用户名: 密码: 验证码:
西南太平洋劳盆地(Lau Basin)深海热液区沉积物中微生物多样性及多环芳烃降解微生物的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海热液系统往往被发现于大洋洋中脊和海底火山后弧盆地,剧烈的物理化学梯度变化是其最典型的特征。热液系统中温度、pH及溶解氧、重金属和还原性底物浓度随时间和空间的剧烈变化,为热液生物提供了一个独特的栖息环境。也正是这种独特的生态环境,造就了热液生物,特别是热液微生物在种类、生理及代谢上的多样性。
     目前,研究比较多的热液微生物种群多来自太平洋和大西洋洋中脊热液生态系统中,而有关海底火山后弧盆地热液生态系统中微生物种群的研究鲜有报道。为此,我们以“大洋一号”科考船DY115-19航次,在劳盆地南北热液区获得的热液沉积物为实验材料,通过构建沉积物中微生物16S rRNA及氨氧化单加氧酶amoA基因文库,系统地研究了在不同热液活动条件下劳盆地南北热液区沉积物中微生物种群的组成情况,并对微生物可能参与的生物地球化学循环过程进行了初步的探讨。此外,通过选择性富集的方法,研究了热液沉积物中PAHs降解微生物的种群组成,并对其中一株优势降解菌进行了深入的分子生物学研究。主要研究结果总结如下:
     对劳盆地南北热液沉积物中微生物种群进行的分子生态学研究表明:1)劳盆地热液沉积物中蕴含大量新型细菌种质资源。三个细菌文库中,约有95%的OTUs和已报道的微生物在16S rDNA序列水平上的同源性低于97%,同时三个站点中细菌16S rRNA基因文库的覆盖率(<70%)和文库稀释度曲线呈现的趋势表明,目前构建的文库还未达到饱和,这说明劳盆地热液沉积物中蕴藏着大量不同于其它海洋环境的新型微生物资源。2)氨氧化古菌是热液沉积物中古菌的优势类群。在三个古菌16S rRNA基因文库中,潜在的氨氧化泉古菌在文库中所占比例均大于55%,它们和一株海洋氨氧化泉古菌Nitrosopumilus maritimus的同源性高达92%。特别是在TVG9古菌文库中,和N.maritimus同源性为97.92%的OTU(YI-2D)在文库中的比例更是高达58.59%。3)微生物种群站点特异性强。虽然变形菌门的细菌和海洋Ⅰ型泉古菌分别是三个站点中的优势细菌和古菌类群,但是和热液活动直接相关的ε和ζ变形菌门的细菌及海洋广古菌仅出现在TVG9站点中。4)热液活动对微生物种群组成有显著性影响。根据对细菌和古菌16S rRNA基因文库的统计分析可知,无论是细菌还是古菌文库,三个站点在微生物多样性方面均呈现出TVMC2>TVG2>TVG9的趋势。特别是在古菌组成上,根据对文库进行的Libshuff分析表明(95%置信限),来源于热液烟囱壁样品的TVG9古菌种群和TVG2(P=0.001)及TVMC2(P=0.0171站点的古菌种群有显著性差异。
     对三个沉积物中PAHs进行的索氏抽提及GC-MS定量分析表明,三个沉积物样品中均含有不同种类的PAHs,其中PAHs总量依次为:114.52 ng/g干重(TVG9站点),409.65 ng/g干重(TVG2站点)和277.67 ng/g干重(TVMC2站点)。以混合PAHs为唯一碳源对三个沉积物中的PAHs降解微生物进行了定向富集,并成功获得三个降解菌群。在这三个菌群中,可培养的PAHs降解菌主要归属于α变形菌门的Novosphingobium属和γ变形菌门的Pseudomonas属;而可培养的非PAHs降解菌分别属于α变形菌门的Halomonas属和Alcanivorax属,及γ变形菌门的Thalassospira属。菌群DGGE分析及16S rRNA基因文库结果表明,在TVG9和TVG2降解菌群中优势降解菌均来自Novosphingobium,Halomonas,Thalassospira和Alcanivorax属;而在TVMC2菌群中优势菌则来自Pseudomonas,Alcanivorax,Halomonas,Psychroflexus和Alteromonas属。菌群的动态变化分析结果表明,在TVG9和TVG2菌群中,PAHs降解菌Novosphingobium往往在菌群生长的中期成为最优势的类群,其优势地位会一直保持到菌群生长的末期;而非PAHs降解菌,如Halomonas和Thalassospira往往在菌群生长的前期占据优势,在菌群生长的中后期其优势地位逐渐被PAHs降解菌所取代。
     此外,以TVG9菌群中的优势降解菌Novosphingobium sp.TVG9-Ⅶ为材料,深入的研究了它对多种PAHs的降解特性。它能够利用多种PAH及其混合物,在摇瓶培养基中,3个星期内该菌株几乎能够完全降解萘(200 mg/L)和菲(100 mg/L),并且对高环的荧蒽(20 mg/L)和芘(20 mg/L)的降解率也能达到60%左右。16S rDNA序列测定表明,菌株TVG9-Ⅶ归属于Novosphingobium属。根据Novosphingobium属中已经报道的PAHs起始双加氧酶基因序列,设计了兼并引物,从该菌株中克隆得到了四个DNA序列不完全相同的起始双加氧酶基因。同时通过构建该菌株基因组的Fosmid文库,我们克隆得到了一个完整的负责PAHs起始降解的基因簇,序列分析表明,其降解基因的排布方式和该属其它菌株降解基因簇中基因的排布方式类似。不同PAHs诱导条件下的基因表达差异分析表明,该菌株中四个起始双加氧酶基因在菲的诱导下,表达显著上调,而对荧蒽和芘的诱导没有响应,这说明菌株TVG9-Ⅶ对菲的高效降解是采用降解基因的多拷贝策略,同时也说明在该菌株中还有其它潜在的负责高环PAHs降解的新基因。
     本文首次系统的报道了劳盆地热液区沉积物微生物种群的多样性,同时研究了其中PAHs降解微生物的种群组成和降解特性,以期为劳盆地热液微生物(基因)资源的研究和开发,及进一步揭示深海热液区来源的PAHs降解微生物的降解机理和生物地理分布奠定理论基础。
Deep-sea hydrothermal systems are frequently found in mid-ocean ridges and back-arc basins,and characterized by marvelous physical and chemical gradients.The hydrothermal vent activity provides unique niches for vent lives,with sharp changes of temperature,dissolved oxygen levels,heavy metal content and reduced substrates.Such environments have shaped special microbial communities of high diversity in taxonomy, physiology and metabolism.
     By far,the well-studied hydrothermal microbial communities were usually located at the Mid-Pacific Ridge and Mid-Atlantic Ridge.However,there were few reports about the microbial communities retrieved for a submarine volcano back-arc basin.Here,three hydrothermal sediments(TVG9,TVG2 and TVMC2) were sampled from the southern and northern hydrothermal regions of Lau basin,during the cruise of DY 115-19 of R/V Da-Yang Yi-Hao.Through constructing the 16S rRNA gene and amoA gene libraries,the in situ bacteria and archaea communities were investigated in these sites,which possibly involved in the biogeochemical cycle.In addition,the diverisity of PAH-degrading bacteria in these sediments was also anlyzed after enrichment using PAHs as the only carbon source.Meanwhile,a selected PAH-degrading bacterium named strain Novosphingobium sp.TVG9-Ⅶwas studied in more details at molecular level.The main results were as follows:
     The profile of microbial community structures in southern and northern hydrothermal sediments of Lau baisn were investigated by culture-independent molecular phylogenetic methods.The investigation data indicated that:1) the bacteria strain resource was novel in Lau basin.About 95%OTUs in three bacterial 16S rRNA gene libraries shared less 97%similarity with the known microorganism.Moreover,the low coverage of three bacteria libraries(<70%) indicated that these libraries didn't reach saturation.So,all these data showed that there were many kinds of new and unique microbiology inhabited in the hydrothermal sediments of Lau basin.2) ammonia-oxidizing archaea dominated in all three archaea community.The ratios of potential ammonia-oxidizing archaea clones in all three archaea 16S rRNA libraries were more than 55%.They had Nitrosopumilus maritimus as the closest cultured neighbor with 92%16S rDNA sequence similarity.Specially,the OTU YI-2D shared 97.92%similarity with N.maritimus and occupied 58.59%clones in TVG9 library.3) The structures of microbial community had a clear characteristic with sampling sites.Theε-,ζ-proteobacteria and Euryarchaeota were merely detected in TVG9 site,although the Proteobacteria and marine Crenarchaeota were the dominate member in all three site.4) The hydrothermal activities had a significant influence on the microbial community structure.According to the statistical results of 16S rRNA gene libraries,not only in bacteria but in archea libraries,there was a clear trend in microbial diversity aspect TVMC2>TVG2>TVG9.In particular,the Libshuff results of three archaea 16S rRNA gene libraries indicated that TVG9 archaeal library was significantly different with TVG2 (P=0.001) or TVMC2-1(P=0.017) archaeal libraries.
