用户名: 密码: 验证码:
细菌砷解毒基因的鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是一种剧毒类金属,在自然环境中主要以亚砷酸盐(As(Ⅲ))和砷酸盐(As(Ⅴ))的无机形式存在并通过微生物的氧化和还原相互转化。As(Ⅲ)不带电荷且移动性强,其毒性和危害性比As(Ⅴ)大很多,因而,微生物可以通过对砷的氧化还原转化危害人类的健康和安全。本论文围绕砷抗性细菌对As(Ⅲ)的氧化和细胞质As(Ⅴ)的还原开展了以下两方面的研究工作,主要结果如下:
     在我国砷高污染TS区、中污染SY区、低污染LY区和YC区分别采集了4个土壤样品,从这4个代表3种不同砷污染水平土壤样品中共分离到58株砷抗性菌(TS1-45、SY1-8、LY1-4和YC1),其中共有12株As(Ⅲ)高抗菌株(MICs>20mM),并且都是从高污染TS区中分离得到,分布在Acinetobacter、Agrobacterium、Arthrobacter、Comamonas、Rhodococcus、Stenotrophomonas和Pseudomonas等7个属。利用KMnO_4法从58株菌中检测出5株As(Ⅲ)氧化菌(Achromobacter sp.SY8、Pseudomonas sp.TS44和Agrobacterium spp.TS43,TS45,LY4),它们的平均As(Ⅲ)抗性水平高于其余53株非As(Ⅲ)氧化菌。采用简并PCR方法成功扩增出5个编码As(Ⅲ)氧化酶大亚基aoxB片段和51个As(Ⅲ)通道蛋白基因片段(18个arsB、12个ACR3(1)和21个ACR3(2)),发现aoxB特异性存在于As(Ⅲ)氧化菌中,而arsB、ACR3(1)和ACR3(2)在As(Ⅲ)氧化菌和非As(Ⅲ)氧化菌中都存在。采用邻近距离法构建了58株菌16S rRNA基因进化树、5个aoxB和51个As(Ⅲ)通道蛋白基因的蛋白进化树,详细分析并比较了它们之间的进化关系,发现5个aoxB与其16S rRNA基因的系统发生完全吻合,但有8个ACR3(2)和1个arsB与其16S rRNA基因的进化矛盾,很可能是水平基因转移所致。研究还发现长期受砷污染的环境中砷抗性菌的多样性丰富而且As(Ⅲ)抗性水平高,进一步分析发现水平基因转移加快了砷抗性菌的侧向进化。本研究是对我国不同砷污染土壤中砷抗性菌及其抗性基因比较研究的首次报道,也是检测As(Ⅲ)通道蛋白基因发生水平转移的首次报道。
     以上述其中两株As(Ⅲ)氧化菌新种Achromobacter sp.SY8和Pseudomonas sp.TS44为研究对象,利用Fosmid文库方法从SY8菌株中分离到一个17.5kb的DNA序列,覆盖了完整的As(Ⅲ)氧化酶基因簇(aoxX-aoxS-aoxR和aoxA-aoxB-aoxC-aoxD),利用反向PCR方法从TS44菌株中克隆到一个14.6kb的DNA序列,包含了完整的As(Ⅲ)氧化酶基因簇(arsD-arsA-aoxA-aoxB)和砷抗性基因簇(arsC1-arsR-arsC2-ACR3-arsH-DSP-GAPDH-MFS)。通过RT-PCR研究发现:SY8的aoxXSR和aoxABCD分别共转录,属于两个操纵子;TS44的两个基因簇各自共转录,每个基因簇属于一个操纵子:除了TS44的arsC1-arsR组成型表达外,上述所有基因在加入As(Ⅲ)、As(Ⅴ)或Sb(Ⅲ)诱导后表达水平均上调。生物信息学分析表明SY8 As(Ⅲ)氧化酶基因簇受双组分信号传导系统调控,但是与已报道的Agrobacterium tumefaciens 5A具有较大的差异性,因此推测在SY8中存在一套新型细菌As(Ⅲ)感应和信号传导的双组分调控模型。TS44的As(Ⅲ)氧化酶基因簇结构不典型,因为它只含有结构基因并在其上游出现了arsDA,但是除了TS44外,在GenBank数据库中没有检索到其它只含有结构基因的As(Ⅲ)氧化酶基因簇。TS44的砷抗性基因簇的前5个基因被广泛报道与砷抗性相关,但是后3个基因则没有被报道与砷抗性有关。上述三点分别揭示了SY8和TS44的3个砷解毒基因簇结构的复杂性和新颖性。
     本论文的结果在抗砷性微生物资源的开发、砷污染环境的微生物生态、细菌砷代谢和细菌砷抗性的分子机制等方面都具有理论价值和创新性。
Arsenic is known as a toxic metalloid,which primarily exists in inorganic forms of arsenite[As(Ⅲ)]and arsenate[As(Ⅴ)]in the natural environment and can be transformed by microbial redox processes.As(Ⅲ) is much more toxic and mobile than As(Ⅴ),hence microorganisms can greatly influence the human health and safety by the processes of arsenic redox transformation.This dissertation focused on the studies of As(Ⅲ) oxidation and cytoplasmic As(Ⅴ) reduction of arsenite-resistant bacteria and performed two research subjects.The main results were as follows:
     Four soil samples were collected in China from regions with high(TS), intermediate(SY),and low(LY and YC) arsenic contamination.A total of 58 arsenite-resistant bacteria(TS1-45,SY1-8,LY1-4,and YC1) were isolated from these four samples with three different arsenic-contaminated levels.12 high As(Ⅲ) resistance bacteria(MICs>20 mM) were only isolated from the highly arsenic-contaminated TS site including Acinetobacter,Agrobacterium,Arthrobacter, Comamonas,Rhodococcus,Stenotrophomonas and Pseudomonas.Using the KMnO_4 screening method,5 As(Ⅲ)-oxidizing bacteria(Achromobacter sp.SY8, Pseudomonas sp.TS44,Agrobacterium spp.TS43,TS45 and LY4) were identified from the 58 strains that displayed a higher average As(Ⅲ) resistance level than the 53 non-As(Ⅲ) oxidizers.Five aoxB fragments encoding the large subunit of As(Ⅲ) oxidase and 51 As(Ⅲ) transporter genes[18 arsB,12 ACR3(1) and 21 ACR3(2)]were successfully amplified from these strains using PCR with degenerate primers.The aoxB particularly existed in the As(Ⅲ)-oxidizers whereas arsB,A CR3(1) and A CR3(2) could occur in both As(Ⅲ)-oxidizers and non-As(Ⅲ) oxidizers.Phylogenetic trees of 16S rRNA gene,deduced AoxB,and deduced ArsB/Acr3(1)p/Arc3(2)p were constructed by the neighbor-joining method and analyzed in detail.According to