用户名: 密码: 验证码:
腾冲火山区现代幔源氦释放特征及深部岩浆活动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解决的问题与研究方法
     1、解决的科学问题已有研究成果表明:腾冲火山区现今仍有热能和幔源挥发份的大量释放,腾冲火山区地下可能有多个岩浆囊存在,腾冲火山的喷发可能与板块俯冲无关,是局部地幔上隆产生的。但腾冲火山区现代热能和幔源物质释放的强度及其空间分布特征以及与地下岩浆囊的关系,这些岩浆囊的数量、空间分布、几何尺度、温度和活动性以及腾冲火山成因机理的具体模式等问题还没有得到解决。本论文拟尝试解决这些科学问题。
     2、思路本论文以揭示现今腾冲火山区岩浆活动为目标,以温泉为研究对象,以化学地质温标、同位素示踪、同位素地质温标为手段,依托现代化学和同位素分析测试技术,通过对腾冲火山区温泉逸出气体的大规模采样及成份和同位素分析测试,来研究腾冲火山区现今幔源物质释放场、上地壳温度场和岩浆囊现今温度,并结合前人深部探测、活动监测及成因研究方面的成果,提出腾冲火山孕育喷发的成因机制模型。
     3、应用的原理火山喷发是地球内部物质和热能向地表释放的一种方式。岩浆在向上运移或滞留在地壳中时,都会对由热传导形成的正常地热梯度造成局部扰动。反过来,正常地热梯度的局部扰动量可以反映岩浆囊的存在。温泉的形成与当地的地热梯度有关,温泉水中溶解的化学物质含量与热储的温度有关。温泉水化学地质温标可以用来揭示其循环深度范围内的正常地热梯度的局部扰动量,从而可以间接反映岩浆囊或其热晕的存在。溶解在岩浆中的气体是火山喷发的驱动力,也是火山岩浆活动的示踪剂。当岩浆向地表上升运移、喷出或在地下冷却结晶时都可释放出气体。气体在火山岩浆运移和喷发中起着重要作用,尤其是在爆炸性喷发中起着支配作用。气体组分和同位素组成资料可用于热力学计算,从而可以研究深部岩浆的物理化学状态。氦气是最稳定、最轻、挥发性最强和扩散渗透能力最强的惰性气体,当岩浆向地表上升运移时,它可以先于岩浆到达地表,因此,在岩浆上侵过程或侵入后的活动过程中,通过对其先行逸出和正在逸出的气体氦同位素组成进行测试,就可以利用其示踪原理确定岩浆的物质来源:对正在上侵的岩浆,应能观测到氦同位素组成的突然变化;对正在或已冷却的岩浆,氦同位素组成的变化会相当的平稳,氦同位素组成值的不同会反映它们的新老程度。来自岩浆的同源共生的CO2-CH4分子间的碳同位素平衡分馏受温度控制,其平衡时间与温度相关。温度越高,平衡时间越短,温度越低,平衡时间越长。平衡时间与平衡温度呈指数关系,高温(比如1000℃)时需要数小时或数天时间量级能达到平衡的在低温时(比如300℃)可能需要百万年的时间量级才能达到新的平衡。因此,当从高温岩浆区上升到地表时,气体的温度是迅速降低的,这使得在高温区达成的同位素平衡在低温区很难被改变,即同位素组成被“冻结”。同位素平衡分馏系数和平衡温度有关,因此通过测试到达地表低温区的CO2-CH4分子间的碳同位素组成,如能判断其同位素交换是平衡的,则可以通过同位素分馏方程来计算平衡温度,而这个温度代表的不是地表再平衡的温度,而是被“冻结”的高温源区温度,即岩浆囊的温度。
     4、技术路线本论文采取如下技术路线进行研究。首先利用前人已分析过的大量温泉的水化学资料,根据地球化学热力学原理,利用化学地质温标来研究腾冲火山区及其邻近地区的上地壳温度场。温度场可以间接反映岩浆的存在及其活动状况,地热梯度越高,岩浆存在的可能性越大,岩浆活动性越强。研究结果将为利用同位素示踪原理揭示岩浆囊和利用同位素地质温标原理获得岩浆囊温度工作的野外采样设计和实施提供依据。然后利用在腾冲火山区广泛分布的温泉,采集逸出气体为测试对象,分析其常规组分含量和He、Ne的同位素组成。在火山岩区及其外围(如怒江断裂带)的较大范围获取氦同位素组成数据,利用氦同位素3He/4He比值的示踪原理,揭示是否在整个火山区存在一个统一的或几个幔源物质释放中心,这一个或几个幔源物质释放中心则对应一个或几个岩浆囊。在此前提下、利用温度对CO2-CH4的碳同位素平衡分馏的控制原理,通过测试这个或这几个岩浆囊(范围已大大缩小)的CO2和CH4的碳同位素组成,计算这个或这几个岩浆囊的温度。温度越高,岩浆囊的活动性越强。接着,根据本论文的上述观测资料和研究成果,结合前人获得的大地电磁测深、人工地震测深等深部探测资料来佐证岩浆囊的存在,并研究这个或几个岩浆囊的规模及埋深;利用本研究和前人通过20多年积累的幔源物质释放强度的长期观测资料,岩浆囊温度资料,结合前人获得的形变、地震等活动性监测资料研究这个或几个岩浆囊的现今活动性。最后,利用以上观测研究成果,结合前人关于腾冲火山的成因研究成果,提出腾冲火山喷发孕育的机理模型。
     主要研究内容
     1、研制防大气污染和具富集功能的野外气体取样器为了保证所采集气体样品不被空气污染,提高观测结果的可信度。同时,为了克服野外采样中诸如温泉气体温度过高、采样空间狭小等原因难以近距离采样,排气规模太小以及CH4需要富集等等一系列问题,研制一套集排气装置、储气装置、微量组份富集装置、样品输出接口装置于一体的气体样品采集器具。
     2、采集腾冲火山区温泉逸出气体,分析测试这些气体的常规组份和氦氖碳同位素组成用本研究研制的防大气污染采样器采集腾冲火山区温泉逸出气样品,用于常规组分和碳同位素组成分析的气体样品用铝塑气体样品袋装样,用于氦同位素分析的样品用钢瓶或玻璃瓶装样。用气相色谱仪测试常规组分,质谱仪(VG5400)分析3He/4He、4He/20Ne。用本研究研制的防大气污染和具富集功能的采样器采集幔源物质释放强和相对地热梯度高的重叠异常区(岩浆活动区)上方温泉的CO2和CH4气体样品,对CH4碳同位素样品进行现场富集取样,外送分析这些样品的碳同位素组成。
     3、腾冲火山区上地壳温度场的研究利用前人的温泉水化学分析资料,选用统一地球化学温标,计算热储温度,假定各热储等深,则热储温度与泉口温度之差为相对地热梯度。计算腾冲火山区上地壳的相对地热梯度。通过克里金插值法获得整个腾冲火山区的相对地热梯度平面分布图。根据此空间分布图和数据,研究腾冲火山区上地壳温度场的空间分布特征,探讨与岩浆的存在及其活动性的关系
     4、腾冲火山区幔源物质释放场研究通过样品的4He/20Ne值对样品的大气污染进行3He/4He矫正,对样品氦同位素组成的源区百分比进行计算,最后对源区百分比进行校正计算。通过克里金插值法获得整个腾冲火山区的原始氦同位素组成3He/4He(Ra)、校正后的3He/4He校正(Ra)以及氦同位素组成地幔源贡献百分比M和校正后的氦同位素组成地幔源贡献百分比M校正的平面分布图。这种图件即能反映出腾冲火山区的幔源物质释放的空间强度水平,同一释放点的时间序列则能反映幔源物质释放的时间变化。结合具体的数据和这些图件,研究腾冲火山区幔源物质释放的时空分布特征,探讨与岩浆的存在及其活动性的关系。
     5、腾冲火山区岩浆囊现今温度研究对CO2-CH4碳同位素地质温度计的相关文献进行研究,选取最合理的已有平衡分馏方程,或利用最合理的平衡分馏系数数据拟合出最适用的平衡分馏方程,用本研究获得的CO2-CH4碳同位素分馏数据,计算腾冲火山区岩浆囊的的现今温度。
     6、岩浆的存在及其活动性的综合分析研究根据本论文的上述观测资料和研究成果,结合前人获得的大地电磁测深、人工地震测深等深部探测资料来佐证岩浆囊的存在,并研究这个或几个岩浆囊的规模;利用本研究和前人长期积累的幔源物质释放强度观测资料(20年),岩浆囊温度资料,结合前人获得的形变、地震等活动性监测资料研究这个或几个岩浆囊的现今活动性。
     7、腾冲火山孕育喷发的成因机制模型研究根据本研究得到的上地壳温度场、幔源物质释放场、岩浆囊温度结果、结合前人大地电磁测深、人工地震测深成果确定目前腾冲火山区现存岩浆囊的数量、空间分布、大小和埋深。然后结合前人通过岩石学和岩石地球化学研究得到的相关成因信息,提出腾冲火山孕育喷发的成因机制模型。
     主要工作量
     为了研究目标和上述研究内容的实现,本论文2003年7月开始实施野外观测,2008年5月完成全部研究工作,历时5年。本论文在腾冲火山区及其外围共实施了3期(2003年、2004年、2006年各一期)温泉气体地球化学观测,先后使用车辆4辆,行程16200公里,在63公里半径,12350平方公里的范围内实地考察测量温泉159个次,测量温泉温度145个次,共采集气体样品254个,获得分析测试数据1229个。其中常规组份和CO2碳同位素样品117个,氦氖同位素样品88个,CH4碳同位素样品49个,获得常规气体组份数据724个(96个样品),富集CH4常规气体组份数据181个(21个富集样品),氦氖同位素数据264个(88个样品),CO2碳同位素数据36个(36个样品),CH4碳同位素数据24个(24个样品)。另外搜集与整理了研究区及外围304个温泉的前人温度和水化学成分数据。
     主要结论
     通过以上数据的获取和以此为基础对腾冲火山区上地壳温度场、幔源物质释放场及岩浆囊现今温度的研究,结合深部探测、活动性监测和前人的成因研究结果的综合分析,本研究得到如下5点结论:
     1、腾冲火山区地下现今可能存在3个岩浆囊,第1个岩浆囊位于腾冲县城和清水一带,第2个岩浆囊位于马站和曲石一带,第3个岩浆囊位于五合、龙江、团田和浦川一带。3个岩浆囊上方的上地壳相对地热梯度分别为140℃、120℃、130℃。3个岩浆囊释放挥发物质的幔源比例依次为70%、60%和30%。
     2、3个岩浆囊的几何尺度(水平方向的直径)可能依次约是20km、19km和23 km(长45km)。3个岩浆囊的埋藏深度不同:第1个岩浆囊位于地下5-25km之间,第2个岩浆囊可能也位于地下10-25km之间,第3个岩浆囊位于地下7-14km之间。
     3、3个岩浆囊的的现今温度分别为:第1个岩浆囊324-789℃间,平均555℃;第2个岩浆囊402-663℃间,平均532℃;第3个岩浆囊320-1194℃间,平均679℃。可以认为,腾冲火山区地下岩浆囊顶部气体富集区目前的温度变化范围为320-1200℃,岩浆囊的实际温度应高于平均值600℃。三大岩浆囊的边缘温度可能在300-600℃间,中心温度可能在700-1200℃间。
     4、3个岩浆囊的活动性不同:第1个岩浆囊集相对地热梯度、幔源物质释放、形变和地震活动等异常于一身,岩浆囊正在接受幔源岩浆的补充,活动性最强,直接位于腾冲县城之下,喷发将造成最为严重的损失,需重点监视;第2个岩浆囊的幔源物质释放强度也引人注目,岩浆囊可能也正在接受幔源岩浆的补充,需加强监测;第3个岩浆囊规模大,埋深较浅,幔源物质释放较弱(30%),目前幔源岩浆的补充可能比较微弱,但岩浆囊温度依然较高,需引起注意。
     5、腾冲火山的形成与现今的板块俯冲无关,是局部地幔上隆引起地壳拉张的结果。地幔上隆的原因可能和古怒江洋壳型岩石圈或/和古密支那洋壳型岩石圈的拆沉有关,但地幔上隆和腾冲火山的喷发远远晚于东西两个古洋壳型岩石圈的俯冲时限,因此可以认为已与严格意义上的板块俯冲作用无关了。腾冲火山区现今幔源物质释放强度的空间分布图象就是这一地幔隆升区空间尺度和隆升强度的最直接反映,上隆区的大小大致为南北长100km,东西宽50km。局部上隆的地幔既为腾冲火山的孕育提供了岩浆物质来源,其产生的地壳拉张也为岩浆的上侵提供了构造通道,这种拉张得到现今本地区地貌和形变观测的支持。
     主要创新点
     本论文对腾冲火山的现今活动性这一关键科学问题进行了比较明确的回答,并结合前人通过岩石学和岩石地球化学研究得到的相关成因信息,提出了腾冲火山孕育喷发的成因机制模型,产出了如下4个创新点:
     1、提出了相对地热梯度的新概念和计算方法,揭示了腾冲火山区上地壳的温度场特征通过对前人温泉基本要素数据的深度挖掘,提出了相对地热梯度的新概念和计算方法。用该概念和方法揭示了腾冲火山区上地壳的温度场特征,发现腾冲火山区上地壳存在3个高于100℃的相对地热梯度异常区。相对地热梯度异常是其下方的岩浆囊的热扩散造成的,可以理解为岩浆囊的热晕(热帽),间接反映了岩浆囊的存在。
     2、揭示了目前腾冲火山区的幔源物质释放强度的空间分布特征应用氦同位素示踪技术,在东起怒江,西至中缅边境的涵盖整个腾冲火山区的范围内进行了幔源物质释放强度测量。幔源物质释放强度空间分布结果表明,腾冲火山区的幔源物质释放可分强度不同的三个区域。这三个幔源物质释放较强的区域与相对地热梯度研究得到的3个高地热梯度区符合很好,进一步说明腾冲火山区岩浆囊的存在。
     3、发现目前腾冲火山区存在3个壳内岩浆囊,估计了它们的大小、埋深和现今温度等重要参数,评估了它们的活动性通过对腾冲火山区上地壳温度场、幔源物质释放场的分析研究,结合前人的大地电磁、人工地震等测深结果,发现目前腾冲火山区存在3个壳内岩浆囊。3个壳内岩浆囊的发现为回答腾冲火山现今活动性这一关键科学问题确立了基础。估计了3个岩浆囊的空间尺度和埋深。应用同位素地质温标原理,估算了3个岩浆囊的现今温度。评估了3个岩浆囊的活动性。