     The soxhlet extraction and GC-MS quantitative analysis of PAHs in three sediments showed that there were different kinds of PAHs in three sediments.The concentration of total PAHs were 114.52 ng/g,409.65 ng/g,277.67 ng/g dry weight for TVG9,TVG2 and TVMC2,respectively.After enrichment with a PAH mixture(naphthalene,phenanthrene and pyrene),three degrading consortia were obtained from these three sediments.In these consortia,the cultivable degrading bacteria belonged to genus Novosphingobium ofα-proteobacteria and genus Pseudomonas ofγ-proteobacteria;the cultivable non-degrading bacteria belonged to genus Halomonas and genus Alcanivorax ofα-proteobacteria,and genus Thalassospira ofγ-proteobacteria.According to DGGE and 16S rRNA gene libraries results,the bacteria belonging to genera Novosphingobium, Halomonas,Thalassospira and Alcanivorax were confirmed as the dominate member both in TVG9 and TVG2 consortia.In contrast,the major member in TVMC2 consortium belonged to genera Pseudomonas,Alcanivorax,Halomonas,Psychroflexus and Alteromonas.Although community structures dynamically changed spatially and temporally,bacteria closely affiliated to Novosphingobium,Halomonas and Thalassospira most frequently occurred.The genus Novosphingobium bacteria usually became the dominate member in middle-stage and then held this to the end during the consortium growth course.However,the non-PAHs degrading bacteria,such as Halomonas and Thalassospira,only dominated in initial stages and were substituted by PAHs degraders.
     In addition,the degrading characteristics for various PAHs of the strain TVG9-Ⅶ, the dominate member of TVG9 consortium,were confirmed.It could completely degrade the naphthalene(200 mg/L) and phenanthrene(100 mg/L),and more than 60% fluoranthene(20 mg/L) and pyrene(20 mg/L) in three weeks.The 16S rDNA sequencing result indicated strain TVG9-Ⅶbelonged to genus Novosphingobium.According to the cloned PAHs initial dioxygenase gene sequences in genus Novosphingobium,we designed a degenerate prime and cloned four different initial dioxygenase gene fragments.Then,a fosmid library of strain TVG9-Ⅶgenomic DNA was constructed,and a completive degrading gene cluster was obtained from this library.The sequencing result indicated that the arrangement of degrading genes was the same as the one found in other strains in this genus.The gene expression analysis results indicated that the expression of these four initial dioxygenase genes induced by phenanthrene was increased significantly and there was no expression of them induced by high molecular weight fluoranthene or pyrene. These data indicated a multi-copy strategy of degrading genes was applied in strain TVG9-Ⅶto degrade phenanthrene,and also implied there were some other new potential genes in TVG9-Ⅶgenome responding to the degradation of high molecular weight PAHs.
     In this report,the microbial community structures were investigated for the first time in Lau basin hydrothermal region,and the PAHs-degrading bacteria in this ecosystem were also detected.These results will help to study and utilize the gene resource retrieved from Lau basin hydrothermal vent field,and to reveal the biogeochemical distribution of PAH-degrading bacteria inhabited in hydrothermal ecosystem.
引文
1.王瑞白,刘海洪,邱海燕,宋亚军,杨瑞馥,阚飙.我国霍乱弧菌的脂肪酸分型研究.中国生物工程杂志,2007,27:15-21
    2.肖湘,王风平.深海微生物的研究开发.中国抗生素杂志,2006,31 87-89
    3.徐卫东..海洋石油开发中含油污水处理与溢油防治技术.油气田环境保护,1999,6:26
    4.崔志松,邵宗泽.一株海洋新鞘氨醇杆菌phe-8(Novosphingobium sp.)的PAHs降解基因和降解特性.厦门大学学报(自然科学版),2006,45(增刊):257-261
    5.蓝希钳,周泽扬.未培养的微生物研究进展.微生物学通报,2005,32:116-119
    6.陈文新.细菌系统发育.微生物学报,1998,38:240-243
    7.崔志松.深海PAHs降解菌的多样性分析及重要降解菌的分子生物学研究.[硕士毕业论文].厦门:厦门大学,2006.
    8.田蕴.海洋环境中多环芳烃污染的微生物修复作用研究.[博士毕业论文].厦门:厦门大学,2002
    9.王淑芳.深海热液口硫化物及沉积物微生物多样性及其与环境相互关系研究.[博士毕业论文].青岛:中国海洋大学,2008
    10.袁军.印度洋深海多环芳烃降解菌的多样性分析及降解菌新种的分类鉴定与降解机理初步研究.[博士毕业论文].厦门:厦门大学,2008
    11.Alain K,Marteinsson V T,Miroshnichenko M L,Bonch-Osmolovskaya E A,Prieur D,Birrien J L.Marinitoga piezophila sp.nov.,a rod-shaped,thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent.International Journal of Systematic and Evolutionary Microbiology,2002,52:1331-1339
    12.Amann R,Fuchs B M.Single-cell identification in microbial communities by improved fluorescence in sire hybridization techniques.Nat Rev Microbiol,2008,6:339-348
    13.Amann R I,Krumholz L,Stahl D A.Fluorescent-oligonucleotide probing of whole cells for determinative,phylogenetic,and environmental studies in microbiology.J Bacteriol,1990,172:762-770
    14.Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiol Rev,1995,59:143-169
    15.Andreoni V,Gianfreda L.Bioremediation and monitoring of aromatic-polluted habitats.Applied Microbiology and Biotechnology,2007,76:287-308
    16. Antoine E, Cilia V, Meunier J R, Guezennec J, Lesongeur F, Barbier G. Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol, 1997,47: 1118-1123
    
