用户名: 密码: 验证码:
贺兰山、秦岭山脉新生代伸展隆升及断层摩擦生热磷灰石裂变径迹分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Apatite Fission Track (AFT) Analysis of the Cenozoic Extensional Exhumation and Uplift of the Helan Shan and the Qinling Mountains, and Frictional Heating Along Active Faults
  • 作者:刘建辉
  • 论文级别:博士
  • 学科专业名称:构造地质学
  • 学位年度:2009
  • 导师:张培震 ; 万景林
  • 学科代码:070904
  • 学位授予单位:中国地震局地质研究所
  • 论文提交日期:2009-06-01
摘要
本文利用磷灰石裂变径迹(AFT)热年代学分析方法对贺兰山和秦岭山脉新生代快速伸展隆升的时间、剥露作用的空间分布特征、隆升模式及机制进行了研究,揭示了贺兰山和秦岭山脉晚新生代的快速伸展隆升作用,测定了晚新生代与伸展变形有关的剥露作用的空间分布特征,为贺兰山和秦岭山脉晚新生代快速隆升的模式提供了很好的约束。并对贺兰山和秦岭山脉晚新生代快速伸展隆升的变形机制及其构造意义进行了探讨。根据本次磷灰石裂变径迹分析所揭示的秦岭山脉晚新生代的快速隆升作用,结合中国西北及北方等干旱气候环境的形成时间及其分布区域,以及中国南北古生物演化等,对秦岭山脉晚新生代快速隆升作用的强度及其对中国环境气候的影响进行了研究和探讨。此外,以青藏高原东北缘断裂带为研究对象,利用磷灰石裂变径迹(AFT)热年代学分析方法对断层滑动摩擦生热的探测或测量进行了初步探索研究,对其存在的主要问题及前景进行了总结。本博士论文主要取得以下三方面的研究结果。
     一.贺兰山新生代快速伸展隆升的时间及模式
     贺兰山位于阿拉善地块、鄂尔多斯地块的结合部位,中国南北构造带(地震带)的北端,是华北克拉通内部经历了长期构造演化的板内变形带。新生代以来,该区主要表现为受贺兰山东面具有右旋走滑性质的正断层控制的伸展构造变形,导致了银川盆地的形成和贺兰山的快速隆起。本文根据贺兰山新生代以来的构造变形特征,在贺兰山中南部的苏峪口及北部的大武口沿垂直贺兰山东麓断层走向采集了两个磷灰石裂变径迹样品剖面,同时在贺兰山的西面及北端正谊关沟采集了少量样品,总计18个样品。测试结果显示贺兰山中南部苏峪口剖面的年龄老,东侧的4个样品年龄在88.1~71.7Ma之间,西侧的4个样品年龄在116~107Ma之间;贺兰山北部大武口剖面及正谊关沟的样品年龄在89~10Ma之间,靠近贺兰山东麓断层年龄变年轻,随着距离的增大而年龄变老。结合前人在小松山-汝箕沟所获得的磷灰石裂变径迹结果,对贺兰山新生代快速隆升的时间、剥露作用的空间分布特征及构造隆升模式进行了测定,并对其变形机制进行了探讨。主要获得以下主要认识:
     1.采自贺兰山北部大武口剖面及正谊关沟的样品HL07-01、HL07-02、HL07-3a、HL07-05及HL07-06,其磷灰石裂变径迹平均长度大(>13.87um),标准偏差小(<1.1um),揭示了贺兰山始于约10~12Ma的快速隆升剥露冷却作用;
     2.贺兰山磷灰石裂变径迹数据空间分布特征揭示了始于晚新生代(约10-12Ma)的快速隆升剥露冷却作用向东靠近断层剥露作用加强,向西远离断层剥露作用减弱,北部剥露作用较强,向南逐渐减弱的空间分布特征;
     3.贺兰山起始于晚新生代(约10-12Ma)快速剥露冷却作用的空间分布特征,指示了贺兰山与平行于山脉的东麓断层伸展作用有关的向西向南的掀斜隆升剥露模式;
     4.沿鄂尔多斯地块周缘北西-南东向的区域伸展拉张作用,导致了鄂尔多斯地块西北角晚新生代强烈的拉张作用是造成贺兰山强烈向西向南掀斜隆升的主要原因。贺兰山-银川盆地是在先存褶皱-逆冲构造的基础上,在北西-南东向的区域伸展背景下,在具有右旋走滑性质的贺兰山东麓断裂的伸展变形过程中,下盘贺兰山快速掀斜隆起成山,上盘倾斜断陷形成银川盆地,是板内伸展造山作用所形成的盆岭构造。
     二.秦岭山脉新生代快速伸展隆升的时间、模式、指示意义及其影响
     秦岭山脉位于中国大陆中部,呈东西走向,是一个经历了板块碰撞造山和陆内造山作用的典型复合造山带。新生代以来,在秦岭山脉北缘及其内部,发生了平行于造山带的显著造山后的伸展构造变形,形成断陷下沉的渭河盆地,并使秦岭山脉发生急剧的陆内伸展隆升,成为分隔我国南北地质、生物和气候环境的天然界线。本文在前人研究的基础上,对秦岭山脉进行了系统的磷灰石裂变径迹样品采集,分别在太白山、华山、中条山、骊山、沣峪口及秦岭南面进行了大量的样品采集,总计完成了55个样品的测试,获得了大量新的磷灰石裂变径迹年代学结果。结合前人已报道的磷灰石裂变径迹结果,对秦岭山脉新生代快速隆升的时间、隆升剥露作用的空间分布特征、隆升剥露模式、构造意义、隆升的幅度及影响进行了测定和讨论。获得了以下主要认识:
     1.太白山剖面及华山剖面的磷灰石裂变径迹分析揭示了秦岭山脉始于10.5~7Ma的快速隆升剥露冷却作用;
     2.磷灰石裂变径迹数据的空间分布特征,揭示了秦岭山脉新生代以来的剥露作用具有秦岭南侧的剥露作用缓慢而稳定,北侧的剥露作用速率快,靠近边界断层增强,远离边界断层减弱的空间分布特点;
     3.秦岭山脉新生代剥露作用的空间分布特征,指示了秦岭山脉与平行于山脉的北部主边界断层伸展作用有关的,向南掀斜的伸展隆升模式;
     4.秦岭山脉始于10.5~7Ma的快速隆升剥露作用,在时间上与青藏高原约8Ma左右的隆升和对外扩展具有很好的统一性,结合其所处的特殊构造位置,指示了秦岭山脉起始于10.5~7Ma的快速伸展隆升作用与青藏高原晚新生代隆升和对外扩展具有重要的联系。同时,秦岭山脉始于10.5~7Ma的快速伸展隆升作用,为青藏高原隆升和对外扩展的主要时限提供了重要的佐证,具有重要的构造指示意义。
     5.磷灰石裂变径迹揭示了秦岭山脉始于10.5~7Ma的快速隆升冷却作用,结合中国西北及北方以风成红粘土堆积为标志,干旱气候的形成时间及其分布区域,以及中国哺乳动物南北分异及其形成时间等,综合表明秦岭山脉在此时已经开始大幅度的隆起,可能已达到或接近现今的高度,成为分割我国南北生物和气候环境的天然界线;对东亚季风:冬季风和夏季风的形成具有促进作用,促进和加强了中国北方干旱气候的形成和向东的扩展,是东亚“季风三角”形成的关键和基础之一。
     三.利用AFT分析对断层摩擦生热探测或测量的初步探讨
     断层滑动摩擦生热作用被认为是一种普遍现象,但是如何对天然断层摩擦生热,尤其是对单次地震断层摩擦生热进行探测或测量是现今仍未解决的科学难题,本文研究的最后部分是以青藏高原东北缘断裂带为研究对象,对利用磷灰石裂变径迹热年代学对地震断层滑动摩擦生热的探测或测量进行了初步探讨。分别在海原断裂带的大沟门、香山-天景山断裂带的红谷梁及小洪沟横跨断层采集了3个样品剖面,总计13个样品,样品包括断层主滑动面上的断层泥、碎裂岩及断层围岩。通过对横跨断层方向的断层岩及围岩的磷灰石裂变径迹年龄及水平围限径迹长度及其分布形态的对比分析,分析结果并没有获得断层摩擦生热的证据,表明这些断层在地震滑动过程中的摩擦增温非常有限,没有达到磷灰石裂变径迹热年代计体系可加载热信息的温度-时间要求。结合前人已有的相关研究,对利用磷灰石裂变径迹热年代学对地震断层滑动摩擦生热进行探测或测量存在的主要问题及可行性进行了初步总结和探讨,认为只适应于对震级大、断层滑动距离和速率大、摩擦强度强,位于一定深度有大量摩擦热生成,并使断层附近增温达到或超过磷灰石裂变径迹部分或完全退火温度的断层进行滑动摩擦生热的探测或测量。利用磷灰石裂变径迹的退火动力学方程及断层摩擦生热物理方程等,磷灰石裂变径迹热年代学分析将是一种潜在的能对地震断层滑动摩擦生热或增温进行测量的“热量计或温度计”。