     4、提出了腾冲火山孕育喷发的成因机制模型根据本研究发现的目前腾冲火山区存在3个壳内岩浆囊,结合前人通过岩石学和岩石地球化学研究得到的相关成因信息,提出了腾冲火山孕育喷发的成因机制模型,认为腾冲火山的形成与板块俯冲无关,是局部地幔上隆并引起地壳拉张的结果。腾冲火山区现今幔源物质释放强度的空间分布图象就是这一地幔隆升区空间尺度和隆升强度的最直接反映。局部上隆的地幔既为腾冲火山的孕育提供了岩浆物质来源,也为岩浆的上侵提供了构造通道。
1. QUESTIONS AND METHODS
     1.1. Questions
     The existing research results suggest that massive heat energy and mantle-derived volatiles are still releasing present day in theTengchong volcanic area under which more than one magma chambers still exist, and that the Tengchong volcano eruption, possibly not related with the tectonic plate subduction, is resulted from local mantle uplift. But there are some problems unsolved, such as the intensity and the spatial distribution characteristics of heat energy and mantle-derived volatiles release present day in the Tengchong volcanic area, relationship between them and underground magma chambers, and their number, spatial distribution, size, temperature, activities as well as the mechanism model. These are the scientific questions which this dissertation plans to deal with.
     1.2. Train of thought
     This dissertation, taking revealing nowadays magmatic activities in the Tengchong volcanic area as a goal, the hot spring as the object of research, chemical geothermometer, isotopic tracer, isotopic geothermometer as the means, based upon the modern chemical and the isotopic analysis technology, adreesses three specific scientific questions: They are the present release field of mantle-derived volatiles, temperature field of the most upper crust and the temperature of nowadays magma chamber of the Tengchong volcanic area. In conjunction with the predecessor’s achievements of deep sounding, the activities monitoring and the origin research, this work proposes a machanism model for the Tengchong volcano generation and eruptions.
     1.3. Principles
     The volcanic eruption is one way by which the earth interior material and the heat energy release to the surface. When magma migrates upward or is detained in crust, the normal geothermal gradient formed by the heat conduction can create the partial perturbation. In turn, partial perturbation quantity of the normal geothermal gradient may reflect the existence of magma chambers. The hot spring formation is related to the local geothermal gradient, and the concentration of chemical substance dissolved in the geothermal water depends upon the temperature of the heat reservior. The hydrochemical geothermometer of a hot spring, can be used to reveal the partial perturbation quantity of the normal geothermal gradient at depth that can penetrate and circulate, thus may reflect existence of a magma chamber or its thermal aureole(or cap) indirectly.
     The gas dissoluted in the magma is the driving force of volcanic eruption, and is also the tracer of volcano magmatic activity. When migrating to the surface, erupting, cooling or crystallizing in underground media, magma may release gasses. The gasses play an influential role in magma migration and volcano eruption, particularly a dominant role in the explosive eruption. The component and the isotopic composition of gasses, being used for calculating thermodynamic parameters, thus may be sused to study the physic and/or chemical conditions of deep magma cambers.
     The helium is of stablest, lightest inert gas of which both volatility and proliferation seepage ability are strongest. When magma rises to the surface, the helium may arrive at the surface earlier it. Therefore, during the rising process or active period after being invaded, through analyzing helium isotopic composition of gasses which escaped from it, the mass origin of magma chamber can be determined by using tracing principle of helium isotope: for invading ones, the sudden change of helium isotopic composition ought to be able to observed; for cooling ones, helium isotopic composition should be steady, and their relative ages can be reflected with the specific value of helium isotopic composition.
     Carbon isotope equilibrium fractionation between homologous paragenetic CO2-CH4 molecular couple from magma chamber is controlled by its temperature to which their equilibrium time is related. The temperature is higher, the equilibrium time is shorter; and the temperature is lower, the equilibrium time is longer. The equilibrium time deponds exponentially upon the reciprocal of the equilibrium temperature. The carbon isotopic equilibration between CO2-CH4 molecular pair at high temperature (for instance 1000℃) which takes order of magnitude of several hours or yaears can attain new re-equilibration at low temperature (for instance 300℃) which needs to take order of 1,000,000 years. Therefore, when rising from the high temperature magma chamber area to the surface, the gasses reduce rapidly their temperatures, for the isotopic equilibrium which achieves in the high temperature area to be very difficult to change in the low temperature area, namely for isotopic composition to be“freezen”. Isotopic equilibrium fractionation factor is related to temperature. Therefore, by analyzing the carbon isotope composition of CO2-CH4 molecular pair at low temperature surface area which arrives at, and if their isotopic exchange equilibration can be judged, then the equilibrium temperature can be calculated through the isotope fractionation equation. It dosen’t represent the temperature at which a new isotopic re-equilibration is attained at the surface, but the“freezen”high temperature of the source area, namely of magma chamber.
