用户名: 密码: 验证码:
中卫断裂带第四纪中晚期运动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中卫断裂带是青藏高原东北缘典型的走滑断裂带之一,也是青藏高原块体与鄂尔多斯块体、阿拉善块体之间的分界断裂。因此,中卫断裂带的运动学研究对探索其它走滑断裂带的运动学特点和青藏高原发展演化过程都具有重要的科学意义。
     一、新生代地层及其构造变形
     地层是地质构造发展演化历史的客观记录。通过观察分析地层的空间分布、岩相变化和构造变形等内容,可以从一个侧面了解所研究地区的地质构造演化历史。根据地层岩相、接触关系和构造变形,地质构造演化可分为4个阶段:①古近纪早期香山块体处于缓慢抬升剥蚀状态,断裂活动不显著。区内普遍缺失古新统。②始新世,断裂活动和块体间的差异运动加剧。由渐新世到上新世,构造活动由强变弱,堆积物颗粒由粗变细。③第四纪初期香山块体的构造隆升再次加剧。在山麓地带和中卫断裂带西端的红观观等地有洪积砾石层沉积。在卫宁盆地为河湖相沉积,厚度约600m左右。在中更新世晚期有一次构造事件,使中卫断裂带两侧的早中更新世地层发生较强的变形。④晚更新世以来,中卫断裂带的活动方式发生了明显的变化,由先期挤压逆冲、逆掩为主转换为晚期的左旋走滑为主;构造隆升较弱。构造演化的前3个阶段是以间歇性构造隆升为主,挤压构造应力场方向为近南北向。第4个阶段是以东西向伸展为主,挤压构造应力场方向为北东-北东东向。因此晚更新世以来的构造运动具有划时代的重要意义。
     二、中卫断裂带几何结构特点
     中卫断裂带早期活动以挤压逆断为主,形成由多条断层组成的前展式逆掩推覆断裂带;晚期活动以左旋走滑为主,断裂组合比较单一。晚期的左旋走滑活动继承、利用和切割了早期的逆掩断裂带。因此,早期和晚期的断裂几何结构相差甚大。早期是指上新世晚期至中更新世。晚期是指晚更新世至全新世。
     中卫断裂带早期几何结构特点是:平面上呈向北东凸出的弧形,由多条断裂组成。浅层地震探测和野外地质调查都表明该断裂在剖面上呈叠瓦状构造。晚期几何结构特点是:断裂走向北西西,平面上线性延伸;断面平直,倾角陡立。断裂西端在白墩子形成拉分区,东端在石圈附近形成燕尾型或鸡爪型分叉断层。段与段之间由不同类型的阶区衔接。
     三、断层类型划分及其构造意义
     中卫断裂带在晚更新世以来的左旋走滑运动中,先存的挤压逆掩、逆冲断裂带发生了分化。某些断层或断层段继续活动;另一些先存断层在晚更新世以来不再活动;此外,还发育了一些新断层。因此,我们把中卫断裂带划分出三种断层类型,即新生断层、继承性断层和遗弃断层。
     新生断层就是指:在某次构造运动中新发育的断层。具体到中卫断裂带来说,就是指晚更新世以来新发育的断层。这类断层是中卫断裂带左旋走滑运动的产物。在早期的挤压逆断运动中这些断层并不存在。通过对新生断层的调查研究可以获得以下资料。①反演晚更新世以来的构造应力场;②确定晚期构造运动的起始时代;③估算断层的断错幅度和速率。
     继承性断层就是指:在早期的挤压逆掩(冲)活动中就已经存在的断层或断层段,在晚期的左旋走滑运动中继续活动。继承性断层的最大优点是包含了较多的信息量。①继承性断层记录了多期构造运动的信息;②继承性断层是中卫断裂带多期活动的见证;③继承性断层是研究构造演化过程的重要依据。
     遗弃断层就是指:某些断层或断层段在早期构造运动中是主体断裂带的一部分,其活动习性与主体断裂带基本一致。当早期的构造运动终止之后,这些断层或断层段在后继的构造运动中不再活动,也就是说这些断层被遗弃。遗弃断层的作用就在于它保留了早期构造运动的大部或全部信息,这些信息基本上没有受到后期构造运动的干扰破坏。因而通过对遗弃断层的研究可以获得早期构造运动的主要信息。①确定早期构造运动终止的年代;②反演早期构造应力场方向;③研究断层的滑动方式,即粘滑和蠕滑。
     四、中卫断裂带活动性质转换的地质证据和时代
     通过野外地质调查、年代测定和研究分析,试图从地层构造变形、断层活动特点、擦痕、构造地貌、地球物理探测等几个方面寻找中卫断裂带活动性质曾经发生过转换的证据和确定转换的地质时代。
     1.断层
     断层的活动性质是说明中卫断裂带活动性质转换的最直接的证据。对遗弃断层的研究表明,中卫断裂带在早期表现为挤压逆掩推覆,发育一系列的逆掩推覆构造和叠瓦状断层构造。早期活动的终止时间大约在中更新世晚期。对新生断层的研究表明,中卫断裂带晚期表现为左旋走滑运动,断层倾角陡立,断层面平直,左旋断错晚更新世以来的地层。左旋走滑运动开始的时间大约在晚更世早期。对继承性断层的研究表明,中卫断裂带早期逆断,晚期左旋走滑。在闫王坡,早期的三条逆断层断错早中更新世地层,终止在晚更新世地层底界面之下。晚期的三条断层断层断错晚更新世和全新世地层,活动性质为左旋走滑。在东大沟,晚期的左旋走滑断层切割早期的挤压逆掩断层。
     2.断层擦痕
     在野外地质调查过程中共测得39组擦痕数据,其中有20组是发育在新生断层上,10组发育在遗弃断层上,9组发育在继承性断层上。①在新生断层上主要发育水平、近水平擦痕;反映出中卫断裂带晚更新世以来的运动方式以左旋走滑为主。②在遗弃断层上主要发育倾向擦痕。这些擦痕都证明早期中卫断裂带以逆掩逆冲运动为主,构造应力场方向为近南北向挤压。③在继承性断层上既发育水平擦痕,也发育倾向擦痕。反映了中卫断裂带有两期不同的运动方式,早期以挤压逆断为主,晚期以左旋走滑运动为主。
     3.构造地貌
     沿中卫断裂带发育的一系列的冲沟扭错、洪扇积变形、河流阶地断错都从不同侧面反映了断裂的左旋走滑运动。断层陡坎、山前台地、局部隆升等构造地貌既反映了断裂早期的活动特点也反映了晚期的活动特点。山前台地的形成时代在中更新世晚期,约为150kaB.P.。由此推测,早期逆断活动的终止时间要早于150ka B.P.。根据河流阶地的对比表明,大约在215-124kaB.P.之间,中卫断裂带处于稳定阶段,断裂左旋走滑运动开始于124-100kaB.P.之间。
     五、第四纪构造应力场
     由前述研究可知,中卫断裂带活动性质在第四纪中晚期发生过一次明显的转换,即由早期的挤压逆断转换为晚期的左旋走滑。这就意味着构造应力场也应该发生了相应的变化。根据地层构造变形、断面擦痕、构造节理、新生断层和遗弃断层的实测资料,用赤平投影方法反演构造应力场,结果表明存在两期构造应力场。早期(新近纪-早中更新世)挤压构造应力场为近南北向。晚期(晚更新世-全新世)挤压构造应力场方向为北东-北东东向。早、晚两期构造应力场的转换时间约在中更新世晚期至晚更新世早期之间。