    17. Baker E T, Lavelle J W, Massoth G J. Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature, 1985, 316: 342-344
    
    18. Baker E T, Massoth G J. Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth and Planetary Science Letters, 1987, 85: 59-73
    
    19. Barbier G, Godfroy A, Meunier J-R, Querellou J, Cambon M-A, Lesongeur F, Grimont P A D, Raguenes G. Pyrococcus glycovorans sp. nov., a hyperthermophilic archaeon isolated from the East Pacific Rise. International Journal of Systematic Bacteriology, 1999,49: 1829-1837
    
    20. Basta T, Keck A, Klein J, Stolz A. Detection and Characterization of Conjugative Degradative Plasmids in Xenobiotic-Degrading Sphingomonas Strains. The Journal of Bacteriology, 2004, 186: 3862-3872
    
    21. Beja O, Aravind L, Koonin E V, Suzuki M T, Hadd A, Nguyen L P, Jovanovich S B, Gates C M, Feldman R A, Spudich J L, Spudich E N, DeLong E F. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 2000, 289:1902-1906
    
    22. Blazejak A, Erseus C, Amann R, Dubilier N. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Microbiol, 2005, 71: 1553-1561
    
    23. Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen B B, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000, 407: 623-626
    
    24. Bouchotroch S, Quesada E, Izquierdo I, Rodriguez M, Bejar V. Bacterial exopolysacchandes produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. Journal of industrial microbiology & biotechnology, 2000, 24: 374-378
    
    25. Brault M, Simoneit B R T, Marty J C, Saliot A. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13oN Org. Geochem., 1988,12: 209-219
    
