4410.
    [109]冯江,张树义,李振新, et al.马铁菊头蝠不同行为下的回声定位叫声[J].动物学报, 2000, 46 (2): 230-232.
    [110] Jones G. Prey Selection by the Greater Horseshoe Bat (Rhinolophus Ferrumequinum) - Optimal Foraging by Echolocation[J]. J Anim Ecol, 1990, 59 (2): 587-602.
    [111] DuvergéP L, Jones G, Use of farmland habitats by greater horseshoe bats. In Conservation & conflict. Mammals and farming in Britain. Linnean Society Occasional Publication, Tattersall, F,Manley W, Eds. Westbury Publishing: Yorkshire, 2003,. 4, 64-81.
    [112] DuvergéP L, Jones G. Greater horseshoe bats - Activity, foraging behaviour and habitat use[J]. British Wildlife, 1994, 6 (2): 69-77.
    [113] Stebbings R E. Conservation of the greater horseshoe bat[J]. British Wildlife, 1989, 1 (1): 14-19.
    [114] Ransome R D The management of greater horshebat feeding areas to enhance population levels(English Nature Research Reports,241)[R]. 1997.
    [115] Ransome R D, Hutson A M, Action plan for the conservation of the greater horseshoe bat in Europe (Rhinolophus ferrumequinum). In Council of Europe Publishing. 2000, 54.
    [116]柳河县志编纂委员会.柳河县志[M].长春:吉林文史出版社, 1991.
    [117]高游.罗通山水诗话.内部资料.
    [118] Gao W, Sheng L, The animals on the Changbaishan MASSIF of China. In Yanbian People's Press: Yanbian., 2002.
    [119]马建维,高中信.遥感技术在野生动物资源调查中的应用[J].野生动物, 1991, 10 (4): 3-6.
    [120]张艳红,刘兆礼,邓伟等.向海自然保护区鹤类生境优化水位的模拟[J].地理学报, 2003, 58 (2): 263-270.
    [121]王岐山.地理信息系统(GIS)支持下丹顶鹤栖息地”项目启动[J].中国鸟类研究简报, 1997 6(2): 8.
    [122]黄兆锋,廖春民,常禹.应用地理信息系统规划华南虎栖息地[J].野生动物, 1998, (11): 18-19.
    [123]何春光.向海湿地水禽多样性及其生境保护对策研究[D]:长春:东北师范大学2009.
    [124]何春光,崔丽娟,石川忠晴, et al.基于丹顶鹤营巢生境保护的水量调配研究[J].东北师大学报(自然科学版), 2009, 41 (1): 105-111.
    [125]赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
    [126]梅安新,彭望琭等.遥感概论[M].北京:高等教育出版社, 2002.
    [127]彭望琭,白振平,刘湘南.遥感概论[M].北京:高等教育出版社, 2005.
    [128]戴昌达,姜小龙,唐伶俐.遥感图象应用处理与分析[M].北京:清华大学出版社, 2004.
    [129]严红萍,俞兵.主成分分析在遥感图像处理中的应用[J].资源环境与工程, 2006, 20 (59): 168-170.
    [130]刘旭升,张晓丽.基于BP神经网络的森林植被遥感分类研究[J].林业资源管理, 2005, 1: 51-54.
    [131]刘修国,罗小波.自组织神经网络在遥感影像分类中的应用研究[J].国土资源遥感, 2004, 4: 14-18.
    [132]李朝锋,杨茂龙,许磊, et al.概率神经网络与BP网络模型在遥感图像分类中的对比研究[J].国土资源遥感, 2004, 4: 11-18.
    [133] Wang J, Hao L, Hao L, et al. Establishing a relationship between the conductivity of saline soils and spectrographic data using a weighted rank neural network model[J]. Canadian Journal of Remote Sensing, 2009, 35 (2): 107-117.
    [134] Wang J, Tang J, Liu J, et al. Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithms[J]. Chinese Geographical Science, 2009, 19 (1): 83-88.