the comparison of these trees,5 aoxBs had the similar phylogeny with 16S rRNA gene, but the discrepancies could be detected in 8 ACR3(2) and 1 arsB which were probably acquired by horizontal gene transfer(HGT).These results indicated that soils with long-term arsenic contamination may result in the evolution of highly diverse arsenic-resistant bacteria and elevated As(Ⅲ) resistance level.Further analyses revealed that HGT promoted the lateral evolution of arsenic-resistant bacteria.This study is the first report of comparative study on arsenic-resistant bacteria and their resistance genes from different arsenic contaminated soils in China,also the first report of detecting HGT of As(Ⅲ) transporters.
     Two of the above As(Ⅲ)-oxidizing bacteria(Achromobacter sp.SY8 and Pseudomonas sp.TS44) were used as the second research subject.A 17.5 kb DNA sequence containing the complete arsenite oxidase(aox) gene cluster (aoxX-aoxS-aoxR and aoxA-aoxB-aoxC-aoxD) was isolated from SY8 using a Fosmid library approach.Similarly,a 14.6 kb DNA sequence including the complete aox cluster(arsD-arsA-aoxA-aoxB) and the arsenic resistance(ars) gene cluster (arsC1-arsR-arsC2-ACR3-arsH-DSP-GAPDH-MFS) was obtained from TS44 by inverse PCR method.According to RT-PCR experiments,SY8 aoxXSR and aoxABCD transcribed as two different transcripts and belonged to two operons;TS44 aox and ars clusters transcribed as a single transcript in their respective cluster and each of them belonged to one operon.All of these genes were found to be up-regulated by the addition of As(Ⅲ),As(Ⅴ) or antimonite[Sb(Ⅲ)],except TS44 arsC1-arsR appeared to be expressed constitutively.Bioinformatic analyses revealed that the SY8 aox cluster was regulated by a two-component signal transduction system which was different from the reported work of Agrobacterium tumefaciens 5A.Hence,we predicted that a novel two-component regulatory model of bacterial As(Ⅲ) sensing and signal transduction could exist in SY8.The organization of TS44 aox cluster was unusual since it contained structural genes only and arsDA in its upstream.However, except TS44,no aox cluster with structural genes only was searched in GenBank database.The first five genes of TS44 ars cluster were widely reported to be associated with arsenic resistance,but the last three genes were not.The above three points indicated that these arsenic detoxification gene clusters of SY8 and TS44 were complex and had interesting and novel arrangements.
     The results of this dissertation have made great contributions to the exploitation of arsenic-resistant microorganisms,the microbial ecology of arsenic-contaminated environments,the bacterial arsenic metabolisms,and the molecular mechanisms of bacterial arsenic resistance.
引文
1.冯德福.砷污染与防治.沈阳教育学院学报,2000,2:110-112
    2.顾兴平,顾永柞.环境砷污染与健康.四川环境,1999,18:11-14
    3.唐志华.微量元素砷与人体健康.广东微量元素科学,2003,10:10-13
    4.王国荃,吴顺华.地方性砷中毒的研究进展.新疆医科大学学报,2004,27:18-20
    5.谢正苗,黄昌勇,何振立.土壤中砷的化学平衡.环境科学进展,1998,6:22-37
    6.刘国伟.新浪新闻中心.全球5000万人受到慢性砷中毒威胁.2008,http://news.sina.com.cn/w/2008-10-21/160116496916.shtml
    7.张晓军,胡明安,赵颖虹,赵百胜.大冶铁山地区重金属污染分析.环境科学与技术,2005,28:40-43
    8.周月雯.砷钼蓝法测定三价砷和五价砷.环境保护科学,1990,16:45-47
    9.Achour A R,Bauda P,Billard P.Diversity of arsenite transporter genes from arsenic-resistant soil bacteria.Res Microbiol,2007,158:128-137
    10.Afkar E,Lisak J,Saltikov C,Basu P,Oremland R S,Stolz J F.The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10.FEMS Microbiol Lett,2003,226:107-112
    11.Ahmann D,Roberts A L,Krumholz L R,Morel F M.Microbe grows by reducing arsenic.Nature,1994,371:750
    12.Anderson C R,Cook G M.Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol, 2004,48:341-347
    