    26. Bult C J, White O, Olsen G J, Zhou L, Fleischmann R D, Sutton G G, Blake J A, FitzGerald L M, Clayton R A, Gocayne J D, Kerlavage A R, Dougherty B A, Tomb J-F, Adams M D, Reich C I, Overbeek R, Kirkness E F, Weinstock K G, Merrick J M, Glodek A, et.al. Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii. Science, 1996, 273: 1058-1073
    
    27. Byrne N, Strous M, Crepeau V, Kartal B, Birrien J-L, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A. Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME J, 2008,
    
    28. Charlou J L, Donval J P, Fouquet Y, Jean-Baptiste P, Holm N. Geochemistry of high H_2 and CH_4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36.4° N, MAR). Chemical Geology, 2002, 191: 345-359
    
    29. Chen S, Shao Z. Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles, 2009,13: 39-48
    
    30. Chisholm S W, Olson R J, Zettler E R, Goericke R, Waterbury J B, Welschmeyer N A. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature, 1988, 334: 340-343
    
    31. Chung W K, King G M. Isolation, Characterization, and Polyaromatic Hydrocarbon Degradation Potential of Aerobic Bacteria from Marine Macrofaunal Burrow Sediments and Description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Applied and Environmental Microbiology, 2001, 67: 5585-5592
    
    32. Connell D W, Milier G J. Petrolum hydrocarbons in aquatic ecosystems-behavior and effects of sublethat concentrations. Critical Reviews in Environmental Science and Technology, 1981,11:37-140
    
    33. Connon S A, Giovannoni S J. High-Throughput Methods for Culturing Microorganisms in Very-Low-Nutrient Media Yield Diverse New Marine Isolates. Applied and Environmental Microbiology, 2002, 68: 3878-3885
    
    34. Corliss J B, Dymond J, Gordon L I, Edmond J M, von Herzen R P, Ballard R D, Green K, Williams D, Bainbridge A, Crane K, van Andel T H. Submarine Thermal Sprirngs on the Galapagos Rift. Science, 1979, 203: 1073-1083
    
    35. Davis R E, Carney T, Leal K, Moyer C L. Spatial and temporal variability in microbial communities from pre- and post-eruption microbial mats collected from Loihi Seamount, Hawaii. Abstr Fall Mtg Eos Trans AGU, 2005, 86: V51C-1508
    
    36. de la Torre J R, Walker C B, Ingalls A E, Konneke M, Stahl D A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Micmbiol, 2008, 10:810-818
    
    37. DeLong E F. Modern microbial seascapes. Nat Rev Micro, 2007, 5: 755-757
    
    38. Desbruyeres D, Alayse-Danet A M, Ohta S. Deep-sea hydrothermal communities in southwestern Pacific back-arc basins (the North Fiji and Lau Basins): Composition,microdistribution and food web. Marine Geology, 1994, 116: 227-242
    
    39. Dhillon A, Teske A, Dillon J, Stahl D A, Sogin M L. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol, 2003, 69: 2765-2772
    
    40. Dyksterhouse S E, Gray J P, Herwig R P, Lara J C, Staley J T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol, 1995,45: 116-123
    
    41. Edwards K J, Rogers D R, Wirsen C O, McCollom T M. Isolation and Characterization of Novel Psychrophilic, Neutrophilic, Fe-Oxidizing, Chemolithoautotrophic alpha- and gamma-Proteobacteria from the Deep Sea. Applied and Environmental Microbiology, 2003, 69: 2906-2913
    
    42. Ehrhardt C J, Haymon R M, Lamontagne M G, Holden P A. Evidence for hydrothermal Archaea within the basaltic flanks of the East Pacific Rise. Environ Microbiol, 2007, 9: 900-912
    
    43. Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl Environ Microbiol, 2002, 68: 3085-3093
    
    44. Emerson D, Rentz J A, Lilburn T G, Davis R E, Aldrich H, Chan C, Moyer C L. A novel lineage of proteobacteria involved in formation of marine fe-oxidizing microbial mat communities. PLoS ONE, 2007, 2: e667
    
    45. Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA, 1983, 80: 1579-1583
    
    46. Fleischmann R D, Adams M D, White O, Clayton R A, Kirkness E F, Kerlavage A R, Bult C J, Tomb J F, Dougherty B A, Merrick J M, al e. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995, 269: 496-512
    
    47. Fouquet Y, Charlou J-L, Ondreas H, Radford-Knoery J, Donval J-P, Douville E, Apprioual R, P.Cambon, Pellé H, Landure J-Y, Normand A, Ponsevera E, German C, Parson L, Barriga F, Costa I, Relvas J, Ribeiro A. Discovery and first submersible investigations on the Rainbow hydrothermal field on the MAR (36°14 N). Eos Trans. Am. Geophys. Union, 1997, 78: 832
    
    48. Fouquet Y, Charlou J L, Donval J P, Foucher J P, Harmegnies F, Pelle H, Stackelberg U V, Wiedicke M, Erzinger J, Herzig P, Mühe H, Soakai S, Whitechurch H. Hydrothermal activity in the lau basin; First results from the NAUTILAU cruise. Eos Trans. AGU, 1990, 71: 678-678
    
    49. Fouquet Y, Stackelberg U V, Charlou J L, Donval J P, Erzinger J, Foucher J P, Herzig P, Muhe R, Soakai S, Wiedicke M, Whitechurch H. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature, 1991, 349: 778-781
    
    50. Francis C A, Roberts K J, Beman J M, Santoro A E, Oakley B B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A, 2005,102: 14683-14688
    