     六、中卫断裂带运动学基本特点
     中卫断裂带早期在近南北向挤压构造应力场的作用下,总体上由南向北逆掩推覆或仰冲,从而导致香山块体的隆升。晚期在北东-北东东向挤压构造应力场的作用下,表现为强烈的左旋走滑运动,使横跨断裂的一系列冲沟水系发生左旋扭错。中卫断裂带由早期挤压逆断转换为晚期左旋走滑的过渡时期,即中更新世晚期-晚更新世早期,是构造活动相对平稳阶段。早期挤压→转换过渡→晚期走滑的发展演化过程,不但使断裂组合发生了变化,而且在各个阶段还塑造了相应的构造地貌形态。
     综合上述研究成果,中卫断裂带构造运动有以下几个主要特点:
     1.中卫断裂带第四纪以来经历了3个构造运动阶段。第1阶段是早中更新世,这个时期在近南北向挤压构造应力场的作用下,断裂的运动方式表现为逆掩逆冲运动。第2阶段是中更新世末期至晚更新世早期,该时期是区域构造应力场由近南北向转换为北东-北东东向,断裂处于由挤压逆断转换为左旋走滑的过渡期,断裂活动处于相对稳定阶段。第3阶段是晚更新世至全新世,这个时期区域构造应力场已经由早期的近南北向挤压转换为北东-北东东向挤压,断裂的运动方式也由早期逆断转换为晚期的左旋走滑。
     2.中卫断裂带的早期逆断运动至少在上新世晚期已经开始。根据山体-河流高差估算,这一时期香山块体抬升幅度约为544m,地壳厚度增加约4352m,抬升速率为0.18mm/a;水平推覆距离约在7540-11960m之间,地壳南北缩短速率或逆掩速率约为2.51-3.99mm/a。根据黄河阶地在黑山峡河段的抬升高度,获得的1560kaB.P.以来平均抬升速率为0.19mm/a。早期中卫断裂带逆断运动占据主导,较大幅度的逆掩推覆导致了地壳增厚和香山块体抬升。逆断运动过程是间歇式的,故此形成了多级河流阶。
     3.中卫断裂带晚期左旋走滑运动大致起始于中更新世末期至晚更新世初期。在断裂中东段(孟家湾-红谷梁)开始的时间比较早,大约在150kaB.P.左右,在西端的营盘水至红观观一带大约在120-100kaB.P.之间。根据山前台地估算的走滑断错量约在274-794m之间,走滑速率约在2.28-5.29mm/a之间;垂向断错量约为48.3-97.5m,断错速率为0.37-0.75mm/a。根据沿中卫断裂带的局部隆起估算水平断错量为396-656m,走滑速率为3.05-5.47mm/a。根据冲沟水系、地层以及不整合地质界面的左旋扭错求得中卫断裂带的左旋走滑速率在1.08-3.9mm/a之间。
     4.中卫断裂带在晚期的左旋走滑运动中伴随产生了相应的拉分阶区和挤压阶区。断裂南北两盘相对左旋走滑运动导致了块体运动的前端挤压隆起,后端拉张沉陷。
     七、主要认识
     通过野外地质地貌调查、室内研究分析、地质年代测定,再结合前人研究资料,对中卫断裂带在晚新生代,尤其是第四纪中晚期的运动学研究获得如下几点认识:
     1.地质构造演化的三个阶段
     第一阶段从古近纪的始新世开始,到新近纪的上新世。这个阶段各个时代的地层之间以整合或平行不整合接触为主,沉积环境由最初山麓冲洪积相过渡到后来的河湖相。构造运动由初期的强烈隆升演变为后期的剥蚀夷平。
     第二阶段从早更新世初期到中更新世晚期。这一阶段的下更新统与中更新统之间为整合接触或平行不整合接触。早更新世地层以山麓冲洪积相为主;中更新世地层以风积黄土及冲洪积相为主。这一时期的地层构造变形较强,如在花豹湾等地发育由早、中更新世地层构成的宽缓褶皱。
     第三阶段为晚更新世至全新世。上更新统与全新统主要为整合接触;局部为平行不整合接触。地层以风积黄土为主,其次是冲洪积、坡积砂砾石层。这一阶段的地层构造变形轻微。
     2.两个重要地质界面
     研究区内发育两个重要的角度不整合地质界面。第1个地质界面在上新世晚期与早更新世初期之间。第2个地质界面发育在中更新世晚期与晚更新世早期之间。
     3.断裂运动方式的两个时期
     根据区域挤压构造应力场方向和断裂的活动性质,中卫断裂带的运动方式分为两个时期。第1个时期为新近纪-中更新世。这一时期,挤压构造应力场方向为近南北向。中卫断裂带以挤压逆断活动为主,形成叠瓦状断层、逆掩推覆褶皱断裂带、逆掩逆冲断层;断层面上发育多期倾向和斜向擦痕;地貌上发育飞来峰构造。这一时期也是香山块体抬升的主要时期。第2个时期为晚更新世-全新世。这一时期的挤压构造应力场方向为北东-北东东向。中卫断裂带以左旋走滑运动为主,断层面走向平直、倾角陡立;断层面上发育水平或近水平擦痕;断层段与段之间形成挤压阶区或拉分阶区。在断裂运动的南、北两盘,前端挤压隆升,后端拉张正断。地貌上,横跨断层的冲沟水系被左旋扭错。这一时期是中卫断裂带发生重大变化的时期,早期曾经活动过的断层,有的继续活动,成为继承性断层;有的不再活动,变成遗弃断层;同时还发育了相当规模和数量的新生断层。
     4.一个转换过渡期
     从早期构造应力场近南北向挤压作用下断裂逆断推覆,到晚更新世以来北东-北东东向挤压构造应力场作用下的断裂左旋走滑,这中间存在一个转换过渡期。这个过渡期在中更新世晚期-晚更新世早期,时间约为200-100kaB.P.。
The Zhongwei fault zone is one of the typical strike-slip fault zones on the northeastern margin of the Qinghai-Tibetan Plateau, being the boundary fault zone among the Qinghai-Tibet, Ordos and Alashan blocks. The kinematic study on the Zhongwei fault zone, therefore, is of great importance to the understanding of the kinematic features of the other strike-slip faults and the evolution of the Qinghai-Tibetan Plateau.