    13. Anderson G L, Williams J, Hille R. The Purification and Characterization of Arsenite Oxidase from Alcaligenes faecalis, a Molybdenum-Containing Hydroxylase. J Biol Chem, 1992, 267: 23674-23682
    
    14. Battaglia-Brunet F, Dictor M C, Garrido F, Crouzet C, Morin D, Dekeyser K,Clarens M, Baranger P. An arsenic(III)-oxidizing bacterial population: selection,characterization, and performance in reactors. J Appl Microbiol, 2002, 93:656-667
    
    15. Bentley R, Chasteen T G. Microbial methylation of metalloids: arsenic,antimony, and bismuth. Microbiol Mol Biol Rev, 2002, 66: 250-271
    
    16. Bobrowicz P, Wysocki R, Owsianik G, Goffeau A, Ulaszewski S. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast, 1997, 13:819-828
    
    17. Cai L, Liu G, Rensing C, Wang G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol, 2009a, 9: 4
    
    18. Cai L, Rensing C, Li X, Wang G. Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol, 2009b, 83: 715-725
    
    19. Canovas D, Cases I, de Lorenzo V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis.Environ Microbiol, 2003, 5: 1242-1256
    
    20. Chang J S, Yoon I H, Kim K W. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. J Microbiol Biotechnol, 2007, 17: 812-821
    
    21. Chen Y, Rosen B P. Metalloregulatory properties of the ArsD repressor. J Biol Chem, 1997, 272: 14257-14262
    
    22. Connon S A, Koski A K, Neal A L, Wood S A, Magnuson T S. Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic,circumneutral hot spring system of the Alvord Desert. FEMs Microbiol Ecol,2008,64: 117-128
    