    51. Friedrich C. Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol, 1998,39:235-289.
    
    52. Friedrich C G, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 2005, 8: 253-259
    
    53. Fruh-Green G L, Kelley D S, Bernasconi S M, Karson J A, Ludwig K A, Butterfield D A, Boschi C, Proskurowski G 30,000 Years of Hydrothermal Activity at the Lost City Vent Field. Science, 2003, 301: 495-498
    
    54. Gallant R M, Von Damm K L. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°-25°S, Central Indian Ridge. Geochem. Geophys. Geosyst., 2006, 7:
    
    55. Geiselbrecht A D, Hedlund B P, Tichi M A, Staley J T. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of puget sound Cycloclasticus strains. Appl Environ Microbiol, 1998, 64: 4703-4710
    
    56. German C R, Baker E T, Mevel C, Tamaki K, the F S T. Hydrothermal activity along the southwest Indian ridge. Nature, 1998, 395: 490-493
    
    57. Gillan D C, Danis B. The archaebacterial communities in Antarctic bathypelagic sediments. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54: 1682-1690
    
    58. Giovannoni S J, Britschgi T B, Moyer C L, Field K G Genetic diversity in Sargasso Sea bacterioplankton. Nature, 1990, 345: 60-63
    
    59. Giovannoni S J, DeLong E F, Olsen G J, Pace N R. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol, 1988, 170: 720-726
    60. Golyshin P N, Chernikova T N, Abraham W R, Lunsdorf H, Timmis K N, Yakimov M M. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 901-911
    
    61. Haddad A, Camacho F, Durand P, Cary S C. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Applied and Environmental Microbiology, 1995, 61: 1679-1687
    
    62. Handelsman J, Rondon M R, Brady S F, Clardy J, Goodman R M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol, 1998, 5: R245-249
    
    63. Harwati T U, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicibacter naphthalenivorans gen. nov., sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Semarang Port in Indonesia. International Journal of Systematic and Evolutionary Microbiology, 2009, 59: 392-396
    
    64. Hatzenpichler R, Lebedeva E V, Spieck E, Stoecker K, Richter A, Daims H, Wagner M. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci U S A, 2008, 105: 2134-2139
    
    65. Head I M, Jones D M, Roling W F. Marine microorganisms make a meal of oil. Nat Rev Microbiol, 2006, 4: 173-182
    
    66. Heijs S K, Laverman A M, Forney L J, Hardoim P R, van Elsas J D. Comparison of deep-sea sediment microbial communities in the Eastern Mediterranean. FEMS Microbiol Ecol, 2008, 64: 362-377
    
    67. Hekinian R, Fevrier M, Avedik F, Cambon P, Charlou J L, Needham H D, Raillard J, Boulegue J, Merlivat L, Moinet A, Manganini S, Lange J. East Pacific Rise Near 13{degrees}N: Geology of New Hydrothermal Fields. Science, 1983, 219: 1321-1324
    
    68. Hicks B N, Caplan J A. Bioremediation: A natural solution. . Pollution Engineering, 1993,25 30-33
    
    69. Holland H D. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. June 29;, 2006, 361: 903-915
    
    70. Holmes A J, Tujula N A, Holley M, Contos A, James J M, Rogers P, Gillings M R. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol, 2001, 3: 256-264
    
    71. Hsu-Kim H, Mullaugh K M, Tsang J J, Yucel M, Luther G W, 3rd. Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs. Geochem Trans, 2008, 9:6
    
    72. Huber J A, Johnson H P, Butterfield D A, Baross J A. Microbial life in ridge flank crustal fluids. Environmental Microbiology, 2006, 8:88-99
    
    73. Inagaki F, Takai K, Kobayashi H, Nealson K H, Horikoshi K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol, 2003, 53: 1801-1805
    
    74. Jeanthon C, L'Haridon S, Reysenbach A L, Corre E, Vernet M, Messner P, Sleytr U B, Prieur D. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213Tas Methanococcus fervens sp. nov. International Journal of Systematic Bacteriology, 1999,49: 583-589
    
    75. Jiang B, Zheng H-1, Huang G-q, Ding H, Li X-g, Suo H-t, Li R. Characterization and distribution of polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin, China. Journal of Environmental Sciences, 2007,19: 306-311
    
    76. Johnson K S, Beehler C L, Sakamoto-Arnold C M, Childress J J. In Situ Measurements of Chemical Distributions in a Deep-Sea Hydrothermal Vent Field. Science, 1986,231: 1139-1141
    
    77. Jorgensen B B, Boetius A. Feast and famine — microbial life in the deep-sea bed. Nat Rev Micro, 2007, 5: 770-781
    
    78. Kaeberlein T, Lewis K, Epstein S S. Isolating "Uncultivable" Microorganisms in Pure Culture in a Simulated Natural Environment. Science, 2002, 296: 1127-1129
    
    79. Karl D M. Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol, 2007, 5: 759-769
    
    80. Kasai Y, Kishira H, Harayama S. Bacteria belonging to the genus cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol, 2002, 68: 5625-5633
    
    81. Kasai Y, Shindo K, Harayama S, Misawa N. Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol, 2003, 69: 6688-6697
    
    82. Kashefi K, Holmes D E, Reysenbach A-L, Lovley D R. Use of Fe(III) as an Electron Acceptor To Recover Previously Uncultured Hyperthermophiles: Isolation and Characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Applied and Environmental Microbiology, 2002, 68: 1735-1742
    83. Kasting J F. Earth's early atmosphere. Science, 1993, 259: 920-926
    