This thesis focuses on application of apatite fission track (AFT) analysis to determining the onset time, the distribution of extension-related uplift and exhumation, and revealing the pattern of the Cenozoic uplift and exhumation of the Helan Shan and the Qinling mountains. It provides constraints on the mechanisms of their deformations, and discusses the magnitude, tectonic significance of the Cenozoic rapid uplift of Qinling mountains, and its effect on the climate and environment of China. In addition, AFT analysis is used to reveal frictional heating along the active faults on the northeastern margin of the Tibetan Plateau, and a discussion is made on the primary problems and prospect of application of this method to detect or/and measure frictional heating along active faults. The major research results of this thesis are as follows:
     1. Timing and pattern of Cenozoic extension-relate rapid uplift and exhumation of the Helan Shan
     The Helan Shan is located at the conjuction zone between the tectonically stable Alashan block and Ordos block, and the northern end of the China south-north tectonic zone( earthquake zone), as a intraplate deformation zone in the interior of North China Craton. It experienced long-term evolution of tectonic deformation. The Helan Shan region is characterized by extensional tectonic deformation under the control of normal faults since the Cenozoic, which resulted in the formation of the uplifted Helan Shan and fault-bounded depressed Yinchuan Basin. Based on the characteristics of the Cenozoic tectonic deformation of the Helan Shan, samples were collected from the Suyukou transect in the south-central Helan Shan and Dawukou transect in the north Helan Shan, respectively. Besides, some samples were from western Helan Shan and Zhengyiguangou in the north Helan Shan. Combined with the results of apatite fission track from Xiaosongshan-Nvqigou reported by Zhao et al (2007), the purpose is to investigate the time, distribution and pattern of uplift and exhumation of the Helan Shan in Cenozoic, and to discuss the mechanism of Cenozoic extensional deformation of the Helan Shan region. The main conclusions are as follows:
     (1) The samples HL07-01, HL07-02 and HL07-3a collected from Zhengyiguangou, HL07-05 and HL07-06 collected from Dawukou transect in the north Helan Shan are characterized by concordant cooling ages(about10~12Ma), long mean track lengths (>13.87um) and small standard deviations of track lengths (<1.1um), indicating the rapid cooling resulted from uplift and exhumation of the Helan Shan onsetting at 10~12Ma
     (2) The spatial distribution of the AFT data of the Helan Shan revealed that the rapid exhumation of Helan Shan onsetting at 10-12Ma was more rapid closer to the Eastern Helan Shan fault (EHSF) and slower away from the EHSF, and decreased from the north (east) Helan Shan to the south (west) Helan Shan.
     (3) The spatial distribution of the exhumation of the Helan Shan onsetting at 10-12Ma indicates that it experienced westward and southward tilt uplift and exhumation associated with the extension of the EHSF
     (4) The westward and southward tilt uplift and exhumation of the Helan Shan can be attributed primarily to the late Cenozoic strong NW-SE extension on the northwestern margin of the Ordos block. The foot wall and hang wall of the dextral-slip normal EHSF moved upward and downward, respectively during extensional faulting, which resulted in forming the uplifted Helan Shan and sunk Yinchuan Basin, respectively.