    [135] Li F, Peng J. Double random field momodels for remote sensing image segmentation[J]. Pattern Recognition Letters, 2004, 25: 129-139.
    [136]智长贵.基于航片的正射影像林相图制作及森林测量研究[D]:哈尔滨:东北林业大学2005.
    [137] Mcaney C, Fairley J. Habitat preference and overnight seasonal variation in the foraging activity of lesser hrseshoe bats[J]. Acta Theriol., 1988, 33: 393-402.
    [138] Clark B S, Leslie D M, Carter T S. Foraging activity of adult female ozark big-eared bats (Plecotus townsendii ingens) in summer. [J]. Journal of Mammalogy, 1993, 74: 422-427.
    [139] Adams R A. Onset of volancy and foraging patterns of juvenile little brown bats, Myotis lucifugus[J]. J. Mammal., 1997, 78: 239-246.
    [140] Walsh A L, Harris S. Factors determining the abundance of vespertilionid bats in Britain: Geographical, land class and local habitat relationships[J]. Journal of Applied Ecology, 1996, 33 (3): 519-529.
    [141] Lister B C, Aguayo A G. Seasonality, predation, and the behaviour of a tropical mainland anole[J]. Journal of Animal Ecology, 1992, 61: 717-733.
    [142] Bilenca D N, Kravetz F O. Seasonal variations in microhabitat use and feeding habits of the pampas mouse Akodon azarae in agroecosystems of central Argentina[J]. Acta Theriologica, 1998, 43 (2): 195-203.
    [143] Vardon M J, Brocklehurst P S, Woinarski J C Z, et al. Seasonal habitat use by flying-foxes, Pteropus alecto and P. scapulatus (Megachiroptera), in monsoonal Australia[J]. J Zool, 2001, 253 (4): 523-535.
    [144] Russ J M, Briffa M, Montgomery W I. Seasonal patterns in activity and habitat use by bats (Pipistrellus spp. and Nyctalus leisleri) in Northern Ireland, determined using a driven transect[J]. J Zool, 2003, 259 (03): 289-299.
    [145]肖笃宁,李秀珍,高峻, et al.景观生态学[M].北京:科学出版社, 2003.
    [146] Fenton M B. A technique for monitoring bat activity with results obtained from different environments in southern Ontario.[J]. Canadian Journal of Zoology, 1970, 48: 847-851.
    [147] Griffin D R, Webster F A, Michael C R. The echolocation of flying insects by bats[J]. Animal Behaviour, 1960, 8: 141-154.
    [148] Furlonger C L, Dewar H J, Fenton M B. Habitat use by foraging insectivorous bats[J]. Canadian Journal of Zoology, 1987, 65: 284-288.
    [149] Dytham C. Choosing and using statistics.A biologist's guide.[M]. Blackwell, 1999.
    [150] Duverge P L. Foraging activity, habitat use, development of juveniles, and diet of the greater horseshoe bat (Rhinolophus ferrumequinum - Schreber 1774) in south-west England[D]. PhD dissertation, University of Bristol, Bristol, 1996.
    [151] Neuweiler G, Metzner W, Heilmann U, et al. Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka[J]. Behavioral Ecology and Sociobiology, 1987, 20 (1): 53-67.
    [152] Pavey C R. Habitat use by the eastern horseshoe bat, Rhinolophus megaphyllus, in a fragmented woodland mosaic[J]. Wildlife Research, 1998, 25 (5): 489-498.
    [153] Entwistle A C, Racey P A, Speakman J R. Habitat exploitation by a gleaning bat,Plecotus auritus.[J]. Phil. Trans R. Soc. Lond.351B, 1996: 921-931.
    [154] Smith P G. Habitat preference,range use and roosting ecology of Natterer's bats(Myotis nattereri) in a grassland-woodland landscape[D]. PhD dissertatio. Univ. Aberdeen, Aberdeen., 2000.