    84. Kaye J Z, Marquez M C, Ventosa A, Baross J A. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. International Journal of Systematic and Evolutionary Microbiology, 2004,54:499-511
    
    85. Kelley D S, Karson J A, Blackman D K, Fruh-Green G L, Butterfield D A, Lilley M D, Olson E J, Schrenk M O, Roe K K, Lebon G T, Rivizzigno P. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature, 2001, 412: 145-149
    
    86. Kelley D S, Karson J A, Fruh-Green G L, Yoerger D R, Shank T M, Butterfield D A, Hayes J M, Schrenk M O, Olson E J, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley A S, Brazelton W J, Roe K, Elend M J, et.al. Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science, 2005, 307:1428-1434
    
    87. Kletzin A, Urich T, Miiller F, Bandeiras T M, Gomes C M. Dissimilatory Oxidation and Reduction of Elemental Sulfur in Thermophilic Archaea. Journal of Bioenergetics and Biomembranes, 2004, 36: 77-91
    
    88. Konn C, Charlou J L, Donval J P, Holm N G, Dehairs F, Bouillon S. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 2009, 258: 299-314
    
    89. Konneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 2005, 437: 543-546
    
    90. Koonin E V, Mushegian A R, Galperin M Y, Walker D R. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol, 1997, 25: 619-637
    
    91. Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T. Reduced Genome of the Thioautotrophic Intracellular Symbiont in a Deep-Sea Clam, Calyptogena okutanii. Current Biology, 2007, 17: 881-886
    
    92. Kvenvolden K A, Rapp J B, Hostettler F D, Morton J L, King J D, Claypool G E. Petroleum Associated with Polymetallic Sulfide in Sediment from Gorda Ridge. Science, 1986, 234: 1231-1234
    
    93. Lam P, Jensen M M, Lavik G, McGinnis D F, Muller B, Schubert C J, Amann R, Thamdrup B, Kuypers M M. Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proc NatlAcad Sci U S A, 2007,104: 7104-7109
    
    94. Lee D H, Zo Y G, Kim S J. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl. Environ. Microbiol., 1996, 62: 3112-3120
    
    95. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol G W, Prosser J I, Schuster S C, Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature, 2006,442: 806-809
    
    96. Li L, Kato C, Horikoshi K. Microbial Diversity in Sediments Collected from the Deepest Cold-Seep Area, the Japan Trench. Mar Biotechnol (NY), 1999, 1: 391-400
    
    97. Liu W, Marsh T, Cheng H, Forney L. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol, 1997, 63: 4516-4522
    
    98. Llanos J, Capasso C, Parisi E, Prieur D, Jeanthon C. Susceptibility to heavy metals and cadmium accumulation in aerobic and anaerobic thermophilic microorganisms isolated from deep-sea hydrothermal vents. Curr Microbiol, 2000,41: 201-205
    
    99. Lollar B S. Life's chemical kitchen. 2004, 304: 972-973
    
    100.Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol, 2003, 5: 961-976
    
    101.Ludwig K A, Kelley D S, Shen C, Cheng H, Edwards R L. U/Th Geochronology of Carbonate Chimneys at the Lost City Hydrothermal Field. Eos Trans. AGU, 2005, 86: V51B-1487
    
    102.Madsen E L. Determining in situ biodegradation: Facts and Challenges. Envrion. Sci.Technol., 1991,25: 1663-1672
    
    103.Markert S, Arndt C, Felbeck H, Becher D, Sievert S M, Hugler M, Albrecht D, Robidart J, Bench S, Feldman R A, Hecker M, Schweder T. Physiological Proteomics of the Uncultured Endosymbiont of Riftia pachyptila. Science, 2007, 315: 247-250
    
    104.Martin W, Baross J, Kelley D, Russell M J. Hydrothermal vents and the origin of life. Nat Rev Micro, 2008, 6: 805-814
    
    105.Melcher R J, Apitz S E, Hemmingsen B B. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies. Applied and Environmental Microbiology, 2002, 68: 2858-2868
    106.Mincer T J, Church M J, Taylor L T, Preston C, Karl D M, DeLong E F. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol, 2007, 9: 1162-1175
    
    107.Miroshnichenko M L. Thermophilic Microbial Communities of Deep-Sea Hydrothermal Vents. Microbiology, 2004, 73: 1-13
    
    108.Moussard H, Corre E, Cambon-Bonavita M. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise FEMS Microbiology Ecology 2006, 58: 449-463
    
    109.Moussard H, Moreira D, Cambon-Bonavita M A, and Lopez-Garcia P, Jeanthon C. Uncultured Archaea in a hydrothermal microbial assemblage: phylogenetic diversity and characterization of a genome fragment from a euryarchaeote. FEMS Microbiol Ecol, 2006, 57: 452-469
    
    110.Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol, 1993, 59: 695-700
    
    111 .Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol, 2008, 65: 1-14
    
    112.Nakagawa S, Takai K, Inagaki F, Hirayama H, Nunoura T, Horikoshi K, Sako Y. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environmental Microbiology, 2005, 7: 1619-1632
    
    113.Nakagawa S, Takaki Y, Shimamura S, Reysenbach A-L, Takai K, Horikoshi K. Deep-sea vent Epsilonproteobacterial genomes provide insights into emergence of pathogens. Proceedings of the National Academy of Sciences, 2007, 104: 12146-12150
    