     1.4. Technique approach
     First, using the massive hot spring hydrochemical data that predecessores already have analyzed, according to the geochemical thermodynamics principle, this work studies the temperature field in the most upper crust under the Tengchong volcano and adjacent areas by chemical geothermometer. The temperature field may reflect indirectly existence and activities of magma chambers: the geothermal gradient is higher, the possibility of existence of a magma chamber is bigger, and the activity of magma is stronger. The goal of this work is to obtain the evidence of existence of the magma chamber and the base of the field sampling design and the implementation by which another evidence of existence of magma chamber can be found using the isotopic tracer principle and the today’s temperature of magma chamber can be calculated using the isotope geothermometer principle.
     Secondly, this work collectes samples of gasses escaped from hot springs which are distributed widespread in the Tengchong volcanic area, analyzes conventional component content and He, Ne isotopic compositions of them. It gains helium isotopic composition data in the wide range of the Tengchong volcano petrographic province and periphery (for example east to the Nujiang fault zone), and using helium isotope 3He/4He ratio tracing principle, promulgates whether there exists unified one or how many mantle-derived mass release centers in entire Tengchong volcanic area. This one or several mantle-derived mass release centers then correspond to one or several magma chambers.
     Thirdly, under the premise above mentioned, using principle that temperature controls carbon isotopic equilibrium fractionation between CO2 and CH4 molecular pair, through analyzing CO2 and CH4 carbon isotope composition of gasses from hot springs above this one or these magma chanmbers (spacial range already largely narrowed), this work calculates the temperature of this one or these magma chambers. The temperature is higher, the activity of magma chamber is stronger.
     Then, on the basis of above observed data and the research results of this dissertation above mentioned, it demonstrates the existence of magma chambers, and measures the size and depth of this one or these several magma chambers by unifing deep sounding data that the predecessors obtained by magnetotelluric sounding(MTS) and deep seismic sounding(DSS). It then discusses the nowadays activity of this one or these several magma chambers using observed long-term data of intensity of mantle-derived mass release, that the predecessors and the author of this dissertation have accumulated for more than 2 decades, the data of temperature of magma chambers, to unify the data of the Tenchong volcanic activity from measurements of crust deformation and earthquake monitoring.
     Finally, it proposes a model for the Tengchong volcanic eruption and origin based on synthesising observation data and research results mentioned above.
     2. MAIN CONTENTS OF THE THESIS
     2.1. Developing sample collecting tool for atmosphere-contaminating-prevention with enrichment function
     In order to guarantee that the gas sample collected is not contaminated by the atmosphere so as to improve the credibility of the observation result, and at the same time, to overcome a series of sampling problems in field such as that hot spring gas is of hyperpyrexia, that it is diffculty to collect sample over a short distance because operation space is too narrow, and that it takes a too long time because outgassing is too less, or that certain minor components need to concentrate by chemical reaction, and so on. This research has designed a set of gas sample collection installments which integrate atmosphere exhausting device, gas store device, enrichment device of trace component, the output interface of sample all in one.
     2.2. Sample-collecting, analysis of conventional and isotopic composition
     This work collectes gas samples escaped from hot springs in the Tengchong volcanic area using the sample collecting instrument with atmosphere-contaminating-prevention and enrichment function. The gas samples which are used to analyze conventional component and carbon isotope composition are packed in aluminum-film-covered plastic bags, the ones for helium isotope compostion analysis are packed in the steel cylinder or glass bottle. With the gas chromatograph it analyzes conventional component, with the mass spectrometer (VG5400) it analyzes 3He/4He, 4He/20Ne. This work collectes CO2 and CH4 gas samples escaped from hot springs in overlaped abnormal areas (magmatically active region), where both the intensity of mantle-derived mass release and relative geothermal gradient are high, using the sample collecting instrument this research developed. This work carries on enrichment to CH4 of the CH4 carbon isotope sample at site, analyzes carbon isotope composition both CO2 and CH4 sample with the mass spectrometer (MAT251).
     2.3. Analysis of temperature field in upper crust of the Tengchong volcanic area
     Using predecessor's hydrochemical data of hot springs, selecting unified geothermometer, this work calculates the temperature of thermal reservoirs. Assuming that the depth of these thermal reservoirs are same, then the temperature difference between hot springs and thermal reservoirs is defined as relative geothermal gradient. According to this definition, this work calculates the values of relative geothermal gradient in entire the Tengchong volcanic area.Using the values of relative geothermal gradient, the map of relative geothermal gradient in the entire Tengchong volcanic and adjacent areas is obtained with Kriging interpolation. According to this space distribution map and the data, this work studies spatial distribution characteristic of the temperature field of the most upper crust in the Tengchong volcano area, and discusses the relationship between the existence and the activity of magma chambers and the spatial distribution characteristic of the temperature field.
     2.4. Analysis of spatial-temporal distribution of release of mantle-derived gas
     Atomsphere contamination correction is made for 3He/4He ratio through the 4He/20Ne value. Then this work calculates percentage proportion of atmosphere, crust and mantle of helium isotope compostion. Finally the correction for percentage proportion of different sources is performed.Using Kriging interpolation, the plane distribution maps of primitive helium isotopic compostion 3He/4He (Ra) ratio values, of corrected helium isotopic compostion 3He/4Hec (Ra) ratio values, of percentage M which express contribution of mantle reservoir to helium isotopic compostion, and of corrected percentage Mc in entire the Tengchong volcanic and adjacent areas are obtained. These maps can reflect the spatial intensity level of mantle-derived mass release in the entire Tengchong volcanic and adjacent areas, and time series of these values of helium isotopic compostion at the same localities can reflect time variations of mantle-derived mass release. Synthesising specific data and these maps, this work studies spacial and temporal distribution characteristics of intensity of mantle-derived mass release in the entire Tengchong volcanic and adjacent areas, discusses the relationship between the existence and activity of magma chambers and these spacial and temporal distribution characteristics.
     2.5. Calculating of temperature of magma chambers
     To search, read and analyze literatures mainly about the thermodynamics principle of isotopic exchange reaction, data of equilibrium fractionation factor and equilibrium fractionation equation of carbon isotope exchange reaction between CO2 and CH4 and temperature range of their utilization, so that this work can select the most appropriate formula and the data explanation principle for this research. Choosing the most resonable equilibrium fractionation equation or formula regressed from carbon isotope equilibrium fractionation factors of CO2 and CH4 which were theoretically calculated or experimentally determined, this work finally calculates the temperature of gas source area (magma chambers).
     2.6. Integrated analysis of existence and activities of magams
     According to observed data and the research results of this dissertation mentioned above, unifing deep sounding data that the predecessors obtained by magnetotelluric sounding(MTS) and deep seismic sounding(DSS), it demonstrates the existence of magma chambers, and measures the size and depth of this one or these several magma chambers. It discusses the nowadays activity of this one or these several magma chambers using observed long-term data of intensity of mantle-derived mass release, which this thesis researches and the predecessors have accumulated for more than 2 decades, the data of temperature of magma chambers, to unify the data of Tenchong volcanic activity from crust deformation measurements and earthquake monitoring.
     2.7. Proposing of model of mechanism of Tengchong volcano
     According to results on temperature field in upper crust, mantle-derived mass release field, temperature of magma chambers of the Tengchong volcanic area, unifing data of magnetotelluric sounding(MTS) and deep seismic sounding(DSS), this work determines the number, spatial distribution, size and depth of magma chambers which exist present day in the Tengchong volcanic area. Finally, in conjunction with the related information of petrology and the rock geochemistry research, this work proposes a model of Tengchong volcano origin.
     3. MAIN WORKLOADS
     In order to achieve the above research aim and to complete above contents, it taken 5 years for this dissertation to complete the field sample-collecting, analysizing and synthetic research work, from July, 2003 to May, 2008. Field sample-collecting, analysizing for hot spring gas is implemented altogether 3 times in 2003, 2004, 2006, respectively, in the Tengchong volcanic area and the periphery. Employing 4 vehicles successively, traveling 16200 kilometers, We have surveyed 159 hot springs, measured temperature 145 times, altogether gathered 254 gas samples, obtaining 1229 data of chemical and isotopic compostion of them in the range of 12350 square kilometers with the radius of 63 kilometers. Among these samples, 117 are for the conventional component and carbon isotope composition of CO2, 88 for isotope composition of Helium and Neon, 49 for carbon isotope composition of CH4. We have obtained 724 conventional gas component data (of 96 samples), 181 conventional gas component data(of 21 CH4-enriching samples), 264 isotope composition data of Helium and Neon(88 samples), 36 carbon isotope composition data of CO2 (36 samples), 24 carbon isotope composition data of CH4 (24 samples). Moreover we have collected and compiled the numerous data of the temperatures and hydrochemistry ingredient of 304 hot springs in research area and the periphery which analyzed and measuered by fomer investigators.
     4. MAIN CONCLUSIONS
     Based on the above data, by resolving theses 3 issues such as temperature field in most upper crust, mantle-derived mass release field, and temperature of magma chamber, and combining achievements in deep sounding, activity monitory and origin research that the former investigators obtained, this research obtains the following 5 conclusions:
     4.1. There exist 3 magma chambers in crust present day in the Tengchong volcano area. The 1st one is located Tengchong county-Heshun township-Rehai resort area where is in middle of the Tengchong volcano area. The 2nd one is located Qushi-Mazhan where is in northern of the Tengchong volcano area. The 3rd one, lies in Wuhe-Puchuan-Xinhua area where is in southern of the Tengchong volcano area. The relative geothermal gradients of most upper crust above 3 magma chambers are 140℃, 120℃, 130℃, respectively. The mantle-derived proportions of volatile mass release of 3 magma chambers are 70%, 60% and 30%, respectively.