     2. Timing and pattern of Cenozoic rapid uplift and exhumation of the Qinling Mountains, and their tectonic significance and effects on climate and environment Qinling Mountains, trending W-E, is located in central China, is a typical multiple-stage orogenic belt which experienced plate-collision and intracontinent orogen. In the Cenozoic the parallel–orogen extension deformation on the northern margin and in the interior of Qinling Mountains are prominent, which produced Weihe Basin and post-orogen intracontinental extensional uplift of the Qinling Mountains as the natural boundary of the geology, biology and climate between North and South China. On the basis of the previous studies, AFT samples were collected from the Taibai Shan transect, Hua Shan transect, Zhongtiao Shan transect, Li Shan, Fenyukou and the south-side of the Qinling Mountains, respectively. By use of the new AFT data combined with published AFT data, this thesis has determined the onset time, spatial distribution and pattern of Cenozoic uplift and exhumation, and discusses its tectonic significance, uplift magnitude and effects on climate and environment. The main conclusions are as follows:
     (1) The results of AFT analysis revealed that the rapid uplift and exhumation cooling of the Qinling Mountains began at 10.5~7Ma.
     (2) The spatial distribution of AFT data indicates that the Cenozoic exhumation was slow in the South Qinling and rapid in the North Qinling, more rapid closer to the boundary faults between Weihe Basin and Qinling Mountains and slower denudation away from the boundary faults.
     (3) The spatial distribution of the Cenozoic denudation indicates the Cenozoic southward tilted uplift and exhumation of the Qinling Mountains in response to the intracontinental parallel-orogen extension.
     (4) The timing of rapid uplift and exhumation onsetting at 10.5~7Ma is consistent with the time of the outward growth of the Tibetan Plateau ca.8Ma and the tectonic location of the Qinling Mountains adjacent to the northeastern margin of the Tibetan Plateau suggest that the rapid extensional uplift and exhumation of the Qinling Mountains onsetting at 10.5~7Ma are associated with late Cenozoic rising and outward growth of the Tibetan Plateau. Obviously, the rapid extensional uplift and exhumation of Qinling Mountains onsetting at 10.5~7 provides the important evidence and a constraint on the timing of late Cenozoic uplift and outward growth of the Tibetan Plateau, with the indicative significance of tectonics.
     (5) The rapid uplift and exhumation of the Qinling Mountains onsetting at 10.5~7Ma revealed by AFT analysis, combined with the formation time and distribution area of Aeolian Red Clay in Northwest and North China and the distinct regional differentiations of mammals between South and North China, demonstrate the rapid uplift of the Qinling Mountains initiated in the late Miocene, and its elevation might reach or be close to the present elevation of the Qinling Mountains becoming the natural boundary of biology, climate and environment between South and North China. Furthermore, the uplift of the Qinling Mountains accelerated the formation of the eastern Asian monsoons, and reinforced formation and eastward extent of arid climate of North China, and is one of the important factors and bases of formaton of the eastern Asian monsoon.