    114.Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K. Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiology Letters, 2004, 232: 145-152
    
    115.Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C. Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol, 2005, 7: 698-714
    
    116.Newton I L G, Woyke T, Auchtung T A, Dilly G F, Dutton R J, Fisher M C, Fontanez K M, Lau E, Stewart F J, Richardson P M, Barry K W, Saunders E, Detter J C, Wu D, Eisen J A, Cavanaugh C M. The Calyptogena magnifica Chemoautotrophic Symbiont Genome. Science, 2007, 315: 998-1000
    117.Nicol G W, Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol, 2006,14: 207-212
    118.Olson R J, Chisholm, S.W., Zettler, E.R., and Armbrust, E.V. Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Research, 1988, 35: 425-440
    119.Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879
    120.Pace N R, Stahl D A, Lane D J, Olson G J. The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol, 1986, 9: 1-55
    121.Peresypkin V I, Lein A Y, Bogdanov Y A, Bortnikov N S. the lipids of hydrothermal formations on the area 14°45'N and 29°N, Mid-Atlantic Ridge. Oceanologiya 1999,39: 258-269 N252.
    122.Proskurowski G, Lilley M D, Kelley D S, Olson E J. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chemical Geology, 2006, 229: 331-343
    123.Proskurowski G, Lilley M D, Seewald J S, Fruh-Green G L, Olson E J, Lupton J E, Sylva S P, Kelley D S. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field. Science, 2008, 319: 604-607
    124.Purkhold U, Pommerening-Roser A, Juretschko S, Schmid M C, Koops H-P, Wagner M. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implications for Molecular Diversity Surveys. Applied and Environmental Microbiology, 2000, 66: 5368-5382
    125.Purkhold U, Wagner M, Timmermann G, Pommerening-Roser A, Koops H P. 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol, 2003, 53: 1485-1494
    126.Raguenes G, Christen R, Guezennec J, Pignet P, Barbier G Vibrio diabolicus sp. nov., a New Polysaccharide-Secreting Organism Isolated from a Deep-Sea Hydrothermal Vent Polychaete Annelid, Alvinella pompejana. International Journal of Systematic Bacteriology, 1997,47: 989-995
    127.Raguenes G, Pignet P, Gauthier G, Peres A, Christen R, Rougeaux H, Barbier G, Guezennec J. Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Applied and Environmental Microbiology, 1996, 62: 67-73
    128.Rogers K L, Amend J P. Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology, 2006, 3: 319-332
    129.Romine M F, Fredrickson J K, Li S M. Induction of aromatic catabolic activity in Sphingomonas aromaticivorans strain F199. J Ind Microbiol Biotechnol, 1999, 23: 303-313
    130.Sahan E, Muyzer G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol Ecol,2008,64: 175-186
    131.Sahm K, Knoblauch C, Amann R. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol, 1999, 65: 3976-3981
    132.Schrenk M O, Kelley D S, Bolton S A, Baross J A. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ Microbiol, 2004, 6: 1086-1095
    133.Schrenk M O, Kelley D S, Delaney J R, Baross J A. Incidence and Diversity of Microorganisms within the Walls of an Active Deep-Sea Sulfide Chimney. Appl. Environ. Microbiol., 2003, 69: 3580-3592
    134.Shank T M, Lutz R A, Vrijenhoek R C. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise).. Deep-sea research II, 1998,45: 465-515
    135.Simoneit B R T, Fetzer J C. High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Organic Geochemistry, 1996, 24: 1065-1077
    136.Simoneit B R T, Lein A Y, Peresypkin V I, Osipov G A. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow field (Mid-Atlantic Ridge at 36N). Geochimica et Cosmochimica Acta, 2004, 68: 2275-2294
    137.Simoneit B R T, Lonsdale P F. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature, 1982, 295: 198-202
    138.Simoneit B R T, Mazurek M A, Jones P W. Air pollution: The organic components. Critical Reviews in Environmental Science and Technology, 1981, 11:219- 276
    139.Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. Microbial diversity in the deep sea and the underexplored "rare biosphere".Proc Natl Acad Sci USA, 2006, 103: 12115-12120
    140.Sohn J H, Kwon K K, Kang J-H, Jung H-B, Kim S-J. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol, 2004, 54: 1483-1487
    141.Sorokin D Y, Lysenko A M, Mityushina L L, Tourova T P, Jones B E, Rainey F A, Robertson L A, Kuenen G J. Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol, 2001, 51: 565-580
    142.Sorokin D Y, Tourova T P, Antipov A N, Muyzer G, Kuenen J G Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitriflcans sp. nov. with thiocyanate. Microbiology, 2004, 150: 2435-2442
    143.Steger D, Ettinger-Epstein P, Whalan S, Hentschel U, de Nys R, Wagner M, Taylor M W. Diversity and mode of transmission of ammonia-oxidizing archaea in marine sponges. Environ Microbiol, 2008,10: 1087-1094
    144. Stein J L, Marsh T L, Wu K Y, Shizuya H, DeLong E F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol, 1996, 178: 591-599
    145.Sun B, Cole J R, Tiedje J M. Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. Int J Syst Evol Microbiol, 2001, 51: 365-371