    [155] Williams C B. Studies in the effect of weather conditions on the activity and abundance ofinsect populations[J]. Phil. Trans R. Soc. Lond.,B, 1961, 244: 331-378.
    [156] Funakoshi K, Fumikazu M. Foraging activity and night-roost usage in the Japanese greater horseshoe bat, Rhinolophus ferrumequinum nippon[J]. Mammal Study, 2003, 28: 1-10.
    [157] Ekman M, Jong D J. Local pattern of distribution and resource utilization of four bat species (Myotis brandti, Eptesicus nilssoni, Plecotus auritus and Pipistrellus pipistrellus) in patchy and continuous environments[J]. Journal of Zoology (London), 1996, 238: 571-580.
    [158] Henry M, Thomas D W, Vaudry R, et al. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus)[J]. J Mammal, 2002, 83 (3): 767-774.
    [159] Elmore L W, Miller D A, Vilella F J. Foraging area size and habitat use by red bats (Lasiurus borealis) in an intensively managed pine landscape in Mississippi.[J]. American Midland Naturalist, 2005, 153: 405-417.
    [160] Findley J S. Bats: a community perspective[M]. Cambridge: Cambridge University Press, 1993.
    [161] Grindal S D, Brigham R M. Impacts of forest harvesting on habitat use by foraging insectivorous bats at different spatial scales[J]. Ecoscience, 1999, 6 (1): 25-34.
    [162] Menzel J M, Menzel M A, Kilgo J C, et al. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina[J]. Journal of Wildlife Management, 2005, 69: 235-245.
    [163] Law B, Chidel M. Tracks and riparian zones facilitate the use of Australian regrowth forest by insectivorous bats[J]. Journal of Applied Ecology, 2002, 39: 605-617.
    [164] Estrada A, Coates-Estrada R, Meritt Jr D. Bat species richness and abundance in tropical rain forest fragments and in agricultural habitats at Los Tuxtlas, Mexico[J]. Ecography, 1993, 16: 309-318.
    [165] Verboom B. The Use of Edge Habitats by Commuting and Foraging Bats. [M]. Wageningen: 1998.
    [166] Verboom B, Huitema H. The importance of linear landscape elements for the pipistrelle (Pipistrellus pipistrellus) and the serotine bat (Eptesicus serotinus)[J]. Landscape Ecology 1997, 12: 117-125.
    [167] Limpens H J G A, Kapteyn K. Bats, their behaviour and linear landscape elements[J]. Myotis, 1991, 29: 39-48.
    [168] Burnham K P, Anderson D R. Model selection and multimodel inference: a practical information-theoretic approach[M]. New York: Springer, 2002.
    [169] McGarigal K, McGarigal K, Cushman S. Multivariate statistics for wildlife and ecology research[M]. New York: Springer-Verlag, 2000.
    [170] Racey P A, The importance of riparian envrionment as a habitat for British bats. In Behaviour and ecology of riparian mammals Dunstone, N,Gorman M L, Eds. Symposia of the Zoologcal Society of London: London, 1998, 69-91.
    [171] Grindal S D. Habitat use by bats in fragmented forests[C]. Pages 260-272 in R.M.R. Barclay and R.M. Brigham, editors. Proceedings of bats and forests symposium, 19-21 October 1995, Victoria, British Columbia, Canada. Resources Branch, Ministry of Forests Work Paper 23/1996, Victoria, British Columbia, Canada. 1996, 260–272.
    [172] Patriquin K J, R. B R M. Foraging by bats in cleared, thinned and unharvested boreal forest[J]. Journal of Applied Ecology, 2003, 40: 646-657.
    [173] Verboom B, Boonman A M, Limpens H J G A. Acoustic perception of landscape elements by the pond bat (Myotis dasycneme)[J]. Journal of Zoology, 1999, 248: 59-66.