     4.2. The sizes (the horizontal diameter) of 3 magma chambers are approximately 20km, 19km and 23 km (long 45km), respectively, the depths of them are different: the 1st at 5-25km, the 2nd is 10-25km, and the 3rd is 7-14km.
     4.3. The temperature of the 1st magma chamber is within 324-789℃, with average 555℃. That of the 2nd, within 402-663℃, with average 532℃, That of the 3rd is within 320-1194℃, with average 679℃. It is believed that variation range of the present temperature of the gas enrichment region which is crown of magma chamber below the Tengchong volcano area is 320-1200℃, the actual temperature of magma chamber should be higher than the mean value 600℃. The temperatures of edge area of these 3 magma chambers possibly are in 300-600℃, the central temperature possibly in 700-1200℃. The nowadays temperatures of these 3 magma chamber’s center has achieved the formation temperature of Rhyolite magma (600-900℃), the Andesite magma (800-1100℃) and basalt magma (1000-1250℃), further suggesting the objective existence of these 3 magma chambers at present in the Tengchong volcano area.
     4.4. The activities of 3 magma chambers are different. The 1st one, collecting relative geothermal gradient, the mantle-derived mass release, the deformation and the seismic activity and so on abnormal in one, being accepting the supplement from mamtle-derived magma, is of strongest activity, and is located directly under the Tengchong county. Its eruption will cause the most serious losses, and needs the key surveillance. The 2nd one, the release intensity of mantle-derived mass is also noticeable, which is also possibly accepting the supplement from mamtle-derived magma, should be strengthened the monitoring. The 3rd one, which has the biggest size, and is shallowest, where the mantle-derived mass releases is weakest (30%), is possibly accepting weakly the supplement of the mantle-derived magma at present, but with temperature is still very high, must be paid some attention.
     4.5. The formation of the Tengchong volcano, not related with the tectonic plate subduction, is the result of local mantle uplift which results in crust extension. The local mantle uplift is possibally related with the slab break off of the ancient Nujiang oceanic lithosphere or/and the ancient Myitkyina oceanic lithosphere, But the eruption of Tengchong volcano is far later than the subduction of the two ancient oceanic lithosphere. Therefore it can be considered that the formation of the Tengchong volcano is not related with the normal tectonic plate subduction. The spatial distribution image of mantle-derived mass release intensity present day in the Tengchong volcanic area is the direct reflection of size and strength of this mantle uplift which is 100km long from north to south, 50km wide from west to east approximately. This local uplift mantle either provides matter source of magma for the Tengchong volcano to prepare or resultes in the crust extension which provides structural conduits for magma to migrate up. The crust extension in the Tengchong volcanic area predicted with this model is also supported by today’s local geomorphological investigation and deformation observation.
     5. MAIN INNOVATIONS
     This work has quite explicitly answered the questions about the activity of the Tengchong volcano. Combining the related information which the former investigators obtained by petrology and rock geochemistry research, a model of the Tengchong volcano origin machism is proposed and 5 aspects of innovations are created as follows:
     3.1. A new concept of relative geothermal gradient is put forward and the temperature field in upper crust of the Tengchong volcanic area is demonstrated
     By deeply mining to the predecessor's data of basic elements of hot springs, this work proposed a new concept, the relative geothermal gradient, and its calculation method. It is discovered that there exist 3 abnormal areas where relative geothermal gradient is higher than 100℃in most upper crust in the Tengchong volcano area. The abnormal higher areas of relative geothermal gradient, resulting from thermodiffusion of magma chamber underneath them, may be regarded as thermal aureole(or cap) of magma chamber, and reflects the existence of magma chamber indirectly.
     3.2. Present day spatial distribution of relesse of mantle-derived gas in the Tengchong volcanic area is demonstrated
     Using the isotopic tracer technology, this work carries out survey of intensity of mantle-derived mass release in the region east to Nujiang and west to the Sino-Burman boundary, that covers the entire Tengchong volcano area. The spatial distribution of intensity of mantle-derived mass release in the Tengchong volcanic area suggests that there exist 3 separable different regions where intensity of mantle-derived mass release is abnormally higher. These 3 mantle-derived mass strong release regions overlap on the 3 high relative geothermal gradient areas, further suggestes that there exist magma chambers beneath the Tengchong volcano area.
     3.3. Three magma chambers are discovered in the Tengchong volcanic area, the important parameters such as sizes, depths and temperatures of them are estimated, and the activities of them are assessed
     By analyzing the temperature field in most upper crust, mantle-derived mass release field in the Tengchong volcanic area, unifing data of magnetotelluric sounding and deep seismic sounding, this work discovered that there exist 3 magma chambers in crust present day in the Tengchong volcano area. The discovery of these 3 magma chambers in crust has established the foundation to reply the key scientific question about the nowadays activity of the Tengchong volcano. By synthetic studies, the sizes and depths of these 3 magma chambers are estimated. By appling the principle of isotopic geothermometer, nowadays temperatures have been estimated for these 3 magma chambers. By synthetic studies, the activities of these 3 magma chambers are assessed.
     3.4. A model of origin mechanism of Tengchong volcano is proposed According to existence of 3 magma chambers which this dissertation discovers in crust in the Tengchong volcano area, combining the related information which the former investigators obtained by petrology and rock geochemistry research, a model of the Tengchong volcano origin machism is proposed. It is considered that the formation of the Tengchong volcano, not related with the tectonic plate subduction, is the result of local mantle uplift which results in crust extension. The spatial distribution image of mantle-derived mass release intensity present day in the Tengchong volcanic area is the direct reflection of size and strength of this mantle uplift. This local uplift mantle either provides matter source of magma for the Tengchong volcano to prepare or resultes in the crust extension which provides structural conduits for magma to migrate up. The crust extension in the Tengchong volcanic area predicted with this model is also supported by today’s local geomorphological investigation and deformation observation.
引文
Aka F. T., Kusakabe M., Nagao K.and Tanyileke G., 2001. Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of Bioko, Sa?o Tome′and Annobon, along with Cameroon Volcanic Line, West Africa, Appl. Geochem., 16, 323–338.
    Aka F.T., Nagao, K., Kusakabe, M., Sumino, H., Tanyileke, G., Ateba, B., Hell, J., 2004. Symmetrical helium isotope distribution on the Cameroon Volcanic Line. West Africa. Chem. Geol. 203, 205–223.
    Alexander E.C., Ozima M., 1978. Terrestrial Rare Gases. Adv Earth Planet Sci, vol 3. Center for Academic Publications, Japan, Tokyo
    All`egre C.J., Manh`es G., G¨opel C., 1995a. The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456.
    All`egre, C.J., Sarda, P., Staudacher, Th., 1993. Speculations about the cosmic origin of He and Ne in the interior of the Earth. Earth Planet. Sci. Lett. 117, 229–233.
    All`egre, C.J., Staudacher, T.h., Sarda, P., 1986. Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81, 127–150.
    Allègre C.J., Hamelin B., DupréB., 1984.Statistical analysis of isotopic ratios in MORB: the mantle blob cluster model and the convective regime of the mantle. Earth Planet Sci Lett 71:71-84
    Allègre C.J., Staudacher T., Sarda P., Kurz M., 1983. Constraints on evolution of Earth’s mantle from rare gas systematics. Nature 303:762-766
    Allègre, C.J., Moreira, M., Staudacher, T., 1995b. 4He/ 3He dispersion and mantle convection. Geophys. Res. Lett. 22, 2325–2328.
    Althaus, T., Niedermann, S., Erzinger, J., 2003. Noble gases in olivine phenocrysts from drill core samples of the Hawaii Scientific Drilling Project (HSDP) pilot and main holes (Mauna Loa and Mauna Kea, Hawaii). Geochem. Geophys. Geosyst. 4, Paper number 2001 GC 000275.
    Anderson D.L., 2000a. The statistics of helium isotopes along the global spreading ridge system and the central limit theorem. Geophys Res Lett 27:2401-2404
    Anderson D.L., 2000b. The statistics and distribution of helium in the mantle. Int’l Geol Rev 42:289-311
    Anderson D.L., 2001. A statistical test of the two reservoir model for helium isotopes. Earth Planet Sci Lett 193: 77-82
    Anderson, D.L., 1993. Helium-3 from the mantle: primordial signal or cosmic dust. Science 261, 170–176.
    Bai D H,Liao Z J,Zhao G Z,Wang X B.1994.The Inference of Magmatic Heat Source beneath the Rehai (Hot Sea) Field of Tengchong from the result of Magnetotelluric Sounding.Chinese Science Bulletin,39(7):572-577
    Ballentine C.J., Porcelli D., Wieler R. , 2001. Noble gases in mantle plumes. Science 291:2269a
    Ballentine, C.J., Barfod, D., 2000. The origin of air-like noble gases in MORB and OIB. Earth Planet. Sci. Lett. 180, 39–48.
    Barfod D.N., Ballentine C.J., Halliday A.N., Fitton J.G. , 1999. Noble gases in the Cameroon line and the He, Ne and Ar isotopic compositions of highμ(HIMU) mantle. J Geophys Res 104:29509-29527
    Basu A.R., Renne P.R., Das Gupta D.K., Teichmann F., Poreda R.J., 1993. Early and late alkali igneous pulses and a high 3He plume origin for the Deccan flood basalts. Science 261:902-906
    Becker, R.H., Pepin, R.O., 1984. Solar composition noble gases in theWashington county iron meteorite. Earth Planet. Sci. Lett. 70, 1–10.
    Benkert, J.P., Baur, H., Signer, P., Wieler, R., 1993. He, Ne and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res. 98, 13147–13162.
    Bijwaard, H., Spakman, W., 1999. Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet. Sci. Lett. 166, 121–126.
    Black, D.C., 1972. On the origins of trapped helium, neon and argon isotopic variations in meteorites–II. Carbonaceous chondrites. Geochim. Cosmochim. Acta 36, 377–394.