    
     1. Cenozoic strata and their deformation Stratigraphic sequences record authentically the development and evolution history of geologic structures. Therefore, the investigation and analysis of the spatial distribution, lithofacies variation and tectonic deformation of stratigraphic sequences can provide an insight into the tectonic evolution of the studied region. According to the lithofacies, stratigraphic contact and tectonic deformation of the stratigraphic sequences, the tectonic evolution process of the studied region, where the Zhongwei fault zone developed, can be divided into four stages: (1) In the early Eogene period, the Xiangshan block was situated in a gentle uplift and denudation state. At that time, the activity of the Zhongwei fault zone was not prominent, and the Paleocene series is lacking for the region. (2) In the Eocene epoch, faulting and differential movement among blocks became stronger. From Oligocene to Pliocene, however, the tectonic activity had become weaker, and sediments had changed from coarse-grained to fine-grained. (3) At the beginning of the Quaternary, the tectonic uplift of the Xiangshan block became strong again. The pluvial gravel beds developed along the piedmont of the Xiangshan Mountains and in the Hongguanguan area on the west end of the Zhongwei fault zone. The fluviolacustrine sediments of about 600m thickness were deposited within the Weining basin. One tectonic event that occurred in the late middle Pleistocene has caused strong deformation of the early-middle Pleistocene strata on both sides of the Zhongwei fault zone. (4) Since the late Pleistocene, the active behavior of the Zhongwei fault zone has been significantly changed from the previous compressive overthrusting to the later left-lateral strike-slipping. The tectonic uplift has become weaker during that time.
     The tectonic evolution in the first three stages was characterized mainly by intermittent uplifting, and the compressive tectonic stress field was nearly NS oriented. The evolution in the fourth stage was characterized mainly by EW-trending extensional movement, and the compressive tectonic stress field was NE-NEE oriented. Therefore, the tectonic movement since the late Pleistocene was of epoch-making significance.
     2. Geometric features of the Zhongwei fault zone
     In the early period, the activity of the Zhongwei fault zone was dominated mainly by overthrusting, resulting in a forward-propagating thrust nappe tectonic zone, consisting of a series of faults. In the late period, the fault zone was characterized by left-lateral strike-slipping, and its geometric structure was relatively simple. The left-lateral strike-slip followed, inherited or cut off the previous fault zone, so that the early geometric structures of the fault zone are considerably different from the late geometric structures. The early period refers here to the time from the late Pliocene to the middle Pleistocene, and the late period to the time from the late Pleistocene to the Holocene.
     In the early period, the Zhongwei fault zone appeared geometrically as a NE-convex arcuate structure, consisting of a series of faults. Shallow seismic prospecting and field investigation have revealed that the zone appears as an imbricate structure in cross sections. In the late period, the zone appeared as a NWW-trending linear structure on plane view. The fault planes are smooth and straight, dipping steeply. A pull-apart step-over was developed at Baidunzi on the western end of the fault zone, while swallow-tail-like or bird-claw-like branched faults were developed in the vicinity of Shiquan on the eastern end of the fault zone. Individual fault segments are connected by step-overs of various types.
     3. Classification of fault types and its tectonic implication
     The left-lateral strike-slip movement of the Zhongwei fault zone since late Pleistocene has caused the differentiation of preexisting overthrust faults in the zone. Some early-formed faults or fault segments continued to be active, while the others have become inactive. In addition, some new faults were developed since then. The faults in the Zhongwei fault zone, therefore, can be classified into three categories: the newly-generated, the inherited and the rejected faults.
     The newly-generated fault refers to the fault that is developed newly during a certain tectonic movement. With regard to the Zhongwei fault zone, it refers to the one which has developed since late Pleistocene. Such a fault is the result of the left-lateral strike-slip movement of the Zhongwei fault zone, and did not exist during the early compressive overthrusting movement. The investigation on these newly generated faults may provide the following information: (1) the feature of tectonic stress field since late Pleistocene; (2) the starting time of the late tectonic movement, and (3) the displacement amount and slip rate of the fault.
     The inherited fault refers to the fault or fault segment that has existed before the late left-lateral strike-slip movement of the fault zone and has been still active after the movement. The prominent advantage of the inherited fault is that the fault contains a lot of tectonic information: (1) the inherited faults recorded the information of multiple tectonic movements; (2) they are the witness to the multiple tectonic movements along the Zhongwei fault zone; and (3) they are the important basis for the study of the tectonic evolution history.
     The rejected fault refers to the fault or fault segment that was the part of the main fault zone and behaved in the same way as the main fault zone during the early tectonic movement. After the early tectonic movement, the fault or fault segment has become inactive during the subsequent tectonic movement, indicating that it was rejected. The fault may reserve most or all of the information about the early tectonic movement, which is basically not disturbed or destroyed by the late tectonic movement. The investigation of rejected faults, therefore, may provide the following essential information about the early tectonic movement: (1) the ceasing time of the early tectonic movement; (2) the feature of the early tectonic stress field; and (3) the mode of faulting, i.e. stick-slip or creep-slip.
     4. Geological evidence and time of transformation of fault behavior
     Based on field investigation, age dating and analysis, this work tries to search for geological evidence and the occurrence time of the transformation of the behavior of the Zhongwei fault zone from various aspects, including the tectonic deformation of stratigraphic sequences, the mode of faulting, fault striae, tectonic geomorphology and geophysical prospecting.
     4.1. Fault
     The feature of faulting is the most direct evidence of the transformation of the behavior of the Zhongwei fault zone. The investigation of the rejected faults reveals that the Zhongwei fault zone was dominated by compressive overthrust napping in the early period, resulting in the development of a series of overthrust nappes and imbricate fault structures. The early activity of the fault zone ceased at about the late stage of the middle Pleistocene. The studies of newly-generated faults show that in the late period the Zhongwei fault zone was dominated mainly by left-lateral strike-slipping. The faults in the fault zone were steeply dipping, while the fault planes were smooth and straight, offsetting left-laterally the strata that were formed since late Pleistocene. The left-lateral strike-slip movement can be determined to initiate at about the early stage of late Pleistocene. The studies on inherited faults indicate that the Zhongwei fault zone was dominated by overthrusting in the early period, and by left-lateral strike-slipping in the late period. At the Yanwangpo site, three reverse faults that were formed in the early period offset the early-middle Pleistocene strata, and terminate below the bottom surface of the late Pleistocene strata. The other three faults that were formed in the late period offset the late Pleistocene and Holocene strata, appearing as left-lateral strike-slip faults. At the Dongdagou site, the left-lateral strike-slip fault that was formed in the late period dissects the overthrust fault that was formed in the early period.