     3. Preliminary application of apatite fission track thermochronology analysis to detect or/and measure frictional heating along active faults
     Although fault-slip frictional heating is common along active faults, it is a still unresolved difficulty to detect or/and measure frictional heating of natural faulting, especially single earthquake faulting. The last section of this thesis to attempt to use AFT analysis to detect or and measure fault-slip frictional heating on samples from the active faults zones on the northeastern margin of the Tibetan Plateau. Due to the unique thermal sensitivity of the AFT, AFT ages and confined horizontal track length distribution of samples within and adjacent to fault zones can provide information of fault-slip frictional heating during individual earthquake fault-slip events. Totally 13 samples were collected from the following 3 transects: The Dagoumen transect perpendicular to the Haiyuan active fault, and the Xiaohonggou transect and Hongguliang transect perpendicular to the Xiangshan-Tianjingshan active fault on the northeastern margin of the Tibetan Plateau. Samples include fault gouges and ultracataclasites on principle slip planes of the faults, and ambient rocks adjacent to the faults. No localized thermal anomaly has been detected by AFT analysis. Samples from the Dagoumen transect show damaged AFT system, probably caused by fault activities which resulted in very low U content of some samples. The results indicate that the magnitudes of frictional heat or increased temperature are too limited to cause annealing of AFT. Based on this study and previous work of other people, this thesis concludes that AFT analysis is only suitable for detecting or/and measuring frictional heat caused by large fault displacement and high strength friction which are generally caused by large earthquakes. Furthermore, this thesis concludes that AFT analysis technique would be a potential“calorimeter or thermometer”to detect or/and measure quantitatively the magnitude of fault-slip frictional heat generated by individual earthquake events.
引文
Ames L, Zhou G, Xiong B. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 1996, 15: 472-489
    Armstrong P A, Ehlers T A, Chaman D S, et al. Exhumation of the Central Wasatch Mountains, 1: Patterns and timing deduced from Low-temperature Thermochronometry data. J Geophys Res, 2003, 108:B3,2172,doi:10.1029/2001JB001708
    Barbarand J, Carter A, Wood I, et al. Compositional and structural control of fission-track annealing in apatite. Chem Geol, 2003, 198: 107-137
    Bellier Q, Mercier J L, Vergely P, et al. Evolution sedimentaire et tectonique du graben cenozoique de la Weihe (Province du Shaanxi, Chine du Nord). Bull.Soc.Geol.Fr, 1988, 6: 979-994
    Bigazzi G. The problem of the decay constantλf of 238U. Nucl. Tracks, 1981, 5: 35-44
    Cardwell R K, Chinn D S, Moore G f, et al. Frictional heating on a fault zone with finite thickness. Geophysical Journal of the Royal Astronomical Society, 1978, 52:525-530
    Carlson W D. Mechanisms and kinetics of apatite fission-track annealing. Am.Mineral, 1990, 75: 1120-1139
    Carlson W D, Donelick R A, Ketcham R A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Mieral, 1999, 84:1213-1223
    Chen B-L, Yin G-M, Li W-L, et al. Determination of tectonic uplift rates of Qinling mountains in central China by fission tracks. Radiation Measurements, 2001, 34: 405-408
    Chester F M and Chester J S. Ultracataclasite structure and friction processes of the Punchbow Fault, San Andreas System, California, Tectonophysics, 1998, 295(1-2):199-221
    Corrigan J. Inversion of fission track data for thermal history information. J.Geophys. Res, 1991, 96: 10347-10360
    Crowley K D, Cameron M, Schaefer R L. Experimental studies of annealing of etched tracks in fluorapatite. Geochim. Cosmochim. Acta, 1991, 55: 1449-1465
    Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China. Earth Planet Sci Lett,2002,205:13-24
    Deng Qidong, Liao Yuha. Paleoseismology along the range-front fault of Helan Mountains, North Central China. J Geophys Res,1996, 101(B3):5873-5894
    Ding Z L, Sun J M, Liu T S. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters, 1998, 25:1225-1228
    Di Toro G, Hirose T, Nielsen S, et al. Natural and Experimental Evidence of Melt Lubrication of Faults During earthquakes. Science, 2006, 311(5761):647-649
    D`Alessio M A, Blythe A E, Burgmann R. No friction heat along the San Gabriel fault, California: evidence from fission-track thermochronology. Geology, 2003, 31:541-544
    Donelick R A. Crystallographic orientation dependence of mean etchable track length in apatite: a physical model and experimental observations. Am. Mineral, 1991, 76:83-91