    Bottinga, Y., 1969a. Carbon isotope fractionation between graphite, diamond and carbon dioxide. Earth Planet.Sci. Lett. 5 : 301-307
    Bottinga, Y., 1969b. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim. Cosmochim. Acta 33, 49–64.
    Bottinga, Y., Craig, H. 1969. Oxygen isotope fractionation between CO2 and water, and the isotope composition of marine atmospheric CO2. Earth Planet.Sci. Lett. 5 : 285-295
    Brandon A.D., Graham D., Gautason B., 2001. 187Os-186Os and He isotope systematics of Iceland picrites.EOS Trans Am Geophys Union 82:F1306
    Breddam K., Kurz M.D., 2001. Helium isotope signatures of Icelandic alkaline lavas. EOS Trans Am Geophys Union 82:F1315
    Breddam K., Kurz M.D., Storey M., 2000. Mapping out the conduit of the Iceland mantle plume with helium isotopes. Earth Planet Sci Lett 176:45-55
    Brook C. A., Marina R. H., Mabey D. R., Swanson J. R., Marianne G., Moffler L. J. P., 1979. Hydrothermal convection systems with reservoir temperature≥90℃, Assessment of geothermal resources of the United States-1978. Geol. Surv. Circ., Vol.790, pp. 18-85
    Brown J.C., 1913. Contributions to the Geology of the Province of Yunnan in the Western China(1): the Bhamo-Tengyueh Area. Rec Geol Surv of India,Vol XLⅢpt3:173-205
    Burnard P.G., 2001. Correction for volatile fractionation in ascending magmas: noble gas abundances in primary mantle melts. Geochim Cosmochim Acta 65:2605-2614
    Burnard P.G., Stuart F.M., Turner G., Oskarsson N. , 1994b. Air contamination of basaltic magmas: implications for high 3He/4He mantle Ar isotopic composition. J Geophys Res 99:17709-17715
    Burnard, P., Graham, D., Turner, G., 1997. Vesicle-specific noble gas analyses of popping rock: implications for primordial noble gases in Earth. Science 276, 568–571.
    Busemann, H., Baur, H., Wieler, R., 2000. Primordial noble gas in“phase Q”in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973.
    Caffee, M.W., Hudson, G.B., Velsko, C., Alexander Jr., E.C., Huss, G.R., Chivas, A.R., 1988. Non-atmospheric noble
    gases in CO2 well gases. In: Proceedings of the 19th Lunar. Planet. Science Conference, pp. 154–155.
    Caffee, M.W., Hudson, G.U., Velsko, C., Huss, G.R., Alexander, E.C., Chivas, A.R., 1999. Primordial noble cases from Earth’s mantle: identification of a primitive volatile component. Science 285, 2115–2118.
    Carroll M.R., Draper D.S., 1994. Noble gases as trace elements in magmatic processes. Chem Geol 117: 37-56 Christensen B.P., Holm P.M., Jambon A., Wilson J.R., 2001. Helium, argon and lead isotopic composition of volcanics from Santo Ant?o and Fogo, Cape Verde Islands. Chem Geol 178:127-142
    Clark I. D., andPhillips R. J., 2000. Geochemical and 3He/4He evidence for mantle and crustal contributions to geothermal fluids in the western Canadian continental margin, J. Volcanol. Geotherm. Res., 104, 261–276.
    Clarke W. B., Beg M. A., Craig H., 1969.Excess 3He in sea: evidence for terrestrial primordial helium.Earth and Planetary Science Letters, 6: 213-220
    Clarke, W.B., Beg, M.A., Craig, H., 1975. Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet. Sci. Lett. 6, 213–220.
    Condomines M., Gronvold K., Hooker P.J., Muehlenbachs K., O’Nions R.K., Oskarsson N., Oxburgh E.R., 1983. Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125-136
    Craig H., 1953. The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3:53–92
    Craig H., 1963. The isotope geochemistry of water and carbon in geothermal areas. In: Tongiogi, E(ed.). Nuclear Geology on Geothermal Areas. CNR, Pisa, 17-53
    Craig H., Lupton J.E. , 1981. Helium-3 and mantle volatiles in the ocean and the oceanic crust. In Emiliani C (ed) The Oceanic Lithosphere, vol 7. John Wiley & Sons, Inc, New York, p 391-428
    Craig H., Lupton J.E., Welhan J.A., Poreda R. , 1978. Helium isotope ratios in Yellowstone and Lassen Park volcanic gases. Geophys Res Lett 5: 897-900
    Craig, H., Clarke,W.B., Beg, M.A., 1975. Excess 3He in deep water on the East Pacific Rise. Earth Planet. Sci. Lett. 26, 125–132.
    Craig, H., Lupton, J.E., 1976. Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369–385.
    Craig. H.. Lupton, J.E. and Horibe. Y., 1978. A mantle helium component in Circum-Pacific volcanic gases: Hakone, the Marianas. and Mt. Lassen. In: E.C. Alexander Jr. and M. Ozima (Editors), Terrestrial Rare Gases. Japan Sci. Sot. Press,Tokyo. pp. 3-16.
    Dario Tedesco , Paolo Scarsi.1999.Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (southern Italy): mixing of different sources in relation to seismic activity.Earth and Planetary Science Letters 1999 (171):465-480
    Davies G.F., 1990. Mantle plumes, mantle stirring and hotspot chemistry. Earth Planet. Sci. Lett. 99, 94–109. Desonie D.L., Duncan R.A., Kurz M.D., 1991. Helium isotopic composition of isotopically diverse basalts from hotspot volcanic lineaments in French Polynesia. EOS Trans Am Geophys Union 72:536
    Dog?an T., Sumino H. Nagao K.andNotsu K., 2006. Release of mantle helium from forearc region of the southwest Japan Arc, Chem. Geol., 233, 235–248.
    Eiler J., Farley K.A., Stolper E.M., 1998. Correlated He and Pb isotope variations in Hawaiian lavas. Geochim Cosmochim Acta 62:1977-1984
    Farley K. A. and Neroda E., 1998.Noble gases in the earth’s mantle.Annual Review of Earth and Planetary Sciences, 26, 189–218
    Farley K.A., Basu A.R., Craig H., 1993. He, Sr and Nd isotopic variations in lavas from the Juan Fernandez archipelago. Contrib Mineral Petrol 115:75-87
    Farley K.A., Love S.G., Patterson D.B., 1997. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim Cosmochim Acta 61:2309-2316
    Farley K.A., Natland J.H., Craig H., 1992. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd,Pb) in Samoan lavas. Earth Planet Sci Lett 111:183-199
    Farley K.A., Poreda R.J., Onstott T.C., 1994. Noble gases in deformed xenoliths from an ocean island: charcterization of a metasomatic fluid. In Matsuda J (ed) Noble Gas Geochemistry and Cosmochemistry. Terra Scientific, Tokyo, p 159-178
    Farley, K.A., Maier-Reimer, E., Schlosser, P., Broecker,W.S., 1995. Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model. J. Geophys. Res. 100 (B3),3829–3839.
    Fischer T.P., Arehart G.B., Counce D., Sturchio N.D. and Williams. S.N., 1997. The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Vocano. Colombia. In: J. Stix. M.L. Calvache V. and S.N. Williams (Editors), Galeras Volcano, Colombia: Interdisciplinary Study of a Decade Volcano. J. Volcanol. Geotherm. Res.. 77: 229-253.
    Fischer T.P., Arehart G.B., Sturchio N.C. and Williams S.N., 1996. The relationship between fumarole gas composition and eruptive activity at Galeras volcano, Colombia. Geology. 24(6): 531 ~-534.
    Fischer T.P., Giggenbach W.F., Sano Y. and Williams S.N., 1998. Fluxes and sources of volatiles from Kudryavy, a subduction zone volcano Kurile Islands. Earth and Planetary Science Letters, 160:81-96
    Fischer T.P., Morrissey M.M.. Calvache V., Gomez M.L., Torres D.M., Stix R.C.J. and Williams. S.N., 1994. Correlations between SO2 flux and long-period seismicity at Galeras volcano. Nature, 368: 135-137.
    Fisher, D.E., 1997. Helium, argon and xenon in crushed and melted MORB. Geochim. Cosmochim. Acta 61, 3003–3012. Fournier R. O. 1979a. A revised equation for the Na/K geothermometer. Geothermal Resource Council, Transactions, Vol.3:221-224
    Fournier R. O. 1979b. Geochemical and hydrologic considerations and the use of enthalpy-chloride disgrams in the prediction of underground conditions in hot-spring systems. Journal of Volcanology and Geothermal Research. 5: 1-6
    Fournier R. O., 1981. Application of water geochemistry to geothermal exploration and reservoir engineering. In Rybach L. and Muffler L. J. P. ed., Geothermal Systems: Principles and Case Histories. Jonh Wiley and Sons Ltd. pp.109-143
    Fournier R. O., Potle R. W., 1979. Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim. Cosmochim. Acta 43, 1543–1550
    Fournier R. O., Truesdell A. H., 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 37, 1255–1275
    Fournier R. O., White D. E., Truesdell A. H., 1974. Geochemical indicators of subsurface temperature, Part 1, Basic assumptions. J. Res. U.S. Geol. Survey, 2(3): 259-262
    FourréE. Guern F. Le. and Jean-Baptiste P. 2002, Helium isotopes at Satsuma-Iwojima volcano, Japan. Geochemical Journal, 36:493-502
    Furman, T; Kaleta, KM; Bryce, JG; Hanan, BB, 2006. Tertiary mafic lavas of Turkana, Kenya: Constraints on East African plume structure and the occurrence of high-μvolcanism in Africa. Journal of Petrology, vol.47, no.6 :1221-1244
    Geiss, J., 1993. Primirdial abundance of hydrogen and helium isotopes. In: Prantzos, N., Vangioni-Flam, F.E., Casse, M. (Eds.), Origin and Evolution of the Elements. Cambridge University Press, pp. 89–106.