     4.2. Fault striae
     During field investigation, 39 sets of fault striae have been measured. Among them, the 20 sets were measured from newly-generated faults, 10 sets from rejected faults and 9 sets from inherited faults. The obtained data show that: (1) Horizontal or nearly horizontal fault striae are mostly developed on newly-generated faults, indicating the left-lateral strike-slipping of the Zhongwei fault zone since late Pleistocene. (2) Along-dip fault striae are developed mostly on rejected faults. All of the striae show that the Zhongwei fault zone was dominated mainly by compressive overthrusting in the early period, and the compressive tectonic stress field was nearly NS-oriented. (3) Both horizontal and along-dip fault striae are developed on inherited faults, indicating that two different modes of faulting had existed on the Zhongwei fault zone, i. e. the compressive overthrusting in the early period and the left-lateral strike-slipping in the late period.
     4.3. Tectonic geomorphology
     A series of offset gullies, deformed pluvial fans and displaced river terraces along the Zhongwei fault zone indicate from various aspects the left-lateral strike-slipping of the fault zone. Tectonic geomorphology, such as fault scarps, piedmont benches and local uplift, reveals the behavior of the Zhongwei fault zone both in the early and late periods. The piedmont benches were formed in the late stage of the middle Pleistocene, that is about 150 ka B.P. It can be deduced, therefore, that the early overthrusting along the fault zone might have ended before 150 ka B.P. As compared with the Yellow River terraces, it can be postulated that during the period from 215 ka B.P to 124 ka B.P., the Zhongwei fault zone was situated in a stable state, and the left-lateral strike-slipping along the fault zone might initiate at about 124-100 ka B.P.
     5. Quaternary tectonic stress field
     According to the aforementioned studies, it can be concluded that the kinematics of the Zhongwei fault zone has once been transformed during the middle-late Quaternary, i.e. from the early compressive overthrusting to the late left-lateral strike-slipping. This means that the tectonic stress field has been correspondingly changed. According to the actually measured data of the tectonic deformation of strata, fault striae, structural joints, newly-generated and rejected faults, the tectonic stress field has been reconstructed by using stereographic projection method. The results show that there are two different states of tectonic stress fields. The early state occurred from the Neogene to the middle Pleistocene, during which the compressive tectonic stress field was nearly NS-oriented. The late state has initiated since late Pleistocene, during which the compressive tectonic stress field was NE-NEE oriented. The occurrence time of the transformation of the tectonic stress fields can be determined to be at the time between the late stage of the middle Pleistocene and the early stage of the late Pleistocene.
     6. Essential kinematic features of the Zhongwei fault zone
     During the early period, owing to the action of the nearly NS-orienting compressive tectonic stress, the whole Zhongwei fault zone was dominated by northward overthrusting or obducting movement. As a result, the Xiangshan block was uplifted. During the late period, owing to the action of the NE-NEE-orienting compressive tectonic stress, the fault zone was dominated by left-lateral strike-slipping. As a result, a series of gullies across the fault zone were offset left-laterally. The period of transition from the early compressive overthrusting to the late left-lateral strike-slipping of the Zhongwei fault zone lasted from the late stage of the middle Pleistocene to the early stage of the late Pleistocene, being tectonically a relatively stable stage. The evolution process involves the early compressive stage→the transition stage→the late left-lateral strike-slipping stage. It not only has caused the change of the assemblages of the faults, but also shaped the corresponding tectonic landform in each stage.
     According to the aforementioned studies, the main kinematic features of the Zhongwei fault zone can be summarized as follows:
     (1) Since Quaternary, the Zhongwei fault zone has experienced three tectonic movement stages. The first stage was in the early-middle Pleistocene. During the stage, owing to the action of the nearly NS-orienting compressive stress, the movement of the fault zone was characterized by overthrusting. The second stage lasted from the end of the middle Pleistocene to the beginning of the late Pleistocene. In this stage, the regional compressive stress field was changed from nearly NS-orienting to NE-NEE-orienting, while the movement of the fault zone was transited from overthrusting to left-lateral slipping. The activity of the faults was relatively stable. The third stage lasted from late Pleistocene to Holocene. In this stage, the compressive tectonic stress field was transformed from nearly NS-orienting to NE-NEE-orienting, and correspondingly the fault movement was changed from overthrusting to left-lateral strike-slipping.
     (2) The early overthrusting on the Zhongwei fault zone has initiated not later than late Pliocene. On the basis of the estimation of elevation difference between the mountains and the river, it can be postulated that the Xiangshan block has been uplifted by about 544m, the thickness of the crust has increased by about 4352m, the uplift rate was about 0.18mm/a, the distance of horizontal napping was in the range of 7540-11960m, and the crustal shortening rate in NS direction or the overthrusting rate of the fault zone was about 2.51-3.99 mm/a. According to the uplifted height of the Yellow River terraces in the Heishan Gorge, it can be estimated that the average uplift rate since 1560 ka B.P. is 0.19 mm/a. In the early period, the Zhongwei fault zone was characterized mainly by overthrusting movement. Relatively large scale napping has led to crustal thickening and the uplift of the Xiangshan block. The overthrusting process was intermittent, so that multiple river terraces were formed.
     (3) The left-lateral strike-slipping on the Zhongwei fault zone initiated at about the time between the end of the middle Pleistocene and the beginning of the late Pleistocene. The movement initiated earlier on the middle-eastern segment (from Mengjiawan to Hongguliang), i.e. at about 150 ka B.P., and initiated later on the western end of the fault zone (from Yingpanshui to Hongguanguan), i.e. at about 120-100 ka B.P. As estimated from the piedmont benches, the amount of strike-slip is 274-794m, the strike-slip rate is about 2.28-5.29mm/a, the amount of vertical displacement is about 48.3-97.5m, and vertical slip rate is about 0.37-0.75mm/a. According to the local upwarps along the Zhongwei fault zone, it is estimated that the amount of the horizontal displacement is about 396-656m, and the strike-slip rate is 3.05-5.47 mm/a. According to the left-lateral offset of gullies, strata and stratigraphic unconformity interface, the left-lateral strike-slip rate is estimated to be 1.08-3.9 mm/a.