    23. Cullen W R, Reimer K J. Environmental Arsenic Chemistry. Chem. Rev., 1989,89: 713-764
    
    24. DeLong E F, Preston C M, Mincer T, Rich V, Hallam S J, Frigaard N U,Martinez A, Sullivan M B, Edwards R, Brito B R, Chisholm S W, Karl D M.Community genomics among stratified microbial assemblages in the ocean's interior. Science, 2006, 311: 496-503
    
    25. Dey S, Rosen B P. Dual mode of energy coupling by the oxyanion-translocating ArsB protein.J Bacteriol, 1995, 177: 385-389
    
    26. Dhankher O P, Li Y, Rosen B P, Shi J, Salt D, Senecoff J F, Sashti N A, Meagher R B. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol, 2002, 20: 1140-1145
    
    27. Dhankher O P, Rosen B P, McKinney E C, Meagher R B. Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2).Proc Natl Acad Sci U S A, 2006, 103: 5413-5418
    
    28. Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett M C, Bonnefoy V. Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol, 2008, 10: 228-237
    
    29. Ellis P J, Conrads T, Hille R, Kuhn P. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 angstrom and 2.03 angstrom. Structure, 2001, 9: 125-132
    
    30. Fan H, Su C, Wang Y, Yao J, Zhao K, Wang G. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. JAppl Microbiol, 2008, 105: 529-539
    
    31. Ghosh M, Shen J, Rosen B P. Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1999, 96: 5001-5006
    
    32. Gihring T M, Druschel G K, McCleskey R B, Hamers R J, Banfield J F. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol, 2001, 35: 3857-3862
    
    33. Gladysheva T B, Oden K L, Rosen B P. Properties of the arsenate reductase of plasmid R773. Biochemistry, 1994, 33: 7288-7293
    
    34. Green H H. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths. Rep Dir Vet Res S Afr, 1918, 6:593-599
    
    35. Hara M R, Agrawal N, Kim S F, Cascio M B, Fujimuro M, Ozeki Y, Takahashi M, Cheah J H, Tankou S K, Hester L D, Ferris C D, Hayward S D, Snyder S H,Sawa A. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siahl binding. Nat Cell Biol, 2005, 7: 665-674
    
    36. Huang Y, Lemieux M J, Song J, Auer M, Wang D N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science, 2003,301:616-620
    
    37. Inskeep W P, Macur R E, Hamamura N, Warelow T P, Ward S A, Santini J M. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.Environ Microbiol, 2007, 9: 934-943
    
    38. Jackson C R, Dugas S L. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase.BMC Evol Biol, 2003, 3: 18
    
    39. Jackson C R, Harrison K G, Dugas S L. Enumeration and characterization of culturable arsenate resistant bacteria in a large estuary. Syst Appl Microbiol,2005, 28: 727-734
    
    40. Ji G, Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl AcadSci U S A, 1992, 89: 9474-9478
    
    41. Kashyap D R, Botero L M, Franck W L, Hassett D J, McDermott T R. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol,2006a, 188:1081-1088
    
    42. Kashyap D R, Botero L M, Lehr C, Hassett D J, McDermott T R. A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol, 2006b, 188: 1577-1584
    
    43. Kisker C, Schindelin H, Baas D, Retey J, Meckenstock R U, Kroneck P M. A structural comparison of molybdenum cofactor-containing enzymes. FEMS Microbiol Rev, 1998, 22: 503-521
    
    44. Kotze A A, Tuffin I M, Deane S M, Rawlings D E. Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology, 2006, 152: 3551-3560
    
    45. Kuai L, Nair A A, Polz M F. Rapid and simple method for the most-probable-number estimation of arsenic-reducing bacteria. Appl Environ Microbiol, 2001, 67: 3168-3173
    
    46. Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004,5: 150-163
    
    47. Kuroda M, Dey S, Sanders O I, Rosen B P. Alternate energy coupling of ArsB,the membrane subunit of the Ars anion-translocating ATPase. J Biol Chem, 1997,272:326-331
    
    48. Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett M C, Nitschke W. Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol, 2003, 20:686-693
    
    49. Lehr C R, Kashyap D R, McDermott T R. New insights into microbial oxidation of antimony and arsenic. Appl Environ Microbiol, 2007, 73: 2386-2389
    