    [174] Fenton M B, Rautenbach I L, Smith S E, et al. Raptors and bats: threats and opportunities[J]. Animal Behavior, 1994, 48: 9-18.
    [175] Gorresen P M, Willig M R. Landscape responses of bats to habitat fragmentation in Atlantic forest of Paraguay[J]. Journal of Mammalogy, 2004, 85 (4): 688-697.
    [176] Faria D. Phyllostomid bats of a fragmented landscape in the north-eastern Atlantic forest,Brail[J]. Journal of Tropical Ecology, 2006, 22 (5): 531-542.
    [177] Thomas D W. The distribution of bats in different ages of Douglas-fir forests[J]. Journal of Wildlife Management, 1988, 52: 619-626.
    [178] Kalcounis M C, Hobson K A, Brigham R M, et al. Bat activity in the boreal forest: Importance of stand type and vertical strata[J]. Journal of Mammalogy, 1999, 80 (2): 673-682.
    [179] Jung T S, Thompson I D, Titman R D, et al. Habitat selection by forest bats in relation to mixed-wood stand types and structure in central Ontario[J]. Journal of Wildlife Management, 1999, 63: 1306-1319.
    [180] Humes M L, Hayes J P, Collopy M W. Bat activity in thinned,unthinned and old-growth forests in western Oregon[J]. Journal of Wildlife Management, 1999, 63: 553-561.
    [181] Tibbels A E, Kurta A. Bat activity is low in thinned and unthinned stands of red pine[J]. Canadian Journal of Forest Research, 2003, 33: 2436-2442.
    [182] Lagos V O, Contreras L C, Meserve P L, et al. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent[J]. Oikos, 1995, 74: 259-264.
    [183] Naxara L, Pinotti B T, Pardini R. Seasonal microhabitat selection by terrestrial rodents in an old-growth Atlantic forests[J]. J Mammal, 2009, 90 (2): 404-415.
    [184] Presley S J, Willig M R, Castro-Arellano I, et al. Effects of habitat conversion on temporal activity patterns of Phyllostomid bats in Lowland Amazonian Rain Forest[J]. Journal of Mammalogy, 2009, 90 (1): 210-221.
    [185] Stone A I. Age and seasonal effects on predator-sensitive foraging in squirrel monkeys (Saimiri sciureus): A field experiment[J]. American Journal of Primatology, 2007, 69 (2): 127-141.
    [186] Todd I A, Tew T E, Macdonald D W. Arable habitat use by wood mice (Apodemus sylvaticus). 1. Macrohabitat.[J]. J. Zool., 2000, 250: 299-303.
    [187] Unsworth J W, Kuch L, Garton E O, et al. Elk habitat selection on the Clearwater National Forest, Idaho[J]. Journal of Wildlife Management, 1998, 62: 1255–1263.
    [188] Fleming T H, Heithaus E R. Seasonal foraging behavior of the frugivorous bat Carollia perspicillata[J]. Journal of Mammalogy, 1986, 67: 660-671.
    [189] Leopold A. Game management[M]. New York: Charles Scribner's Sons, 1933.
    [190] Lin Y K, Batzli G O. Movement of voles across habitat boundaries: effects of food and cover[J]. Journal of Mammalogy, 2004, 85 (2): 216-224.
    [191] Lin Y T K, Batzli G O. The influence of habitat quality on dispersal, demography, and population dynamics of voles[J]. Ecological Monographs, 2001, 71 (2): 245-275.
    [192] Verdolin J L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems[J]. Behavioral Ecology and Sociobiology, 2006, 60 (4): 457-464.
    [193] Boinski S, Kauffman L, Westoll A, et al. Are vigilance, risk from avian predators and group size consequences of habitat structure? A comparison of three species of squirrel monkey (Saimiri oerstedii, S. boliviensis, and S. sciureus)[J]. Behaviour, 2003, 140: 1421-1467.