     (4) The late left-lateral strike-slipping along the Zhongwei fault zone was accompanied by the formation of the corresponding pull-apart step-overs or compressive step-overs. The left-lateral strike-slip on the southern and northern walls of the fault zone resulted in the compressive uplifting on the front and the tensional depression at the back of the blocks.
     7. Conclusions
     On the basis of the results of geological and geomorphologic investigations, age dating and analyses, incorporating with the available data from previous work, some new insights into the kinematics of the Zhongwei fault zone during late Cenozoic, especially the middle-late Quaternary, can be gained as follows:
     7.1. Three stages of tectonic evolution
     The first stage initiated in Eocene and ended in Pliocene. In this stage, all of the stratigraphic contacts between the strata of various ages were mostly conformable or parallelly unconformable. The sedimentary environment was changed from the initial alluvial-proluvial facies into the subsequent fluviolacustrine facies. The tectonic movement was transformed from the early strong uplifting to the late denudation and planation process.
     The second stage lasted from the beginning of the early Pleistocene to the late stage of the middle Pleistocene. In this stage, the conformity or parallel unconformity occurred between the lower Pleistocene and the middle Pleistocene series. The stratigraphy of the early Pleistocene consists mainly of alluvial-proluvial facies along the mountain foot, and the stratigraphy of the middle Pleistocene consists basically of aeolian loess and alluvial-proluvial sediments. During this stage, the tectonic deformation of stragtigraphic sequences was relatively strong. For example, the drape-like folds involving the early-middle Pleistocene strata were developed at the Huabaowan and other sites.
     The third stage lasted from the late Pleistocene to the Holocene. The upper Pleistocene and the Holocene series are in conformable contact, and locally in parallel unconformable contact. The stratigraphy consists mainly of aeolian loess, and alluvial-proluvial sediments and slope wash take the second place. In this stage, tectonic deformation of strata is considerably slight.
     7.2. Two important geologic interfaces
     Two important geologic interfaces of angular unconformity were developed in the studied region. The first geologic interface was developed between the late Pliocene and the beginning of the early Pleistocene. The second geologic interface was developed between the late stage of the middle Pleistocene and the beginning of the late Pleistocene.
     7.3. Two stages of fault zone movement
     According to the regional compressive tectonic stress field and the behavior of the faults, the movement on the Zhongwei fault zone can be divided into two stages. The first stage lasted from Neogene to Middle Pleistocene. In this stage, the compressive tectonic stress field was nearly NS-orienting. The Zhongwei fault zone was dominated mainly by compressive overthrusting, resulting in a series of imbricate faults, overthrust nappe-fold and overthrust faults. Multiple along-dip and oblique fault striae were developed on the fault planes. Morphologically, thrust outliers were formed. This stage was also the main uplifting stage of the Xiangshan block. The second stage lasted from late Pleistocene to Holocene. The compressive tectonic stress field was NE-NEE-orienting. The Zhongwei fault zone was dominated mainly by left-lateral strike-slipping. The fault plane is smooth and straight, dipping steeply. The horizontal or nearly horizontal fault striae were developed on the fault planes. The compressive or pull-apart step-overs were formed between the fault segments. On the southern and northern sides of the fault, compressive uplifting occurred in the front and the normal faulting occurred in the back. Morphologically, the gullies across the faults were offset left-laterally. In this stage, significant change has occurred on the Zhongwei fault zone. Some previously active faults continued to be active and had become inherited faults. The others were no longer active and had become rejected faults. At the same time, some new faults were developed.
     7.4. One transformation stage
     The Zhongwei fault zone experienced a transition stage from the early overthrust napping owing to the action of nearly NS-orienting compressive tectonic stress to the late left-lateral strike-slip faulting owing to the action of NE-NEE-orienting compressive tectonic stress. This transition stage was between the late stage of middle Pleistocene and the early stage of late Pleistocene, i.e. during about 200-100 ka B.P.
引文
1.薄万举刘广余陈兵等, 2005,青藏块体东北缘地区断层形变研究,西北地震学报, 27(3), 199-204.
    2.柴炽章, 1998,天景山断裂带前锋区第四纪构造变形及成因分析,中国地震, 14(2): 150-156.
    3.柴炽章张维歧, 1997,天景山断裂带晚第四纪水平活动强度的分时、分段研究,中国地震, 13(1): 35-42.
    4.陈国星等, 1987,阿尔金断裂东段第四纪活动的时空特征,中国地震, 3(增刊), 35-51.
    5.陈九辉刘启元李顺成等, 2005,青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构,地球物理学报, 48(2), 333-342.
    6.陈诗越王苏民, 2002,青藏高原2.8Ma来的环境演化及其对构造事件响应,地质力学学报, 8(4): 333-340.
    7.陈文寄李齐, 1996,哀牢山—红河左旋走滑剪切带中新世抬升的时间序列.地质论评.42(5),385-390.
    8.陈永明石玉成, 2007,兰州地区现代应力场的构造解析,西北地震学报, 29(1): 84-93.
    9.楚全芝唐方头邓志辉等,2008,长江下游芜湖地区新构造运动基本特点,有色金属(矿山部分),60(2): 19-23.
    10.楚全芝邓志辉杨竹转,2007,中国大陆地震构造特点及其在地震危险性预测中的作用,地球物理学进展,22(2): 395-402.
    11.楚全芝,1998,中国大陆主要强震断裂带超长地震活动期的划分和对比,中国地震,14(3): 94-99.
    12.楚全芝汪良谋虢顺民,1995,祁连山强震构造带分段及其地震危险性评估,地震地质,17(2): 116-122.
    13.楚全芝汪良谋,1995,活断层分段及其地震危险性评价,东北地震研究, 11(2): 54-61.
    14.崔军文张晓卫李朋武等, 2003,东昆仑阿其克库勒湖地区的逆冲扩展作用,地质学报, 77(3), 297-307.
    15.邓起东等, 1979,中国构造应力场特征及其与板块运动的关系,地震地质, 1(1): 11-12.
    16.地质部甘肃省地质局,1965,同心幅地质图及说明书(1:20万),北京:地质出版社。
    17.丁国瑜申旭辉田勤俭等,2000,青藏高原东北隅弧束区新构造运动的阶段划分、强度与演化过程的精细定量研究(研究报告)39-48.
    18.丁国瑜,1993,宁夏中卫沙坡头黄河位错现象,第四纪研究,No.4, p37.-378.
    19.杜异军等, 1986,一种确定断层运动方式和主应力方向的方法,中国地震, 2(1): 69-74.
    20.方小敏宋春晖戴霜等, 2007,青藏高原东北部阶段性变形隆升:西宁、贵德盆地高精度磁性地层和盆地演化记录,地学前缘, 14(1): 230-242.