    Donelick R A, Ketcham R A, Carlson W D. Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects, Am. Mineral, 1999, 84(9), 1224-1234
    Duddy I R, Green P F, Laslett G M. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chem. Geol. 1988, 73: 25-38
    Dumitru T A. Fission-track Geochronology. In: Quaternay Geochronology: Methods and Applications. Noller JS, Sowers JM, Lettis WR(eds) Am Geophys Union Ref Shelf 4, Washington, DC, American Geophysical Union, 131-155
    Ehlers T A, Chapman D S. Normal fault thermal regimes:conductive and hydrothermal heat transfer surrounding the Wasatch Fault, Utah. Tectonophysics, 1999, 312:217-234
    Ehlers T A, Willet S D, Armstrong P A, et al. Exhumation of the central Wasatch Mountains, Utah:2.Thermokinematic model of exhumation, erosion, and thermochronometer interpretation. J Geophys Res, 2003, 108:B3,2173,doi:10.1029/2001JB001723
    Ehlers T A, Phillip A, Armstrong P A, et al. Normal fault thermal regimes and the interpretation of low-temperature thermochronometers. Phys Earth Planet Inter, 2001, 126:179-194
    Enkelmann E, Ratschbacher L, Raymond J, et al. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin?.GSA Bulletin, 2006,118:651-671
    England P and Molnar P. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 1990, 18(12): 1173-1177
    Fitzgerald P G, Sorkhabi R B, Redfield T F, et al. Uplift and denudation of the central Alaska Range; a case study in the use of apatite fission track thermochronology to determine absolute uplift parameters. J.Geophys. Res, 1995, 100:20175-20191
    Fleisher R L, Price P B, Walker R M. Effects of temperature, pressure and ionization on the formation and stability of fission tracks in minerals and glasses. J. Geophys. Res. 1965, 70:1497-1502
    Friedman M, Logan J M, Rigert J A. Glass-indurated quartz gouge in sliding-friction experiments on sandstone. Geological Society of America Bulletin, 1974, 85:937-942
    Fukuchi T, Yurugi J, Imai N. ESR detection of seismic frictional heating events in the Nojima fault drill core samples, Japan. Tectonophysics, 2007, 443:127-128
    Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci, 1998, 26:519-572
    Gaudemer Y, Tapponnier P, Meyer B, et al. Partitioning of crustal slip between linked active faults in the eastern Qilian Shan, and evidence for a major seismic gas, the“Tianzhu gap”, on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 1995, 120: 599~645
    George A D, Marshallsea S J, Wyrwoll K H, et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission track and vitrinite-reflectance analysis, Geology, 2001, 29(10): 939-942
    Gleadow A J W. Fission track dating methods: What are the real alternatives? Nucl. Tracks 1981, 5: 3-14
    Gleadow A J W, Duddy I R. A natural long term annealing experiment for apatite. Nucl. Tracks, 1981, 5:169-174
    Gleadow A J W, Duddy I R, Green P F, et al. Confined track lengths in apatite– a diagnostic tool for thermal history analysis. Contib Mineral Petrol, 1986, 4: 91-100
    Gleadow A J W, Brown R W. Fission track thermochronology and the long-term denudational response to tectonics. In, Summerfield, MA (ed), Geomorphology and Global Tectonics, John wiley and Sons Ltd., Chichester: 2000, 57-75
    Green P F, and Hurford A J. Thermal neutron dosimetry for fission track dating. Nucl. Tracks, 1984, 9:231-241
    Green P F. Comparison of zeta calibration baselines for fission-track dating of apatite, zircon and sphene. Chem.Geol, 1985, 58:1-22
    Green P F. On the thermo-tectonic evolution of Northern England: evidence from fission track analysis. Geol Mag, 1986, 153:493-506
    Green P F, Duddy I R, Gleadow A J W, et al. Thermal annealing of fission tracks in apatite, 1. A qualitative description. Cheml. Geol, 1986, 59:237-253
    Green P F, Duddy I R, Gleadow A J W. Apatite fission track analysis as palaeotemperature indicator for hydrocarbon exploration. In N.D Naeser and T.H. McCulloch (eds.) Thermal History of Sedimentary Basins, Springer-Verlag, 1989a, 181-195
    Green P F, Duddy I R, Laslett G M, et al. Thermal annealing of fission tracks in apatite, 4, Quantitative modeling techniques and extension to geological time-scale. Chem.Geol, 1989b, 79:155-182
    Grimmer J C, Jonckheere R, Enkelmann E, et al. Cretaceous-Tertiary history of the southern Tan-Lu fault zone: Apatite fission-track and structural constraints from the Dabie Shan. Tectonophysics, 2002, 359:225-253
    Han R, Shimamoto T, Hirose T, et al. Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition. Science, 2007, 316:878-881
    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science, 1992, 255: 1663-1670
    Hilde D. The evolution of western Pacific Plate and its margin. Tectonophysics, 1977, 38: 115-165