    Georgen J.E., Kurz M.D., Dick H.J.B., Lin J., 2001. Helium isotope systematics of the western Southwest Indian Ridge: effects of plume influence, spreading rate and source heterogeneity. EOS Trans AmGeophys Union 82:F1169
    Giggenbach W. F., 1996. Chemical composition of volcanic gases, in Monitoring and Mitigation of Volcano Hazards, edited by R. Scarpa and R. I. Tilling, pp. 222-256, Springer, Berlin.
    Giggenbach W.F., Sano Y. and Wakita H., 1993. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim. Acta, 57: 3427-3456.
    Giggenbach, W.F., 1982. Carbon-13 exchange between CO2 and CH4 under geothermal conditions. Geochim. Cosmochim. Acta 46, 159–165
    Giggenbach, W.F., 1988. Geothermal solute equilibria: derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749– 2765
    Graham D. W.,2002.Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs.In: Porcelli D., Ballentine C.J. and Wieler R. (editors), Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy and Geochemistry 47:247-318 Mineralogical Society of America, Washington, D C August 2002, pp. 247-318
    Graham D.W., 1994. Helium isotope variability along mid-ocean ridges: mantle heterogeneity and melt generation effects. Mineral Mag 58A:347-348.
    Graham D.W., Castillo P., Lupton J.E., Batiza R., 1996b. Correlated helium and strontium isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth Planet Sci Lett 144:491-503
    Graham D.W., Christie D.M., Harpp K.S., Lupton J.E., 1993. Mantle plume helium in submarine basalts from the Galápagos platform. Science 262:2023-2026
    Graham D.W., Hoernle K.A., Lupton J.E., Schmincke H.U., 1996c. Helium isotope variations in volcanic rocks from the Canary Islands and Madeira. In Bohrson WA, Davidson J, Wolff JA (eds) Shallow Level Processes in Ocean Island Magmatism: Distinguishing Mantle and Crustal Signatures, Chapman Conference, Puerto de la Cruz, Tenerife. American Geophys Union, p 13-14
    Graham D.W., Humphris S.E., Jenkins W.J., Kurz M.D., 1992a. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet Sci Lett 110:121-131
    Graham D.W., Jenkins W.J., Schilling J.G., Thompson G., Kurz M.D., Humphris S.E., 1992b. Helium isotope geochemistry of mid-ocean ridge basalts from the South Atlantic. Earth Planet Sci Lett 110:133-147 Graham D.W., Lupton J.E., Albarède F., Condomines M., 1990. Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature 347:545-548
    Graham D.W., Lupton J.E., Spera F.J., Christie D.M., 2001. Upper mantle dynamics revealed by helium isotope variations along the Southeast Indian Ridge. Nature 409:701-703
    Graham D.W., Michael P.J., Hanan B.B., 1996a. Helium-carbon dioxide relationships in MORB glasses from the Mid-Atlantic Ridge at 33°S. EOS Trans Am Geophys Union 77:F830
    Graham D.W., Zindler A., Kurz M.D., Jenkins W.J,. Batiza R., Staudigel H., 1988. He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts. Contrib Mineral Petrol 99:446-463
    Graham, D.W., Johnson, K.T.M., Priebe, L.D., Lupton, J.E., 1999. Hotspot–ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul islands: helium isotope evidence. Earth Planet. Sci. Lett. 167, 297–310.
    Graham, D.W., Larsen, L.M., Hanan, B.B., Storey, M., Pedersen, A.K., Lupton, J.E., 1998. Helium isotope composition of the early Iceland mantle plume inferred from the tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255.
    Halliday A.N., Rehk¨amper M., Lee D.-C., Yi W., 1996. Early evolution of the Earth and moon: new constraints fromHf–W isotope geochemistry. Earth Planet. Sci. Lett. 142, 75–89.
    Hanan B.B., Graham D.W., 1996. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991-995
    Hanan B.B., Graham D.W., Michael P.J., 1994. Highly correlated lead, strontium and helium isotopes in Mid- Atlantic Ridge basalts from a dynamically evolving spreading centre at 31-34°S. Mineral Mag 58A:370-371
    Hanyu T., Kaneoka I. , 1997. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390:273-276
    Hanyu T., Kaneoka I., Nagao K., 1999. Noble gas study of HIMU and EM ocean island basalts in the Polynesian region. Geochim Cosmochim Acta 63:1181-1201
    Hanyu, T., Dunai, T.J., Davies, G.R., Kaneoka, I., Nohda, S., Uto, K., 2001. Noble gas study of the R′eunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet. Sci. Lett. 193, 83–98.
    Harper Jr., C.L., Jacobsen, S.B., 1996. Noble gases and Earth’s accretion. Science 273, 1814–1818.
    Harpp K.S., White W.M., 2001. Tracing a mantle plume: isotopic and trace element variations of Galápagos seamounts. Geochem Geophys Geosys Paper 2000GC000137
    Harrison, D., Burnard, P.G., Trieloff, M., Turner, G., 2003. Resolving atmospheric contaminants in mantle noble gas analyses. Geochem. Geophys. Geosyst. 4, paper no. 2002GC000325.
    Harrison, D., Burnard, P.G., Turner, G., 1999. Noble gas behaviour and composition in the mantle: constraints from the Iceland plume. Earth Planet. Sci. Lett. 171, 199–207.
    Hilton D. R., Fischer, T. P. and Marty B., 2002. Noble gases and volatile recycling at subduction zones, in Noble Gases in Cosmochemistry and Geochemistry, Rev. Mineral. Geochem., vol. 47, edited by D. Porcelli, C. J. Ballentine, and R. Wieler, pp. 319– 370, Mineral. Soc. of Am., Washington, D. C.
    Hilton D. R., Hammerschmidt K., Teufel S. and Friedrichsen H., 1993.Helium isotope characteristics of Andean geothermal fluids and lavas.Earth and Planetary Science Letters, 120: 265–282
    Hilton D.R. and Craig H., 1989. A helium isotopic transect along the Indonesian archipelago. Nature, 342: 906-908. Hilton D.R., Barling J., Wheller G.E., 1995. Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373:330-333
    Hilton D.R., Gr?nvold K., O’Nions R.K., Oxburgh R., 1990. Regional distribution of 3He anomalies in the Icelandic crust. Chem Geol 88:53-67
    Hilton D.R., Hammerschmidt K., Loock G., Friedrichsen H., 1993. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: evidence of crust/mantle interactions in a back-arc basin. Geochim Cosmochim Acta 57:2819-2841
    Hilton D.R., Hammerschmidt K., Teufel S. and Friedrichsen H., 1993. Helium isotope characteristics of Andean geothermal Fuids and lavas. Earth Planet. Sci. Lett.. 120: 265-282.
    Hilton D.R., Macpherson C.G., Elliott T.R., 2000. Helium isotope ratios in mafic phenocrysts and geothermal fluids from La Palma, the Canary Islands (Spain): implications for HIMU mantle sources. Geochim Cosmochim Acta 64:2119-2132
    Hilton D.R., McMurtry G.M., Goff F., 1998a. Large variations in vent fluid CO2/3He ratios signal rapid chnages in magma chemistry at Loihi Seamount, Hawaii. Nature 396:359-362
    Hilton D.R., McMurtry G.M., Kreulen R., 1997. Evidence for extensive degassing of the Hawaiian mantle plume from helium-carbon relationships at Kilauea volcano. Geophys Res Lett 24:3065-3068
    Hilton, D.R., Gronvold, K., McPherson, C.G., Castillo, P.R., 1999. Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet. Sci. Lett. 173, 53–60.
    Hilton, D.R., Gronvold, K., Sveinbjornsdottir, A.E., Hammerschmidt, K., 1998b. Helium isotope evidence for off-axis degassing of the Icelandic hotspot. Chem. Geol. 149, 173–187.
    Hiyagon H., 1994a. Retention of solar helium and neon in IDPs in deep sea sediment. Science 263, 1257–1259.
    Hiyagon H., 1994b. Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt-Comments. Chem Geol 112:119-122
    Hiyagon H., Ozima M. , 1982. Noble gas distribution between basalt melt and crystals. Earth Planet Sci Lett 58:255-264
    Hiyagon H., Ozima M., 1986. Partition of noble gases between olivine and basalt melt. Geochim Cosmochim Acta 50:2045-2057
    Hiyagon, H., Ozima, M.,Marty, B., Zashu, S., Sakai, H., 1992. Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraints on the early history of the Earth. Geochim.Cosmochim. Acta 56, 1301–1316.
    Hoefs J., 1980. Stable Isotope Geochemistry. Springer, Berlin, 241 pp.
    Hofmann A.W., Jochum K.P., Seufert M., White W.M., 1986. Nb and Pb in oceanic basalts—new constraints on mantle evolution. Earth Planet. Sci. Lett. 79, 33–45.
    Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229.
    Honda M., McDougall I., 1998. Primordial helium and neon in the Earth: a speculation on early degassing. Geophys Res Lett 25:1951-1954
    Honda M., McDougall I., Patterson D., 1993a. Solar noble gases in the Earth: the systematics of helium-neon sotopes in mantle derived samples. Lithos 30:257-265
    Honda M., McDougall I., Patterson D.B., Doulgeris A., Clague D.A., 1991. Possible solar noble-gas component in Hawaiian basalts. Nature 349:149-151
    Honda M., Reynolds J., Roedder E., Epstein S., 1987. Noble gases in diamonds: occurrences of solar like helium and neon. J Geophys Res 92:12507-12521
    Honda, M., McDougall, I., Patterson, D.B., Doulgeris, A., Clague, D.A., 1993b. Noble-gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii—a solar component in the Earth. Geochim. Cosmochim. Acta 57, 859–874.