    21.甘肃省地质矿产局,1989,甘肃省区域地质志,北京:地质出版社,
    22.甘肃省地质局,1977,白墩子幅地质图及报告(1:20万),北京:地质出版社.
    23.甘肃省地质局,1977,大靖幅地质图及报告(1:20万),北京:地质出版社.
    24.甘肃省地质局,1973,景泰幅地质图及报告(1:20万),北京:地质出版社.
    25.甘肃省地质局,1972,天祝幅地质图及报告(1:20万),北京:地质出版社.
    26.甘肃省地质局,1969,永登幅地质图及报告(1:20万),北京:地质出版社.
    27.国家地震局地质研究所国家地震局兰州地震研究所, 1993,祁连山-河西走廊活动断裂系,北京:地震出版社.,115-120.
    28.国家地震局《阿尔金活动断裂带》课题组, 1992,阿尔金活动断裂带(中国活断层研究专辑),北京:地震出版社, 157-165.
    29.国家地震局分析预报中心, 1991,黄河黑山峡河段主要断裂活动及大柳树坝址地震危险性分析报告.
    30.国家地震局地质研究所,宁夏回族自治区地震局, 1990,海原活动断裂带(中国活断层研究专辑),北京:地震出版社, 21, 139-156.
    31.国家地震局《鄂尔多斯周缘活动断裂系》课题组, 1988,鄂尔多斯周缘活动断裂系(中国活断层研究专辑),北京:地震出版社, 148-151.
    32.国家地震局地质研究所, 1987,黄河黑山峡大柳树坝址地震基本烈度复核报告, 11, 98-100.
    33.郭进京杜东菊韩文峰等, 2004,青藏高原东北缘黄河黑山峡出口段阶地特征与断层活动,工程地质学报, 12(4), 367-372.
    34.郭万武, 1993,青藏高原东北部东西向构造及其地震活动和构造力学模式研究,西北地震学报, 15(1): 52-60.
    35.虢顺民,计凤桔,向宏发等, 2001,红河活动断裂带.海洋出版社, 151-159.
    36.虢顺民江在森, 2000,青藏高原东北缘晚第四纪块体划分与运动态势研究,地震地质, 22(3): 219-231.
    37.韩文峰等,1993,黄河黑山峡大柳树松动岩体工程地质研究,兰州:甘肃科学技术出版社, 49-50.
    38.胡小猛傅建利李有利等,2002,中更新世中晚期以来汾河流域地貌阶段性发育及成因分析,地质力学学报,8(2):165-172.
    39.季建清,钟大赉,张连生, 2000,滇西南新生代走滑断裂运动学年代学及对青藏高原东南部块体运动的意义,地质科学, 35(3),336-349
    40.贾云鸿金瑶泉滕瑞增等,1992,西秦岭北缘断裂带构造应力场的研究,活动断裂研究(2),北京:北京:地震出版社,128-134.
    41.江在森马宗晋张希等, 2001,青藏块体东北缘水平应变场与构造变形分析,地震地质, 23(3): 337-345.
    42.孔屏那春光, 2007,青藏高原的剥蚀与构造抬升,第四纪研究, 27(1): 1-5.
    43.兰州地震工程研究院, 2002,黄河黑山峡大柳树坝址及小观音坝址区域构造稳定性研究报告, 90, 123-127.
    44.李炳元潘保田, 2002,可可西里东部地区的夷平面与火山年代,第四纪研究, 22(5), 397-405.
    45.李传友,2005,青藏高原东北部几条主要断裂带的定量研究,中国地震局地质研究所博士学位论文, 182-192.
    46.李春峰贺群禄赵国光, 2005,东昆仑活动断裂带东段古地震活动特征,地震学报, 27(1), 60-67.
    47.李明杰谢结来潘良云, 2005,祁连山北缘冲断带西段构造特征,地学前缘, 12(4), 438-444.
    48.李齐陈文寄等, 2000,哀牢山—红河剪切带构造抬升和运动形式“转换”时间的新证据,中国科学.D辑,30(6),576-579.
    49.李松林赵金仁等, 2001,西吉-中卫地震测深剖面及其解释,地震地质, 23(1): 86-92.
    50.李天兵孟方王美芳等, 2005,宁夏西部香山-天景山地区逆冲推覆构造的特征及演化,地质通报, 24(4): 309-315.
    51.李勇等, 2003,青藏高原东缘龙门山晚新生代剥蚀厚度与弹性挠曲模拟,地质学报,79(5), 608-614.
    52.李喜臣王永丁孝忠, 2005,西昆仑山前晚新生代磨拉石时代及意义,地质力学学报, 11(2), 181-186.
    53.刘德民李德威杨巍然等, 2005,喜马拉雅造山带晚新生代构造隆升的裂变径迹证据,地球科学, 30(2), 146-152.
    54.刘光勋, 1996,东昆仑活动断裂带及其强震活动.中国地震, 12(2), 119-126.
    55.马瑾等, 1981,影响断层带再活动的一些因素的实验研究,西北地震学报, 3(2): 18-24.
    56.马晓冰孔祥儒刘宏兵等, 2005,青藏高原东北部地区地壳电性结构特征,地球物理学报, 48(3), 689-697.
    57.马宗晋,张家声,汪一鹏, 2001,青藏高原三维变形运动随时间的变化——论青藏高原构造变动的非平稳性,见:马宗晋等主编《青藏高原岩石圈现今变动与动力学》,北京:地震出版社, 88-105.
    58.闵伟张培震等, 2001,中卫-同心断裂带全新世古地震研究,地震地质, 23(2): 357-366.
    59.闵伟,1998,区域古地震研究——以青藏高原东北缘和华北西缘为例,中国地震局地质研究所博士学位论文, 59-82.
    60.宁夏回族自治区地质矿产局, 1990,宁夏回族自治区区域地质志,北京:地质出版社, 194-238.
    61.宁夏计委地质局, 1976,中卫幅地质图及报告(1: 20),北京:地质出版社.
    62.聂政林伟凡, 1993,中卫-同心断裂带中段:香山-天景山断裂带1709年7.5级地震形变带特征,地震, (1): 41-44.
    63.潘保田苏怀刘小丰等, 2007,兰州盆地最近1.2Ma的黄河阶地序列与形成原因,第四纪研究, 27(2): 172-180.
    64.潘桂棠王培生徐耀荣等, 1990,青藏高原新生代构造演化,北京:地质出版社, 148-152.
    65.青海省地震局,中国地震局地壳应力研究所, 1999,东昆仑活动断裂带,北京:地震出版社, 65-68.
    66.曲国胜李亦纲李岩峰等, 2005,塔里木盆地西南前陆构造分段及其成因,中国科学D辑:地球科学, 35(3), 193-202.