    Hurford A J, Green P F. A users` guide to fission track dating. Earth Planet. Sci. Lett. 1982, 59: 343-354
    Hurford A J, Green P F. The zeta age calibration of fission-track dating. Isotope Geoscience, 1983, 1:285-317
    Hurford A J. International Union of geological Sciences subcommission on geochronology recommendation for the standardization of fission track dating calibration and data reporting. Nucl Tracks, 1990a, 17:233-236
    Hurford A J. Standardization of fission-track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S subcommision on geochronology. Chemical Geology: Isotope Geoscience Section, 1990b, 80(2):171-178
    Hu S B, Raza A, Kyoungwon M, et al. Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the north China craton through the Qinling orogen into the Yangtze craton, central China. Tectonics, 2006, 25:1029-1044
    Jolivet J, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints. Tectonphysics, 343:111-134
    Kaakinena A, Lunkka J P. Sedimentation of the Late Miocene Bahe Formation and its implications for stable environments adjacent to Qinling mountains in Shaanxi, China. J Asian Earth Sci, 2003,22: 67-78
    Kanamori H and Brodsky E E. The Physics of Earthquakes, Physics of Today, 2001, 54(6):34-40
    Ketcham R A, Donelick R A, Carlson W D. Variability of apatite fission track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral, 1999, 1235-1255
    Ketcham R A. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am. Mineral, 2003, 88:817-829
    Lachenbruch A H. Frictional heating, fluid pressure, and the resistance to fault motion. Journal of Geophysical Research, 1980, 85(B11): 6097-6112
    Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite, 2. A quantitative analysis. Chem. Geol, 1987, 65:1-13
    Liu M, Cui X, Liu F T. Cenonzoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo~Asian collision? Tectonophysics, 2004, 393: 29~42
    Ma X Y, Deng Q D, Wang Y P, et al. Cenozoic graben systems in north China. Z. Geomorph. N. F., Berlin, 1982, 42: 99-116
    Maddock R H. Melt origin of fault-generated pseudotachylytes demonstrated by textures. Geology, 1983, 11:105-108
    Metivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basin, China. Teconics, 1998, 17(6): 823-842
    McKenzie D and Brune J N. Melting on fault planes during large earthquakes. Geophysical Journal of the Royal Astronomical Society, 1972, 29:65-78
    Molnar P, Tapponier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189(4201):419-426
    Molnar P, Tapponier P. Cenozoic tectonics of Asia: Effects of a continental collision. Science, 1975, 189(4201):419~426
    Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibet Plateau and the Indian monsoon. Review of Geophysics, 1993, 31: 357-396
    Naeser C W, Faul H. Fission track annealing in apatite and sphene : Jour. Geophys. Research, 1969, 74 :705-710
    Northrup C J, Royden H, Burchfiel B C, et al. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology, 1995, 23:719-722
    Peltzer G, Tapponnier P, Zhang Z T, et al. Neogene and Quaternary left~lateral displacement along the Qinling Shan. Nature, 1985, 317: 500~505
    Pelzer G, Tapponnier P, Zhang Z, et al. Formation and evolution of strike-slipe faults, rifts and basins during India-Asia collision: An experiment approach. J Geophys Res, 1988, 93: 15085-15117
    Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 2003, 366: 1-53.
    Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east-central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. J. Geophys. Res, 2000, 105: 13303-13338
    Ratschbacher L, Franz L, Enkelmann E, et al. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. Spec. Pap. Geol. Soc. Am, 2006, 403: 45-75
    Reiners P W, Zhou Z, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan eastern China, from (U-Th)/He and fission-track thermochronology. Am J Sci, 2003, 303: 489-518
    Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahighpressure metamorphism and prolith orthogneisses from the eastern Dabie Shan: U-Pb zircon geochronology. Earth Planet. Sci. Lett, 1997, 151:191-203
    Schellart W P and Lister G S. The role of the East Asian active margin in widespread extensional and strike-slip deformation in the East Asia. Journal of the Geological Society, London, 2005, 162: 959-972
    Sibson R H. Generation of pseudotachylite by ancient seismic faulting. Geophysical Journal of the Royal Astronomical Society, 1975, 43:775-794
    Spray J G. A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics, 1992, 204:205-221
    Spray J G. Pseudotachylyte controversy: fact or friction? Geology, 1995, 23:1119-1122
    Stockli D F. Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings. Rev Mineral Geochem, 2005, 58:411-448
    Stockli DF, Surpless BE, Dumitru TA, et al. Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics, 2002,21:4, 101029/2001TC00129502