    50. Lenoble V, Deluchat V, Serpaud B, Bollinger J C. Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta, 2003, 61:267-276
    
    51. Li S, Chen Y, Rosen B P. Role of vicinal cysteine pairs in metalloid sensing by the ArsD As(III)-responsive repressor. Mol Microbiol, 2001, 41: 687-696
    
    52. Li S, Rosen B P, Borges-Walmsley M I, Walmsley A R. Evidence for cooperativity between the four binding sites of dimeric ArsD, an As(III)-responsive transcriptional regulator. J Biol Chem, 2002, 277:25992-26002
    
    53. Li X, Krumholz L R. Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J Bacteriol, 2007,189:3705-3711
    54. Lievremont D, N'Negue M A, Behra P, Lett M C. Biological oxidation of arsenite: batch reactor experiments in presence of kutnahorite and chabazite.Chemosphere, 2003, 51: 419-428
    
    55. Lin S, Shi Q, Nix F B, Styblo M, Beck M A, Herbin-Davis K M, Hall L L,Simeonsson J B, Thomas D J. A novel S-adenosyl-L-methionine: arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem, 2002, 277: 10795-10803
    
    56. Lin Y F, Walmsley A R, Rosen B P. An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci U S A, 2006, 103: 15617-15622
    
    57. Lin Y F, Yang J, Rosen B P. ArsD residues Cys12, Cys13, and Cys18 form an As(III)-binding site required for arsenic metallochaperone activity. J Biol Chem,2007a, 282: 16783-16791
    
    58. Lin Y F, Yang J, Rosen B P. ArsD: an As(III) metallochaperone for the ArsAB As(III)-rranslocating ATPase. J Bioenerg Biomembr, 2007b, 39: 453-458
    
    59. Macur R E, Jackson C R, Botero L M, McDermott T R, Inskeep W P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol, 2004, 38: 104-111
    
    60. Macy J M, Nunan K, Hagen K D, Dixon D R, Harbour P J, Cahill M, Sly L I.Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol, 1996, 46: 1153-1157
    
    61. Malasarn D, Keeffe J R, Newman D K. Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol, 2008, 190:135-142
    
    62. Malasarn D, Saltikov C W, Campbell K M, Santini J M, Hering J G, Newman D K. arrA is a reliable marker for As(V) respiration. Science, 2004, 306: 455
    
    63. Martinez R J, Wang Y, Raimondo M A, Coombs J M, Barkay T, Sobecky P A. Horizontal gene transfer of P_(IB)-type ATPases among bacteria isolated from radionuclide- and metal-contaminated subsurface soils. Appl Environ Microbiol,2006,72:3111-3118
    
    64. Meng Y L, Liu Z, Rosen B P. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem, 2004, 279: 18334-18341
    
    65. Mukhopadhyay R, Rosen B P, Phung L T, Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev, 2002, 26: 311-325
    
    66. Muller D, Medigue C, Koechler S, Barbe V, Barakat M, Talla E, Bonnefoy V,Krin E, Arsene-Ploetze F, Carapito C, Chandler M, Cournoyer B, Cruveiller S,Dossat C, Duval S, Heymann M, Leize E, Lieutaud A, Lievremont D, Makita Y,et al. A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet, 2007, 3: 0518-0530
    
    67. Nordstrom D K. Public health. Worldwide occurrences of arsenic in ground water. Science, 2002, 296: 2143-2145
    
    68. O'day P A. Chemistry and mineralogy of arsenic. Elements, 2006, 2: 77-83
    
    69. Ordonez E, Letek M, Valbuena N, Gil J A, Mateos L M. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol, 2005, 71: 6206-6215
    
    70. Oremland R S, Kulp T R, Blum J S, Hoeft S E, Baesman S, Miller L G, Stolz J F.A microbial arsenic cycle in a salt-saturated, extreme environment. Science,2005,308: 1305-1308
    