    [194] Cassini M H, Galante M L. Foraging under predation risk in the wild guinea pig: the effect of vegetation height on habitat utilization[J]. Annales Zoologici Fennici 1992, 29: 285-290.
    [195] Peles J D, Barrett G W. Effects of vegetative cover on the population dynamics of meadow voles[J]. Journal of Mammalogy, 1996, 77: 857-869.
    [196] Barclay R M R. Night roosting behaviour of the little brown bat, Myotis lucifugus[J]. Journal of Mammalogy, 1982, 63: 464-474.
    [197] Kunz T H. Ecology of bats[M]. New York: Plenum Press, 1982.
    [198] DuvergéP L, Jones G, Rydell J, et al. Functional significance of emergence timing in bats[J]. Ecography, 2000, 23: 32-40.
    [199] Fenton M B. Ecological interactions between bats and nocturnal birds[J]. Biotropica, 1974, 8:104-110.
    [200] Speakman J R. Why do insectivorous bats in Britain not fly in daylight more frequenly?[J]. Functional Ecology, 1991a, 5: 518-524.
    [201] Speakman J R. The impact of predation by birds on bat populations in the British Isles[J]. Mammal Review, 1991b, 21 (3): 123-142.
    [202] Baker J K. The manner and efficiency of raptor depredations on bats[J]. Condor, 1962, 64: 500-504.
    [203] Barclay R M R, Thomson C E, Phelan F J S. Screech Owl, Otus asio, attempting to capture little brown bats, Myotis lucifugus, at a colony[J]. Canadian field-naturalist, 1982, 96 (2): 205-206.
    [204] Jones G, Rydell J. Foraging Strategy and Predation Risk as Factors Influencing Emergence Time in Echolocating Bats[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1994, 346 (1318): 445-455.
    [205] Shiel C B, Shiel R E, Fairley J S. Seasonal changes in the foraging behaviour of Leisler's bats (Nyctalus leisleri) in Ireland as revealed by redio-telemetry [J]. Journal of Zoology (London), 1999, 249: 347-358.
    [206] Twente Jr J W. Predation on bats by hawks and owls[J]. The Wilson Bulletin, 1954, 66: 135-136.
    [207] Rodriguez-Duran A, Lewis A R. Seasonal predation by merlins on sooty mustached bats in Western Puerto Ricol[J]. Biotropica, 1985, 17 (1): 71-74.
    [208] Rydell J, Entwistle A, Racey P A. Timing of foraging flights of three species of bats in relation to insect activity and predation risk[J]. Oikos, 1996, 76: 243-252.
    [209] Baxter D J M, Psyllakis J M, Gillingham M P, et al. Behavioural response of bats to perceived predation risk while foraging[J]. Ethology, 2006, 112 (10): 977-983.
    [210] Hoetker G M, Gobalet K W. Predation on Mexican free-tailed bats by Burrowing Owls in California[J]. Journal of Raptor Research, 1999, 33 (4): 333-335.
    [211] Roberts K J, YanceyII F D, Jones C. Predation by great-horned owls on Brazilian free-tailed bats in North Texas[J]. Texas Journal of Science 1997, 49 (3): 215-218.
    [212] García A M, Cervera F, Rodríguez A. Bat predation by Long-eared Owls in Mediterranean and temperate regions of southern Europe [J]. Journal of Raptor Research 2005, 39 (4): 445-453
    [213] Russo D, Cistrone L, Garonna A P, et al. The early bat catches the fly: Daylight foraging in soprano pipistrelles[J]. Mamm. Biol., 2009, article in press.
    [214] Russo D, Cistrone L, Jones G. Emergence time in forest bats: the influence of canopy closure[J]. Acta Oecologica, 2007, 31: 119-126.
    [215] Wang S. Biological resources of Changbai Mountains Natural Reserve[M]. Shenyang: Liaoning technology press, 2007. 199-204.
    [216] Guan D X, Wu J B, Wang A Z, et al. Simulation of crown leaf area index of Korean pine and broadleaved mixed forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2007, 18 (3): 499-503.