    Tapponnier P, and Molnar P., Active faulting and tectonics in China. J Geophys Res, 1977,82:2905-2930
    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiment with plastine. Geology, 1982, 10: 611~616
    Teufel L W and Logan J M. Effect of displacement rate on the real area of contact and temperatures generated during frictional sliding of Tennessee sandstone, Pure and Applied Geophysic, 1978, 116:840-865
    Tian Z Y, Han P, Xu K D. The Mesozoic-Cenozoic east China rift system. Tectonophysics, 1992, 208: 341-363
    Wagner G A, Reimer G M. Fission track tectonics: the tectonic interpretation of fission track ages. Earth Planet. Sci. Lett, 1972, 14:263-268
    Wagner G A, Van den haute P Fission-Track Dating. 1992 Kulwer Academy, Norwell, Massachusetts Wenk H R. Are pseudotachylites products of fracture of fusion? Geology, 1978, 6:507-511
    Wibberley C, Shimamoto T. Earthquake slip weakening and asperities explained by thermal pressurization. Nature, 2005, 436(7051):689-692
    Xu G, Kamp P. Tectonics and denudation adjacent to the Xianshuihe fault, eastern Tibetan Plateau: constraints from fission track thermochronology. J. geophys. Res, 2000,105: 19231-19251
    Zhang G, Yu Z, Sun Y, et al. The major suture zone of the Qinling orogenic belt. Journal of Southeast Asian Earth Science, 1989, 3: 63-76
    Zhang P Z, Burchfiel B C, Molnar P, et al. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China. Geol Soc Am Bull, 1990,102: 1484-1498
    Zhang P Z, Molnar P, Downs W R, et al. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410:891-897
    Zhang P Z, Burchfiel B C, Molnar P, et al. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous region, China, Tectonics, 1991,10(6):1111-1129
    Zhang Y Q, Mercier J L, Vergely P.Extension in the graben systems around the Ordos(China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia. Tectonophysics, 1998, 285: 41-75
    Zhang Y Q, Vergely P, Mercier J L. Pliocene~Quaternary faulting pattern and left~slip propagation tectonics in north China. Episodes, 1999, 22(2): 84~88
    Zhang Y, Vergely P, Mercier J. Active faulting in and along the Qinling Range(China) inferred from
    SPOT imagery analysis and extrution tectonics of south China. Tectonophysics, 1995, 243(1-2): 69-95
    Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~8Maon the Liupan Shan thrust fault from apatite fission-track thermochronology: Implication for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248:183-193
    安芷生,孙东怀,陈明扬,等.黄土高原红粘土序列与晚第三纪的气候事件.第四纪研究,2000, 20(5):435-446
    陈正乐,万景林,王小凤等.阿尔金断裂带8Ma左右的快速走滑及其地质意义.地球学报,2002,23(4): 295-300
    陈延愚,牛宝贵,富云莲.大别山腹地燕山期岩浆作用的同位素年代研究及其地质意义.地质学报,1991, 65(4): 329-336
    陈江峰,谢智,刘顺生,等.大别造山带冷却的40Ar-39Ar和裂变径迹年龄测定.中国科学(B辑),1995, 25(10): 1086-1092
    邓起东,汪一鹏,廖玉华,等.断层崖崩积楔及贺兰山山前断裂全新世活动历史.科学通报,1984,9: 557-560
    邓起东,程绍平,闵伟,等.鄂尔多斯决体新生代构造活动和动力学讨论.地质力学学报,1999,5(3):13-21
    邓起东,尤惠川.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制.现代地壳运动(1).北京:地震出版社,1985. 58-78
    邓起东,张裕明,许桂林,等.中国构造应力场特征及其与板块运动的关系.地震地质,1979, 1(1): 11-22
    邓晋福,肖庆辉,邱瑞照,等.华北地区新生代岩石圈伸展减薄的机制与过程.中国地质,2006, 33(4):751~761
    邓涛,王伟铭,岳乐平,等.新近系保德阶建阶研究新进展.Journal of stratigraphy, 2004, 28(1): 41-47
    邓涛.中国新近纪哺乳动物演化对重大气候环境变化的响应.Chinese Journal of Nature, 2008, 30(6): 334-339
    国家地震局鄂尔多斯活动断裂系课题组.鄂尔多斯周缘活动断裂系.北京:地震出版社, 1988.5-328
    国家地震局地质研究所和宁夏回族自治区地震局.中国活动断层研究专辑:海原活动断裂带. 北京:地震出版社,1990
    国家地震局地学断面编委会.上海奉贤至内蒙古阿拉善左旗地学断面(1:1000000)[M].北京:地震出版社, 1992. 1-66
    韩恒悦,米丰收,刘海云.渭河盆地带地貌结构与新构造运动.地震研究,2001, 24(3): 251-257
    黄润本,黄伟峰,陈明荣,气象学与气候学,北京,高等教育出版社,1986,174
    胡圣标,郝杰,付明希,等.秦岭-大别-苏鲁造山带白垩纪以来的抬升冷却史――低温年代学数据约束.岩石学报,2005, 21(4): 1167-1173
    李清河,郭守年,吕德徽.鄂尔多斯西缘与西南缘深部结构与构造.北京:地震出版社,1999. 1-246
    李曙光,Hart S R,郑双根,等.中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据.中国科学(B辑),1989,3: 1393-1400
    林畅松,杨起,李思田.贺兰拗拉槽盆地充填演化分析.北京:地质出版社,1995. 1-143
    刘东生,郑绵平,郭正堂.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,1998, 3:194-204
    刘护军.渭河盆地的形成演化与东秦岭的隆升.西北大学博士学位论文,2004, 3-58
    刘和甫,陆伟文,王玉新.鄂尔多斯西缘冲断褶皱带形成与变形.见:杨俊杰.鄂尔多斯盆地西缘逆冲带构造与油气.兰州:甘肃科学技术出版社,1990. 54-75
    刘晓东.青藏高原隆升对亚洲季风形和全球气候与环境变化的影响.高原气象,1999,18(3): 321-331
    马寅生,崔盛芹,赵越,等.华北北部中新生代构造体制的转换过程.地质力学学报,2002, 8(1): 15~25
    马杏垣,吴大宁.中国新生代的伸展构造.地质科技情报,1988, 7(2): 1-12
    马胜利,计凤桔,马瑾,等.摩擦滑动对石英和方解石热释光性质的影响及其地震地质意义.地震地质,1992,14(4):341-349
    闵伟,王平,杨平,等.罗山东麓活动断裂的几何学特征及全新世滑动速率.活动断裂研究,1994, (3):140-150
    宁夏回族自治区地质矿产局.宁夏回族自治区区域地质志.北京:地质出版社,1990. 1-443
    宁夏回族自治区地震局.中国活动断裂研究专辑:天景山活动断裂带.北京:地震出版社,1995
    齐矗华,甘枝茂,惠振德.陕西东秦岭构造地貌基本特征.陕西师范大学学报(自然科学版),1982, 180-193
    陕西省地震局.秦岭北缘活动断裂带.北京:地震出版社,1996. 1-188
    陕西省地震局.西安市活动断层探测与地震危险性评价工程技术报告.2007. 9-225
    陕西省地质矿产局.陕西省区域地质志.北京:地质出版社,1989.243-265
    宋春晖,方小敏,李吉均. 2001.青藏高原东北缘酒西盆地13Ma以来沉积演化与构造隆升.中国科学(D辑),31(增刊):155-162.