    71. Oremland R S, Stolz J F. The ecology of arsenic. Science, 2003, 300: 939-944
    
    72. Oremland R S, Stolz J F. Arsenic, microbes and contaminated aquifers. Trends Microbiol, 2005, 13: 45-49
    73.Oremland R S,Stolz J F,Hollibaugh J T.The microbial arsenic cycle in Mono Lake,California.FEMS Microbiol Ecol,2004,48:15-27
    74.Pao S S,Paulsen I T,Saier M H,Jr.Major facilitator superfamily.Microbiol Mol Biol Rev,1998,62:1-34
    75.Patel P C,Goulhen F,Boothman C,Gault A G,Charnock J M,Kalia K,Lloyd J R.Arsenate detoxification in a Pseudomonad hypertolerant to arsenic.Arch Microbiol,2007,187:171-183
    76.Pennanen T,Frostegard A,Fritze H,Baath E.Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests.Appl Environ Microbiol,1996,62:420-428
    77.Pepi M,Volterrani M,Renzi M,Marvasi M,Gasperini S,Franchi E,Focardi S E.Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon,Italy,and their characterization.J Appl Microbiol,2007,103:2299-2308
    78.Pils B,Schultz J.Evolution of the multifunctional protein tyrosine phosphatase family.Mol Biol Evol,2004,21:625-631
    79.Qin J,Rosen B P,Zhang Y,Wang G,Franke S,Rensing C.Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase.Proc Natl Acad Sci U S A,2006,103:2075-2080
    80.Quemeneur M,Heinrich-Salmeron A,Muller D,Lievremont D,Jauzein M,Bertin P N,Garrido F,Joulian C.Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria.Appl Environ Microbiol,2008,74:4567-4573
    81. Rensing C, Newby D T, Pepper I L. The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol Biochem, 2002, 34: 285-296
    
    82. Rhine E D, Ni Chadhain S M, Zylstra G J, Young L Y. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun, 2007, 354: 662-667
    
    83. Rhine E D, Onesios K M, Serfes M E, Reinfelder J R, Young L Y. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Environ Sci Technol, 2008, 42: 1423-1429
    
    84. Rosen B P. The plasmid-encoded arsenical resistance pump: an anion-translocating ATPase. Res Microbiol, 1990, 141: 336-341
    
    85. Rosen B P. Families of arsenic transporters. Trends Microbiol, 1999, 7: 207-212
    
    86. Rosen B P. Biochemistry of arsenic detoxification. FEBS Lett, 2002, 529: 86-92
    
    87. Rosen B P, Weigel U, Karkaria C, Gangola P. Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase.J Biol Chem, 1988, 263: 3067-3070
    
    88. Rosenberg H, Gerdes R G, Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol, 1977, 131: 505-511
    
    89. Ryan R P, Ryan D J, Dowling D N. Multiple metal resistant transferable phenotypes in bacteria as indicators of soil contamination with heavy metals. J Soil Sed, 2005, 5: 95-100
    
    90. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425
    
    91. Salmassi T M, Venkateswaren K, Satomi M, Nealson K H, Newman D K, Hering J G. Oxidation of arsenite by Agrobacterium albertimagni, A0L15, sp nov., isolated from Hot Creek, California. Geomicrobiol J, 2002, 19: 53-66
    
    92. Saltikov C W, Cifuentes A, Venkateswaran K, Newman D K. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol, 2003, 69: 2800-2809
    
    93. Saltikov C W, Newman D K. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci U S A, 2003, 100: 10983-10988
    
    94. Saltikov C W, Olson B H. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol, 2002, 68: 280-288
    
    95. Sambrook J, Russell D W. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001
    
    96. San Francisco M J, Tisa L S, Rosen B P. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol Microbiol, 1989,3: 15-21
    
    97. Santini J M, Kappler U, Ward S A, Honeychurch M J, vanden Hoven R N,Bernhardt P V. The NT-26 cytochrome c552 and its role in arsenite oxidation.Biochim Biophys Acta, 2007, 1767: 189-196
    
    98. Santini J M, Sly L I, Schnagl R D, Macy J M. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic,physiological, and preliminary biochemical studies. Appl Environ Microbiol,2000, 66: 92-97
    
    99. Santini J M, Sly L I, Wen A M, Connie D, De Wulf-Durand P, Macy J M. New arsenite-oxidizing bacteria isolated from Australian gold mining environments - Phylogenetic relationships. GeomicrobiolJ, 2002, 19: 67-76
    
    100. Santini J M, vanden Hoven R N. Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol, 2004, 186:1614-1619
    
    101. Sato T, Kobayashi Y. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol, 1998, 180: 1655-1661
    
    102. Shi W, Dong J, Scott R A, Ksenzenko M Y, Rosen B P. The role of arsenic-thiol interactions in metalloregulation of the ars operon. J Biol Chem, 1996, 271:9291-9297
    