    Honda, M., Patterson, D.B., 1999. Systematic elemental fractionation of mantle-derived helium, neon, and argon inmid-oceanic ridge glasses. Geochim. Cosmochim. Acta 63, 2863–2874.
    Horita J., 2001. Carbon isotope exchange in the system CO2-CH4 at elevated temperatures. Geochim. Cosmochim. Acta 65(12): 1907–1919.
    Inguaggiato S., Pecoraino G. and D’Amore F., 2000. Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy), J. Volcanol. Geotherm. Res., 99, 151–178.
    Inguaggiato S.; Martin-Del Pozzo A.L.; Aguayo A.; Cap G., 2005. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas-water interaction between magmatic component and shallow fluids. Journal of Volcanology and Geothermal Research,Vol.141, No.1/2: 91-108
    Jambon W., Weber H.W., Braun O., 1986. Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250- 1600oC:
    Geochemical Implications. Geochim Cosmochim Acta 50:401-408
    Javoy M., Pineau F., 1991. The volatiles record of a“popping”rock from the Mid-Altantic ridge at 14°N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet Sci Lett 107:598-611
    Jenkins W.J., Edmond J.M., Corliss J.B., 1978. Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272:156-158
    Jiang C S, 1989. Features of Volcanic Earthquake Activity in Tengchong Area of Western Yunnan China, PRC, New York: Alerton press, 3(3)
    John Anderson,1876.Mandalay to Mornien:a narrative of the two expeditions to west China of 1868 and 1875. London
    Johnson, J.R., Swindle, T.D., Lucey, P.G., 1999. Estimated solar wind implanted helium-3 distribution on the Moon. Jeophys. Res. Lett. 26, 385–388.
    Kaneoka I., 1983. Noble gas constraints on the layered structure of the mantle. Nature 302:698-700
    Kaneoka I., 1987. Constraints on the characteristics of magma sources for Hawaiian volcanoes based on noble gas systematics. In Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, US Geol Survey Prof Paper 1350. U S Government Printing Office, Washington, p 745-757
    Kaneoka I., Takaoka N., 1978. Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Earth Planet Sci Lett 39:382-386
    Kaneoka I., Takaoka N., 1980. Rare gas isotopes in Hawaiian ultramafic nodules and volcanic rocks: constraints on genetic relationships. Science 208:1366-1368
    Kaneoka I., Takaoka N., 1985. Noble-gas state in the Earth’s interior: some constraints on the present state. Chem Geol (Isotope Geosci) 52:75-95
    Kaneoka I., Takaoka N., 1991. Evolution of the lithosphere and its interaction with the underlying mantle as inferred from noble gas isotopes. Austraian J Earth Sci 38:559-567
    Kaneoka I., Takaoka N., Clague D.A., 1983. Noble gas systematics for coexisting glass and olivine crystals in basalts and dunite xenoliths from Loihi Seamount. Earth Planet Sci Lett 66:427-437
    Kaneoka, I.,Takaoka, N., Upton, B.G.J., 1986. Noble gas systematics in basalts and a dunite nodule from Reunion and Grand Comore Islands, Indian Ocean. Chem. Geol. 59, 35–42.
    Keevil N.B., 1940. Interatomic forces and helium in rocks. Proc Am Acad Arts Sci 73:311-359
    Kellogg, L.H., Hager, B.H., van der Hilst, R.D., 1999. Compositional stratification in the deep mantle. Science 283, 1881–1884.
    Kellogg, L.H.,Wasserburg, G.J., 1990. The role of plumes in mantle helium fluxes. Earth Planet. Sci. Lett. 99, 276–289.
    Kirstein L.A., Timmerman M.J., 2000. Evidence of the proto-Iceland plume in northwestern Ireland at 42 Ma from helium isotopes. J Geol Soc Lond 157:923-927
    Kita I., Nagao K. Taguchi S. Nitta K. and Hasegawa H., 1993. Emission of magmatic He with different 3He/4He ratios from the Unzen volcanic area, Japan, Geochem. J., 27, 251–259.
    Kleine T., M¨unker C., Mezger K., Palme H., 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 418, 952–955.
    Koji Umeda; Glen F. McCrank; Atusi Ninomiya , 2007. Helium isotopes as geochemical indicators of a serpentinized fore-arc mantle wedge. Journal of geophysical research. B, Solid earth, vol.112; no.B10: B10206-1-B10206-10, doi:10.1029/2007JB005031
    Krylov A., Mamyrin B.A., Khabarin L.A., Mazina T.I., Silin Y.I., 1974. Helium isotopes in ocean floor bedrock. Geochem Int’l 11:839-844
    Kulongoski JT.; Hilton DR.; Izbicki JA., 2003. Helium isotope studies in the Mojave Desert, California: implications for groundwater chronology and regional seismicity. Chemical geology, Vol.202; No.1-2: 95- 113
    Kumagai H., Kaneoka I., 1998. Variations in noble gas abundances and isotope ratios in a single MORB pillow. Geohys Res Lett 25:3891-3894
    Kurz M.D., 1986. In situ production of terrestrial cosmogenic helium and some applications to geochronology. Geochim Cosmochim Acta 50:2855-2862
    Kurz M.D., Garcia M.O., Frey F.A., O’Brien P.A., 1987. Temporal helium isotopic variations within Hawaiian volcanoes: basalts from Mauna Loa and Haleakala. Geochim Cosmochim Acta 51:2905-2914
    Kurz M.D., Geist D., 1999. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim Cosmochim Acta 63:4139-4156
    Kurz M.D., Jenkins W.J., 1981. The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53:41- 54
    Kurz M.D., Jenkins W.J., Hart S.R., 1982. Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297:43-46
    Kurz M.D., Jenkins W.J., Hart S.R., Clague D., 1983. Helium isotopic variations in the volcanic rocks from Loihi Seamount and the island of Hawaii. Earth Planet Sci Lett 66:388-406
    Kurz M.D., Jenkins W.J., Schilling J-G., Hart S.R., 1982b. Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet Sci Lett 58:1-14
    Kurz M.D., Kammer D.P., 1991. Isotopic evolution of Mauna Loa volcano. Earth Planet Sci Lett 103: 257-269
    Kurz M.D., Kammer D.P., Gulessarian A., Moore R.B., 1990. Helium isotopes in dated alkali basalts from Sao Miguel, Azores. EOS Trans Am Geophys Union 71:657
    Kurz M.D., le Roex A.P., Dick H.J.B., 1998. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction. Geochim Cosmochim Acta 62:841-852
    Kurz M.D., Meyer P.S., Sigurdsson H., 1985. Helium isotopic systematics within the neovolcanic zones of Iceland. Earth Planet Sci Lett 74:291-305
    Kurz, M.D., 1982. Helium isotope geochemistry of oceanic volcanic rocks: implications for mantle heterogeneity and degassing. Ph.D. Thesis. MIT/Woods Hall Oceanographic Institution.
    Kurz, M.D., Kenna, T.C., Lassiter, J.C., DePaolo, D.J., 1996. Helium isotopic evolution of Mauna Kea volcano: first results from the 1-km drill core. J. Geophys. Res. 101 (B5), 11781–11791.
    Kyser T.K., Rison W., 1982. Systematics of rare gas isotopes in basic lavas and ultramafic xenoliths. J Geophys Res 87:5611-5630
    Lassiter, J.C., DePaolo, D.J., Tatsumoto, M., 1996. Isotopic evolution of Mauna Kea volcano: results from the initial phase of the Hawaii Scientific Drilling Project. J. Geophys. Res. 101 (B5),11769–11780.
    Loczy ludwing,1893.Die Wissenschaftlische Ergebnisse der Reise des Gra fen Bela Szechenyi in Ost-Asien 1877~1880(Vol1):771-773
    Lupton J. E., 1983.Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle.Annual Review of Earth and Planetary Sciences, 11: 371-414
    Lupton J.E., Baker E.T., Massoth G.J., 1989. Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca Ridge. Nature 337:161-164
    Lupton J.E., Craig H., 1975. Excess 3He in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet Sci Lett 26:133-139
    Lupton J.E., Graham D.W., Delaney J.R., Johnson H.P., 1993. Helium isotope variations in Juan de Fuca Ridge basalts. Geophys Res Lett 20:1851-1854
    Lux G., 1987. The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surfaceeffects, with applications to natural samples. Geochim Cosmochim Acta 51:1549-1560
    Machado N., Ludden J.N., Brooks C., Thompson G., 1982. Fine-scale isotopic heterogeneity in the sub-Atlantic mantle. Nature 295:226-228
    MacPherson, C.G., Hilton, D.R., Sinton, J.M., Poreda, R.J., Craig, H., 1998. High 3He/4He ratios in the Manus backarc basin: implications for mantle mixing and the origin of plumes in theWestern Pacific Ocean. Geology 26: 1007–1010.
    Mahaffy P.R., Niemann H.B., Alpert A., Atreya S.K., Demick J., Donahue T.M., Harpold D.N., Owen T.C., 2000. Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo probe mass spectrometer. J Geophys Res 105:15061-15071
    Mahaffy, P.R., Donahue, T.M., Atreya, S.K., Owen, T.C., Niemann, H.B., 1998. Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere. Space Sci. Rev. 84, 251–263.
    Mamyrin B. A.and Tolstikhin I. N., 1984. Helium Isotopes in Nature, 273 pp., Elsevier, Amsterdam, Netherlands. Mamyrin B.A., Anufriev G.S., Kamenskii I.L., Tolstikhin I.N., 1970. Determination of the isotopic composition of atmospheric helium. Geochem Int’l 7:498-505
    Mamyrin B.A., Tolstikhim I. N., Anufriyev G.S., Kamenskii I. L., 1969. Abnormal isotopic composition of helium in volcanic gases. Doklady Rossiiskoi Akademii Selskokhozyaistvennykh Nauk SSSR, 184:1197-1199 (in Russian).