    67.任利生林伟凡, 1993,中卫-同心断裂带西段晚第四纪以来的活动性,地震, (1): 64-67.
    68.宋方敏,汪一鹏,俞维贤等, 1998,小江活动断裂带,北京:地震出版社, 49-50.
    69.旋小斌丘学林刘海龄等, 2006,滇西临沧花岗岩基新生代剥蚀冷却的裂变径迹证据,地球物理学报, 49(1): 135-141.
    70.孙继亮许立亮,2007,汾渭地堑的河流阶地对第四纪时期印度-欧亚板块碰撞带的构造响应,第四纪研究,27(1): 20-26.
    71.孙岩旋泽进舒良树等,1991,层滑——倾滑断裂构造与油气地质研究,南京大学出版社, 160-167.
    72.唐荣昌,韩渭宾主编, 1993,四川活动断裂与地震,北京:地震出版社, 86,-96.
    73.唐荣昌,钱洪等, 1984,道孚6.9级地震的地质构造背景与发震构造条件分析,地震地质, 6(2).
    74.田勤俭申旭辉韦开波, 2001,中卫-同心断裂带构造演化阶段初步研究,新构造与环境,北京:地震出版社, 399-406.
    75.万景林李齐, 1997,哀牢山—红河左旋走滑剪切构造抬升时间序列的裂变径迹证据,地震地质. 19(1),87-90.
    76.万天丰, 1994,中国第四纪的构造事件与应力场,第四纪研究, (1): 48-55.
    77.王爱国杨斌张向红等, 2006,中卫——同心活动断裂带现代构造应力分布特征及地震破裂危险区判定,西北地震学报, 28(1): 20-25.
    78.王建华冯德益, 1989,压剪应力作用下裂纹端部应力场的分析,地震研究, 12(2): 125-136.
    79.王萍卢演俦陈杰, 2004,阿尔金断裂东端的旋转构造及其动力学意义,中国地震, 20(2), 134-142.
    80.王萍,2003,甘肃疏勒河冲积扇发育对构造活动的响应——兼论阿尔金断裂东端新构造活动特征,中国地震局地质研究所博士学位论文, 59-62.
    81.王先彦鹿化煜季峻峰等, 2006,青藏高原东北缘中新世红色土状堆积序列的成因及其对亚洲干旱过程的指示,中国科学D辑, 36(3): 261-272.
    82.王有学W. D. Mooney韩果花等, 2005,台湾-阿尔泰地学断面阿尔金-龙门山剖面的地壳纵波速度结构,地球物理学报, 48(1), 98-106.
    83.汪一鹏宋方敏, 1990,宁夏香山-天景山断裂带晚第四纪强震重复间隔的研究,中国地震, 6(2): 15-24.
    84.吴海威张连生, 1989,红河哀牢山断裂带—喜山期左行走滑剪切带,地质科学, 1期,1-7.
    85.吴珍汉叶培盛赵文津等,2007,东昆仑南部晚新生代逆冲推覆构造系统,地质通报,26(4): 448-456.
    86.吴自银王小波金翔龙等, 2004,冲绳海槽弧后扩张证据及关键问题探讨,海洋地质与第四纪地质, 24(3): 67-76.
    87.武汉地质学院成都地质学院南京大学地质系河北地质学院,1979,构造地质学,北京:地质出版社,72-73.
    88.向宏发万景林韩竹军等,2006,红河断裂带大型右旋走滑运动发生时代的地质分析与FT测年,中国科学D辑, 36(11): 977-987.
    89.向宏发,韩竹君等, 2004,红河断裂带大型右旋走滑运动定量研究的若干问题,地球科学进展, 19(增刊), 56-60.
    90.向宏发虢顺民, 2000,阿尔金断裂带东段第四纪以来的水系位错与滑动速率,地震地质, 22(2): 129-138.
    91.向宏发,虢顺民,张晚霞等, 1995,红河断裂南段活动性转换的地质特征研究,活动断裂研究(4),北京:地震出版社, 38-45.
    92.谢富仁舒塞兵, 2000,海原、六盘山断裂带至银川断陷第四纪构造应力场分析,地震地质22(2), 139-146.
    93.谢富仁刘光勋,1989,阿尔金断裂带中段区域新构造应力场分析,中国地震,5(3):26-36.
    94.杨藩曹春潮, 1994,新生代阿尔金断裂中、东段右行走滑特征,地质科学, 29 (4): 346-354.
    95.姚文珣汪进, 1990,甘肃及邻近地区的地壳应力场,西北地震学报, 12(3): 44-49.
    96.袁道阳张培震方小敏等, 2007,青藏高原东北缘临夏盆地晚新生代构造变形及过程,地学前缘, 14(2): 243-250.
    97.袁道阳,2003,青藏高原东北缘晚新生代以来的构造变形特征与时空演化,中国地震局地质研究所博士学位论文, 125-143.
    98.袁道阳石玉成,1999,青藏高原东北缘地区晚第四纪水系沉积物年代标尽的初步研究,地震地质,21(1): 1-8.
    99.岳乐平雷祥义, 1991,靖远黄土剖面磁性地层的初步研究,第四纪研究, (4): 349-353.
    100.张秉良林传勇史兰斌, 2002,香山—天景山断裂断层泥显微结构特征及其地质意义,中国科学(D辑), 32(3),198-190.
    101.张东宁许忠淮, 1994,青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟,中国地震, 10(2): 136-143.
    102.张进江丁林, 2003,青藏高原东西向伸展及其地质意义,地质科学, 38(2), 179-189.
    103.张进马宗晋任文军, 2005,宁夏南部新生界沉积特征及其与青藏高原演化的关系,地质学报, 79(6): 757-773.
    104.张培震甘卫军沈正康等, 2005,中国大陆现今构造作用的地块运动和连续变形耦合模型,地质学报, 79(6): 748-756.
    105.张培震王琪马宗晋, 2002,青藏高原现今构造变形特征与GPS速度场,地学前缘, 9(2):442-450.
    106.张绍治等, 1988,在构造分析中应用摩尔圆图解法的几种实例,地震研究, 11(2):163-169.
    107.张维歧等, 1988,宁夏香山-天景山弧形断裂带新活动特征及1709年中卫南7.5级地震形变带,地震地质, 10(3): 12-20.
    108.张向红杨斌张向阳等,2005,对宁夏中卫南F201左旋走滑发震断层长度的确定,西北地震学报, 27(2): 240-245.
    109.张有龙, 2005,五佛寺断层的特征及对小观音坝址构造稳定性影响,中国地震局兰州地震研究所硕士学位论文, 10-18.
    110.张有龙李麒麟赵桐等, 2001,兰州地区最老黄土的发现及其特征,中国区域地质,
    20(2): 141-157.