    146.Sung Y, Ritalahti K M, Sanford R A, Urbance J W, Flynn S J, Tiedje J M, Loffler F E. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol, 2003, 69: 2964-2974
    147.Suzuki Y, Inagaki F, Takai K, Nealson K H, Horikoshi K. Microbial Diversity in Inactive Chimney Structures from Deep-Sea Hydrothermal Systems. Microbial Ecology, 2004,47: 186-196
    148.Suzuki Y, Kojima S, Sasaki T, Suzuki M, Utsumi T, Watanabe H, Urakawa H, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson K H, Horikoshi K. Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the Southwest Pacific.Appl Environ Microbiol,2006,72:1388-1393
    149.Swannell R P,Lee K,McDonagh M.Field evaluations of marine oil spill bioremediation.Microbiology and Molecular Biology Reviews,1996,60:342-365
    150.Takai K,Nakamura K,Suzuki K,Inagaki F,Nealson K,Kumagai H.Ultramafics-hydrothermalism-hydrogenesis-hyperSLiME(UltraH3) linkage:a key insight into early microbial ecosystem in the Archaean deep-sea hydrothermal systems..Palaeontolog Res,2006,10:269-282
    151.Takai K,Oida H,Suzuki Y,Hirayama H,Nakagawa S,Nunoura T,Inagaki F,Nealson K H,Horikoshi K.Spatial Distribution of Marine Crenarchaeota Group Ⅰ in the Vicinity of Deep-Sea Hydrothermal Systems.Applied and Environmental Microbiology,2004,70:2404-2413
    152.Tarasov V G,Gebruk A V,Mironov A N,Moskalev L I.Deep-sea and shallow-water hydrothermal vent communities:Two different phenomena? Chemical Geology,2005,224:5-39
    153.Teira E,Lekunberri I,Gasol J M,Nieto-Cid M,Alvarez-Salgado X A,Figueiras F G.Dynamics of the hydrocarbon-degrading Cycloclasticus bacteria during mesocosm-simulated oil spills.Environ Microbiol,2007,9:2551-2562
    154.Vaneechoutte M,Rossau R,De Vos P,Gillis M,Janssens D,Paepe N,De Rouck A,Fiers T,Claeys G,Kersters K.Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis(ARDRA).FEMS Microbiol Lett,1992,72:227-233
    155.Venter J C,Remington K,Heidelberg J F,Halpern A L,Rusch D,Eisen J A,Wu D,Paulsen I,Nelson K E,Nelson W,Fouts D E,Levy S,Knap A H,Lomas M W,Nealson K,White O,Peterson J,Hoffman J,Parsons R et.al.Environmental genome shotgun sequencing of the Sargasso Sea.Science,2004,304:66-74
    156.Vignais P,Billoud B,Meyer J.Classification and phylogeny of hydrogenases.FEMS Microbiol Rev.,2001,25:455-501
    157.Wang B,Lai Q,Cui Z,Tan T,Shao Z.A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp.P1.Environ Microbiol,2008,10:1948-1963
    158.Wang Y,Lau P C,Button D K.A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads.Applied and Environmental Microbiology,1996,62:2169-2173
    159.Weiss J V,Rentz J A,Plaia T,Neubauer S C,Merrill-Floyd M,Lilburn T,Bradburne C, Megonigal J P, Emerson D. Characterization of Neutrophilic Fe(II)-Oxidizing Bacteria Isolated from the Rhizosphere of Wetland Plants and Description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. . Geomicrobiology Journal, 2007, 24: 559 - 570
    160.Woese C R, Winker S, Gutell R R. Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". Proc Natl Acad Sci U S A, 1990, 87: 8467-8471
    161.Wuchter C, Abbas B, Coolen M J L, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl G J, Middelburg J J, Schouten S, Sinninghe Damst J S. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, 2006, 103: 12317-12322
    162.Yakimov M M, Giuliano L, Denaro R, Crisafi E, Chernikova T N, Abraham W-R, Luensdorf H, Timmis K N, Golyshin P N. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 2004, 54: 141-148
    163.Yakimov M M, Giuliano L, Gentile G, Crisafi E, Chernikova T N, Abraham W-R, Lunsdorf H, Timmis K N, Golyshin P N. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 779-785
    164.Yakimov M M, Timmis K N, Golyshin P N. Obligate oil-degrading marine bacteria. Current Opinion in Biotechnology, 2007,18: 257-266
    165.Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Organic Geochemistry, 2004, 35: 573-582
    166.Yooseph S, Sutton G, Rusch D B, Halpern A L, Williamson S J, Remington K, Eisen J A, Heidelberg K B, Manning G, Li W, Jaroszewski L, Cieplak P, Miller C S, Li H, Mashiyama S T, Joachimiak M P, van Belle C, Chandonia J-M, Soergel D A, Zhai Y, et.al. The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biology, 2007, 5: e16
    167.Yuan J, Qiliang L, Tianling Z, Zongze S. Polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. H25 isolated from deep sea and its degrading genes. Wei Sheng Wu Xue Bao, 2008,48: 1208-1213
    168.Zengler K, Toledo G, Rapp M, Elkins J, Mathur E J, Short J M, Keller M. Cultivating the uncultured. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 15681-15686
    169.Zhang C L, Ye Q, Huang Z, Li W, Chen J, Song Z, Zhao W, Bagwell C, Inskeep W P, Ross C, Gao L, Wiegel J, Romanek C S, Shock E L, Hedlund B P. Global Occurrence of Archaeal amok Genes in Terrestrial Hot Springs. Appl Environ Microbiol, 2008,
    
    170.Zhou H W, Luan T G, Zou F, Tarn N F. Different bacterial groups for biodegradation of three- and four-ring PAHs isolated from a Hong Kong mangrove sediment. J Hazard Mater, 2008,152: 1179-1185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700