    [217] Russell A L, Butchkoski C M, Saidak L, et al. Road-killed bats, highway design, and the commuting ecology of bats[J]. Endangered Species Research, 2009, 8: 49-60.
    [218] Simpson E H. Measurement of diversity[J]. Nature, 1949, 163: 688.
    [219] Ross A. Ecological aspects of the food habits of insectivorous bats[J]. Proc west Fdn tert Zool, 1967, 1: 205 - 263.
    [220] Pine R H. Stomach contents of a free-tailed bat, Molossus ater[J]. Journal of Mammalogy, 1969, 50 (1): 162.
    [221] Whitaker J O J, Mumford R E. Notes on a collection of bats taken by mist-netting at an Indiana Cave[J]. American Midland Naturalist, 1971, 85: 277 - 279.
    [222] Easterla D A, Whitaker J O J. Food habits of some bats from Big Bend National Park[J]. Journal of Mammalogy, 1972, 53: 887 - 890.
    [223] Coutts R A, Fenton M B, Glen E. Food intake by captive Myotis lucifugus and Eptesicus fuscus (Chiroptera Vespertilionidae)[J]. Journal of Mammalogy, 1973, 54: 985 - 990.
    [224] LaVal R K, LaVal M L. Prey selection by a neotropical foliage-gleaing bat, Micronycteris.maglotis[J]. Journal of Mammalogy, 1980, 61: 327 - 330.
    [225] Robinson M F. Prey selection by the brown long-eared bats (Plecotus auritus)[J]. Myotis, 1990, 28: 5 -18.
    [226]叶根先.同域分布的2种形态和声波相似菊头蝠的食性及共存[D]:[硕士学位论文].长春:东北师范大学, 2008.
    [227] Swift S M, Racey P A. Resource partitioning in two species of vespertilionid bats(Chiroptera) occuping the same roost[J]. Journal of Zoology, 1983, 200: 249 - 259.
    [228] Zahn A, Rottenwallner A, Guttinger R. Population density of the greater mouse-eared bat (Myotsi myotis), local diet composition and availability of foraging habitats[J]. Journal of Zoology, 2006, 269 (4): 486 - 493.
    [229] Gerlach J, Taylor M. Habitat use, roost characteristics and diet of the Seychelles sheath-tailed bat Coleura seychellensis[J]. Acta Chiropterological, 2006, 8 (1): 129 - 139.
    [230] Snodgrass R E. Principles of insect morphology[M]. New York & London: McGraw-Hill, 1935.
    [231] Black H L. A North Temperate Bat Community: Structure and Prey Populations[J]. Journal of Mammalogy, 1974, 55 (1): 138-157.
    [232] Fenton M B, Gumming D H M, Rautenbach I L, et al. Bats and the loss of tree canopy in African Woodlands[J]. Conservation Biology 1998, 12 (2): 399-407
    [233]袁锋,张雅林,冯纪年, et al.昆虫分类学[M].北京:中国农业出版社, 1996.
    [234] Whitaker J O, Food habits of insectivorous bats. In Ecological and behavioral methods for the study of bats, Kunz, T H, Ed. Smithsonian Institution Press: Washington, 1988; 171-189.
    [235]郑乐怡,归鸿.昆虫分类学[M].南京:南京师范大学, 1999.
    [236] Crawley M J. GLM for ecologists[M]. Oxford: Blackwell Scientific Publications, 1993.
    [237] Slakter M J. A comparison of the Pearson chi-square and Kolmogorov goodness-of-fit tests with respect to validity[J]. Journal of the American Statistical Association, 1965, 60: 854-858.
    [238] Ma J, Liang B, Zhang S, et al. Dietary composition and echolocation call design of three sympatric insectivorous bat species from China[J]. Ecological Research, 2008, 23 (1): 113-119.