    宋友桂,方小敏,李吉均,等.六盘山东麓朝那剖面红粘土年代及其构造意义.第四纪研究,2000, 20(5): 457-463
    汤锡元,郭忠铭.鄂尔多斯地块西缘地质构造演化特征.见:杨俊杰.鄂尔多斯盆地西缘逆冲带构造与油气.兰州:甘肃科学技术出版社,1990. 77-90
    滕志宏,王晓红.秦岭造山带新生代构造隆升与区域环境效应研究.陕西地质,1996, 14(2): 33-41
    邱铸鼎,李传夔.中国哺乳动物区系的演变与青藏高原的抬升.中国科学(D辑),2004, 34(9): 845-854
    汪一鹏.关于宁夏北部地区活动断裂的若干新资料.中国活动断裂,北京:地震出版社,1982. 6-56
    王美芳,李慧勤.宁夏银川盆地地质构造演化特征.科技资讯,2008, 3: 148-149
    万景林,李齐,王瑜.华山岩体中、新生代抬升的裂变径迹证据.地震地质,2000, 22(1): 53-58
    万景林,王瑜,李齐,等.太白山中新生代抬升的裂变径迹年代学研究.核技术,2005, 28(9):712-716
    万景林,王瑜,李齐,等.阿尔金山北段晚新生代山体抬升的裂变径迹证据.矿物岩石地球化学通报, 2001, 20(4):222-224.
    邢成起,王彦宾.正谊关断裂带的新活动与古地震研究.西北地震学报,1991,13(4):54-61
    邢作云,赵斌,涂美义,等.汾渭裂谷系与造山带耦合关系及其形成机制研究.地学前缘,2005, 12(2): 247-262
    许长海,周祖翼,马昌前.大别140-85Ma热穹窿伸展的年代学约束.中国科学(D辑),2001, 45: 801-817
    薛祥煦,张云翔.秦岭东部红色盆地地层.西北大学学报(自然科学版),1993, 23(1): 59-68
    薛祥煦,张云翔.从生物化石的性质和分布分析秦岭上升的阶段性与幅度.地质论评,1996, 42(1): 30-36
    薛祥煦,张云翔,毕延,等.秦岭东段山间盆地的发育及自然环境变迁.北京,地质出版社,1996. 1-139
    杨晓平,邓起东,冯希杰.东秦岭内部铁炉子断裂带的最新走滑活动.中国地震,2005, 21(2): 172-183
    尹功明,卢演俦,赵华,等.华山新生代构造抬升.科学通报,2001, 46(13): 1121-1123
    杨坤光,杨巍然.碰撞后造山过程及造山带巨量花岗岩成因.地质科技情报,1997, 16:10-16
    张培震,甘卫军,沈正康,等.中国大陆现今构造作用的地块运动和连续变形耦合模型.地质学报,2005, 79(6): 748-756
    张培震,郑德文,尹功明,等.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,2006,26(1):5-13
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001.117~432
    张国伟,孟庆任,赖绍聪.秦岭造山带的结构构造.中国科学(B辑),1995, 25(9):994-1003
    张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析.中国科学(D辑),1996, 26(增刊):1-6
    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996, 193-200
    张进,马宗晋,任文军.再论贺兰山地区新生代之前拉张活动的性质.石油学报,2004,25(6):8-11 张保升.秦岭地貌结构.西北大学学报(自然科学版),1981,
    赵红格,刘池洋,王锋等.贺兰山隆升时限及其演化.中国科学D辑:地球科学,2007,37(增刊I): 185-192.
    赵重远.鄂尔多斯地块西缘构造单位划分及构造展布格局和形成机制.见:杨俊杰.鄂尔多斯盆地西缘逆冲带构造与油气.兰州:甘肃科学技术出版社,1990. 40-53
    周祖翼,Reiners P W,许长海,等.大别山造山带白垩纪热窿伸展作用――锆石(U-Th)/He年代学证据.自然科学进展,2002, 12(7): 763-766
    周淑贞,张如一,张超.气象学与气候学,北京,高等教育出版社,1984,246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700