    111.赵国光, 1996,青藏高原北部的第四纪断层运动,中国地震, 12(2): 107-118.
    112.赵金仁李松林张先康等, 2005,青藏高原东北缘莫霍面的三维空间构造特征,地球物理学报, 48(1), 78-85.
    113.赵寅震,1989,同成矿构造与矿产预测(内部发行),17-27.
    114.赵寅震王成金尉东仁等, 1986,商城——罗山地区同成矿构造与矿产预测,北京:地质出版社, 32-41.
    115.郑德文张培震万景林等, 2005,六盘山盆地热历史的裂变径迹证据,地球物理学报, 48(1), 157-164.
    116.郑剑东, 1993,喀喇昆仑断层与塔什库尔干地震形变带,地震地质, 15(2), 107-116.
    117.郑绵平袁鹤然赵希涛等, 2006,青藏高原第四纪泛湖期与古气候,地质学报, 80(2): 169-179.
    118.郑荣章徐锡伟王峰等, 2005,阿尔金构造系晚更新世中晚期以来的逆冲活动,地震地质, 27(3), 361-373.
    119.郑荣章,2005,阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制,中国地震局地质研究所博士学位论文, 130-132.
    120.钟大赉, Tapponnier P.,吴海威等, 1989,大型走滑断层-碰撞后陆内变形的重要形式,科学通报,7,526-529.
    121.中国地震局地球物理勘探中心,2003,黄河黑三峡河段大柳树坝址区人工地震勘探工作报告,24-31.
    122.中国地震局地质研究所中国地震局地球物理研究国家海洋局第一海洋研究青岛地震工程研究,2007,青岛市目标区主要断层活动性鉴定(研究报告), 12-33.
    123.中国地震局地质研究所,2005,昆明市1/5万地表活断层调查报告, 12-54.
    124.中国地震局地质研究所青岛市地震工程地震研究所,2005,青岛市活断层探测与地震危险性评价项目——目标区主要活动断层地震地质调查报告, 35-40.
    125.周德敏,2005,青藏高原东北缘现今地壳形变的GPS观测研究,中国地震局地质研究所碛士学位论文, 70-72.
    126.周俊喜刘百篪, 1987,中卫-同心活断层研究,西北地震学报, 9(3): 71-77.
    127.朱筱敏康安韩德馨等, 2003,柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系,地质科学, 38(3), 367-376.
    128. Armijo R., P. Tapoponnier and H. Tongin, 1989, Late Cenozoic right-lateral strike-slip faulting in Southern Tibet, J.G.R., 94(83), 2789.
    129. B. Le Gall and W. Vetel, 2005, Inversion tectonics during continental rifting: the Turkana Cenozioc rifted zone, northern Kenya, TECTONICS, 24(2): tc2002: 1-17.
    130. Brent Wilson, Thomas Dewers, Zeev Reches et al., 2005, Particle size and energetics of gouge from earthquake rupture zones, Nature, 434(7034): 749-752.
    131. Catherine A. Rychert, Karen M. Fischer & Stephane Rondenay, 2005, A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America, Nature,
    436(7050): 542-545.
    132. Chenglong Deng, et al., 2005, Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability, Journal of Geophysical Research, 110(b3), B03103: 1-17.
    133. Chris Marone, 2004, Faults greased at high speed, Nature, 427(6973): 405-406.
    134. CHU Quanzhi, 2000, Seismotectonic Environment of the Chinese Mainland and Its Implications for Seismic Zoning, JOURNAL OF EARTHQUAKE PREDICTION RESEARCH, 8(2): 175-185.
    135. England P., Molnar P., 1993, Right-lateral shear and rotation as the explanation for strike-slip in eastern Tibet, Nature, 344: 140-142.
    136. Gilley, et al. , 2003, Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. J. Geoph, Res. 108(B2), 2127.
    137. Giulio Di Toro, et al., 2005, Earthquake rupture dynamics frozen in exhumed ancient faults, Nature, 436(7053), 1009-101.
    138. Giulio Di Toro, David L. Goldsby & Terry E. Tullis, 2004, Friciton falls towards zero in quartz rock as slip velocity approaches seismic rates, Nature, 427(6973): 436-439.
    139. Judith S. Chester, Frederick M. Chester & Andreas K. Kronenberg, 2005, Fracture surface energy of the Punchbowl fault, San Andreas system, Natrue, 437(7055): 733-735.
    140. M. Perez-Gussinye & A. B. Watts, 2005, The long-term strength of Europe and its implications for plate-forming processes, Nature, 436(7049): 381-384.
    141. Marcelo Farias, Reynaldo Charrier, Diana Comte et al., 2005, Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30ˊS), 24(4): TC4001: 1-27.
    142. Marco Bonini, Giacomo Corti. Fabrizio Innocenti et al., 2005, Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation, TECTOINICS, 24(1): TC4001: 1-21.
    143. Marland P. Billings, 1972, STRUCTURAL GEOLOGY (Third Edition), Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 118-119.
    144. Matthew M. Haney, Roel Snieder, Jon Sheiman et al., 2005, A moving fluid pusle in a fault zone, Nature, 437(437): 7055.
    145. Ofori N. Pearson and Peter G. DeCelles, 2005, Structural geology and regional tectonicsignificance of the Ramgarh thrust, Himalauyan fold-thrust belt of Nepal, Tectonics, 24(4), TC2002: 1-26.
    146. Olivier Bellier, Michel Sebrier, Diane Seward et al., 2006, Fission track and fault kinematics analyses for new insight into the Late Cenozoic tectonic regime changes in West-Central Sulawesi (Indonesia), Tectonophysics, 413(14): 201-220.
    147. Peltzer G., Tapponnier P., Armijo R., 1989, Magnitude of late Quaternary left–lateral displacements along the north edge of Tibet. Science, 246:1281-1289.
    148. S. Dyksterhuis, R. D. Muller, and R. A. Albert, 2005, Paleostress field evolution of the Australian continent since the Eocene, Journal of Geophysical Research, 110(b5), B05102: 1-13.
    149. Shu-Chuan Lin & Peter E. van Keken, 2005, Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes, Nature, 436 (7048), 250-252.
    150. Simon Wallis, Tatsuki Tsujimori, Mutruki Aoya et al., 2003, Cenozoic and Mesozoic metamorphism in the Longmenshan orogen: Implications for geodynamic models of eastern Tibet, GEOLOGY, 31(9), 745-748.
    151. Tapponnier P. et al., 1990, The Ailao Shan Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China, Nature, 343, 430-437.
    152. Wang Erchie, Burchfiel B.C, 1997, Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis, International Geology Review V.39,191-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700