    103. Silver S, Phung L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol, 2005, 71: 599-608
    
    104. Simeonova D D, Lievremont D, Lagarde F, Muller D A, Groudeva V I, Lett M C.Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett, 2004, 237: 249-253
    
    105. Simeonova D D, Micheva K, Muller D A, Lagarde F, Lett M C, Groudeva V I,Lievremont D. Arsenite oxidation in batch reactors with alginate-immobilized ULPAsl strain. Biotechnol Bioeng, 2005, 91: 441-446
    
    106. Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction.Annu Rev Biochem, 2000, 69: 183-215
    
    107. Stolz J F, Basu P, Santini J M, Oremland R S. Arsenic and selenium in microbial metabolism. Annu Rev Microbiol, 2006, 60: 107-130
    
    108. Stolz J F, Oremland R S. Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev, 1999, 23: 615-627
    
    109. Sun G. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol, 2004, 198: 268-271
    
    110. Switzer Blum J, Burns Bindi A, Buzzelli J, Stolz J F, Oremland R S. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol, 1998, 171: 19-30
    
    111. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25:4876-4882
    
    112. Tuffin I M, de Groot P, Deane S M, Rawlings D E. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology, 2005, 151:3027-3039
    
    113. Turpeinen R, Kairesalo T, Haggblom M M. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol, 2004, 47: 39-50
    
    114. vanden Hoven R N, Santini J M. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta, 2004, 1656: 148-155
    
    115. Vaughan D J. Arsenic. Elements, 2006, 2: 71-75
    
    116. Walmsley A R, Zhou T, Borges-Walmsley M I, Rosen B P. Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump. Biochem J, 2001, 360: 589-597
    
    117. Wang G, Kennedy S P, Fasiludeen S, Rensing C, DasSarma S. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol, 2004, 186: 3187-3194
    
    118. Weeger W, Lievremont D, Perret M, Lagarde F, Hubert J C, Leroy M, Lett M C.Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. BioMetals, 1999, 12: 141-149
    
    119. Wilkie J A, Hering J G. Rapid Oxidation of Geothermal Arsenic(III) in Streamwaters of the Eastern Sierra Nevada. Environ Sci Technol, 1998, 32:657-662
    
    120. Willsky G R, Malamy M H. Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol, 1980, 144: 366-374
    
    121. Wood T C, Salavagionne O E, Mukherjee B, Wang L, Klumpp A F, Thomae B A,Eckloff B W, Schaid D J, Wieben E D, Weinshilboum R M. Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem, 2006, 281: 7364-7373
    
    122. Wu J, Rosen B P. The ArsR protein is a trans-acting regulatory protein. Mol Microbiol, 1991, 5: 1331-1336
    
    123. Wu J, Rosen B P. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol, 1993,8: 615-623
    
    124. Xia Y, Liu J. An overview on chronic arsenism via drinking water in PR China.Toxicology, 2004, 198: 25-29
    
    125. Xu C, Rosen B P. Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. J Biol Chem, 1997, 272:15734-15738
    
    126. Xu C, Shi W, Rosen B P. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem, 1996, 271: 2427-2432
    127.Yamamura S,Ike M,Fujita M.Dissimilatory arsenate reduction by a facultative anaerobe,Bacillus sp.strain SF-1.J Biosci Bioeng,2003,96:454-460
    128.Ye J,Yang H C,Rosen B P,Bhattacharjee H.Crystal structure of the flavoprotein ArsH from Sinorhizobium meliloti.FEBS Lett,2007,581:3996-4000
    129.Yoshida T,Yamauchi H,Fan Sun G.Chronic health effects in people exposed to arsenic via the drinking water:dose-response relationships in review.Toxicol Appl Pharmacol,2004,198:243-252
    130.Zheng L,Roeder R G,Luo Y.S phase activation of the histone H2B promoter by OCA-S,a coactivator complex that contains GAPDH as a key component.Cell,2003,114:255-266
    131.Zhou T,Radaev S,Rosen B P,Gatti D L.Structure of the ArsA ATPase:the catalytic subunit of a heavy metal resistance pump.Embo J,2000,19:4838-4845

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700