    [239] Jin L, Feng J, Sun K, et al. Foraging strategies in the greater horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer[J]. Chin Sci Bull, 2005, 50 (14): 1477-1482
    [240] Vardon M J, Tidemann C R. Black flying foxes, Pteropus alecto: Are they different in north Australia?[J]. Australian Mammalogy, 1997, 20: 131-134.
    [241] Woinarski J C Z, Connors G, Franklin D C. Thinking honeyeater: nectar maps for the Northern Territory, Australia[J]. Pacific Conservation Biology, 2000, 6 (1): 61-80.
    [242] Meyer C F J, Schwarz C J, Fahr J. Activity patterns and habitat preferences of insectivorous bats in a West African forest-savanna mosaic[J]. Journal of Tropical Ecology, 2004, 20 (4): 397-407.
    [243] Willig M R, Presley S J, Bloch C P, et al. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance[J]. Biotropica, 2007, 39 (6): 737-746.
    [244] Hanya G. Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: Effects of food and temperature[J]. American Journal of Primatology, 2004, 63 (3): 165-177.
    [245] Schradin C, Pillay N. Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability[J]. Behavioral Ecology, 2006, 17 (3): 452-458.
    [246] O' Shea T J, Vaughan T A. Ecological observations on an east African bat community[J].Mammalia, 1980, 44: 485–496.
    [247] Clark C W. Antipredator behavior and the asset-protection principle[J]. Behavioral Ecology, 1994, 5 (2): 159-170.
    [248] Olsson O, Brown J S, Smith H G. Long-and short-term state-dependent foraging under predation risk: an indication of habitat quality[J]. Animal Behaviour, 2002, 63 (5): 981-989.
    [249] Cowlishaw G U Y. Trade-offs between foraging and predation risk determine habitat use in a desert baboon population[J]. Animal Behaviour, 1997, 53 (4): 667-686.
    [250] Bachman G C. The effect of body condition on the trade-off between vigilance and foraging in Belding's ground squirrels[J]. Animal behaviour, 1993, 46: 233-244.
    [251] Kunz T H, Wrazen J A, Burnett C D. Changes in body mass and fat reserves in pre-hibernation little brown bat (Myotis lucifugus)[J]. Ecoscience, 1998, 5: 8-17.
    [252] Hughes P M, Rayner J M V. Addition of artificial loads to long-eared bats Plecotus auritus: handicapping flight performance[J]. Journal of Experimental Biology, 1991, 161: 285-298.
    [253] Gilliam J F, Fraser D F. Habitat selection under predation hazard: test of a model with foraging minnows[J]. Ecology, 1987, 68 (6): 1856-1862.
    [254] Wang G H, Owen R D, Sanches-Hernandez C, et al. Ecological characterization of bat species distributions in Michoacan, Mexico, using a geographic information system[J]. Global Ecology & Biogeography, 2003, 12: 65-85.
    [255] Greenberg J D, Logsdon M G, Franklin J F, Introduction to Geographic Information Systems (GIS)[M]. In Learning Landscape Ecology, A Practical Guide to Concepts and Techniques, Springer Verlag: New York, 2002.
    [256]季荣,高增祥,谢宝瑜, et al.沿海蝗区东亚飞蝗产卵场所选择的Logistic回归模型[J].生态学报, 2007, 27 (12): 5029-5037.
    [257] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection[J]. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, 2 (12): 1137-1143.
    [258] Augustin N H, Mugglestone M A, Buckland S T. An autologistic model for the spatial distribution of wildlife[J]. Journal of Applied Ecology, 1996, 33: 339-347.
    [259] Manel S, Dias J M, Buckton S T, et al. Alternative methods for predicting species distribution: an illustration with Himalayan river birds[J]. Journal of Applied Ecology 1999, 36: 734-747.
    [260] Gabler K I, Laundre J W, Heady L T. Predicting the suitability of habitat in southeast Idaho for pygmy rabbits[J]. Journal of Wildlife Management 2000, 64: 759-764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700