    Marty B., Gunnlaugsson E., Jambon A., Oskarsson N., Ozima M., Pineau F., Torssander P., 1991. Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem Geol 91:207-225
    Marty B., Jambon A. and Sano Y., 1989. Helium isotopes and CO2 in volcanic gases from Japan, Chem. Geol., 76, 25–40. Marty B., Jambon A., 1987. C/3He in volatile fluxes from the solid Earth: implications for carbon geodynamics. Earth Planet Sci Lett 83:16-26
    Marty B., Lussiez P., 1993c. Constraints on rare gas partition coefficients from analysis of olivine glass from a picritic midocean ridge basalt. Chem. Geol. 106, 1–7.
    Marty B., Lussiez P., 1994. Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid-ocean ridge basalt -Reply. Chem Geol 112:122-127
    Marty B., Meynier V., Nicolini E., Greisshaber E., Toutain J.P., 1993a. Geochemistry of gas emanations: a case study of the Réunion hot spot, Indian Ocean. Appl Geochem 8:141-152
    Marty B., Ozima M., 1986. Noble gas distribution in oceanic basalt glasses. Geochim Cosmochim Acta 50:1093 -1098
    Marty B., Upton B.G.J., Ellam R.M., 1998. Helium isotopes in early Tertiary basalts, northeast Greenland: evidence for 58 Ma plume activity in the North Atlantic-Iceland volcanic province. Geology 26:407-410
    Marty B., Zimmerman L., 1999. Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assessment of shallowlevel fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619-3633
    Marty, B., Appora, I., Barrat, J.-A., Deniel, C., Velluntini, P., Vidal, P., 1993b. He, Ar, Sr, Nd, and Pb isotopes in volcanic rocks from Afar: evidence for a primitive mantle component and constraints on magmatic sources. Geochem. J. 27, 219–228.
    Marty, B., Pik, R., Gezahegn, Y., 1996. Helium isotopic variations in Ethiopian plume lavas, nature of magmatic sources and limit on lower mantle contribution. Earth Planet. Sci. Lett. 144, 223–237.
    Matsuda J.I., 1994. Noble Gas Geochemistry and Cosmochemistry. Terra Scientific Publishing Co, Tokyo Matsuda, J.I., Lewis, R.S., Takahashi, H., Anders, E., 1980. Isotopic anomalies of noble gases in meteorites and their origins—VII. C3V carbonaceous chondrites. Geochim. Cosmochim. Acta 44, 1861–1874.
    Matsuda, J.I., Murota, M., Nagao, K., 1990. He and Ne isotopic studies on the extraterrestrial material in deep sea sediments. J. Geophys. Res. 95 (B5), 7111–7117.
    Matsuda, J.I., Sudo, M., Ozima, M., Ito, K., Ohtaka, O., Ito, E., 1993. Noble gas partitioning between metal and silicate under high pressures. Science 259, 788–790.
    Matsumoto T., Kawabata T., Matsuda J., Yamamoto K., Mimura K., 2003. 3He/4He ratios in well gases in the Kinki district, SW Japan surface appearance of slab-derived fluids in a non-volcanic area in Kii Peninsula.Earth Planet. Sci. Lett. 216, 221–230.
    Matsumoto, T., Seta, A., Matsuda, J., Takebe, M., Chen, Y., Arai, S., 2002. Helium in the Archaean komatiites revisited, significantly high 3He/4He ratios revealed by fractional crushing gas extraction. Earth Planet. Sci. Lett. 196, 213–225. Mazor, E., Heymann, D., Anders, E., 1970. Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824.
    McDougall I., Honda M., 1998. Primordial solar noble-gas component in the Earth: consequences for the origin and evolution of the Earth and its atmosphere. In Jackson I (ed) The Earth’s mantle: composition, structure and evolution. Cambridge University Press, Cambridge, p 159-187
    McGee KA.; Kessler R.; Doukas MP.; Gerlach TM., 2000. Geochemical evidence for a magmatic CO2 degassing event at Mammoth Mountain, California, September-December 1997. Journal of geophysical research, Vol. 105, No. B4: 8447-8456
    Mizuno H., Nakazawa K., Hayashi C., 1980, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet Sci Lett 50:202-210
    Moore J.N., Norman D.I., Kennedy B.M., 2001. Fluid inclusion gas compositions from an active magmatic-hydrothermal system: a case study of the Geysers geothermal field. U.S.A. Chem. Geol. 173: 3-30.
    Moreira M., Allègre C.J., 1998. Helium-neon systematics and the structure of the mantle. Chem Geol 147:53-59 Moreira M., Allègre C.J., 2002. Rare gas systematics on Mid-Atlantic Ridge (37-40°N). Earth Planet Sci Lett 198:401-416.
    Moreira M., Doucelance R., Kurz M.D., DupréB., Allègre C.J., 1999. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet Sci Lett 169:489-205
    Moreira M., Kurz M.D., 2001. Subducted oceanic lithosphere and the origin of the‘highμ’basalt helium isotopic signature. Earth Planet Sci Lett 189:49-57
    Moreira M., Valbracht P.J., Staudacher T., Allègre C.J., 1996. Rare gas systematics in Red Sea ridge basalts. Geophys Res Lett 23:2453-2456
    Moreira, M., Breddam, K., Curtice, J., Kurz, M.D., 2001. Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet. Sci. Lett. 185, 15–23.
    Moreira, M., Kunz, J., All`egre, C.J., 1998. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181.
    Moreira, M., Sarda, P., 2000. Noble gas constraints on degassing processes. Earth Planet. Sci. Lett. 176, 375–386. Morrison P., Pine J., 1955. Radiogenic origin of the helium isotopes in rock. Annals NY Acad Sci 62:71-92
    Mukhopadhyay S., Farley K., Bogue S., 1996. Loihi-like 3He/4He ratios in shield and caldera-filling lavas from Kauai. EOS Trans Am Geophys Union 77:F811
    Nagao K., Takaoka N., Matsubayashi O., 1981. Rare gas isotopic compositions in natural gases of Japan. Earth Planet. Sci. Lett. 53, 175–188.
    Niedermann, S., Bach, W., Erzinger, J., 1997. Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: decoupling of helium and neon isotope systematics. Geochim. Cosmochim. Acta 61, 2697–2715.
    Nisith K. Das1, Rakesh K. Bhandari,Debasis Ghose, Prasanta Sen and Bikash Sinha.2005.Anomalous fluctuation of radon,gamma dose and helium emanating from a thermal spring prior to an earthquake. CURRENT SCIENCE, 89(8):1388-1404
    Notsu K., Nakai S., Igarashi G., Ishibashi J., Mori T., Suzuki M.and Wakita H., 2001. Spatial distribution and temporal variation of 3He/4He in hot spring gas released from Unzen volcanic area, Japan, J. Vocanol. Geotherm. Res., 111, 89– 98.
    Nuccio P.M., Paonita A., 2000. Investigation of the noble gas solubility in H2O-CO2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EIP) model. Earth Planet Sci Lett 183:499-512
    O’Nions R.K., Evensen N.M., Hamilton P.J., 1979. Geochemical modeling of mantle differentiation and crustal growth. J. Geophys. Res. 84 (11), 6091–6101.
    O’Nions R.K., Oxburgh E.R., 1983. Heat and helium in the Earth. Nature 306, 429–432.
    O’Nions R.K., Tolstikhin I.N., 1994. Behaviour and residence times of lithophile and rare gas tracers in the upper mantle. Earth Planet. Sci. Lett. 124, 131–138.
    Okada T., Itaya T., Sato M.and Nagao K., 1994. Noble gas isotopic composition of deep underground water in Osaka plain, central Japan: Evidence of mantle He and model for new volcanism, Isl. Arc, 3, 221–231.
    Ono A., Sano Y., Wakita H.and Giggenbach W. F., 1993. Carbon isotopes of methane and carbon dioxide in hydrothermal gases of Japan, Geochem. J., 27, 287– 295.
    Ozima M., 1994.Noble gas state in the mantle.Reviews of Geophysics. 32, 405–426.
    Ozima M., Podosek F.A., 2002. Noble Gas Geochemistry, second ed. Cambridge University Press, Cambridge.
    Ozima M., Zahnle K., 1993. Mantle degassing and atmospheric evolution: noble gas view. Geochem. J. 27, 185–200.
    Ozima M., Zashu S., 1983. Noble gases in submarine pillow volcanic glasses. Earth Planet. Sci. Lett. 62, 24–40.
    Ozima M., Zashu S., 1988. Solar-type Ne in Zaire cubic diamonds. Geochim. Cosmochim. Acta 52, 19–25.
    Ozima M.,Wieler R., Marty B., Podosek F.A., 1998. Comparative studies of solar, Q-gases and terrestrial noble gases,and implications on the evolution of the solar nebula. Geochim. Cosmochim. Acta 62, 301–314.
    Paonita A., Gigli G., Gozzi D., Nuccio P.M., Trigila R., 2000. Investigation of the He solubility in H2O - CO2 bearing silicate liquids at moderate pressure: a new experimental method. Earth Planet Sci Lett 181:595-604
    Pepin R.O., 1991. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79.
    Pepin R.O., 1997. Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126:148-156
    Pepin R.O., Porcelli D., 2002. Origin of noble gases in the terrestrial planets. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Reviews in Mineralogy and Geochemistry 47:191-246
    Perez N.M., Nakai S., Wakita H., Sano Y., Williams S.N., 1994. 3He/4He isotopic ratios in volcanic hydrothermal discharges from the Canary Islands, Spain: implications on the origin of the volcanic activity. Mineral Mag 58:709-710
    Polyak, B.G., Kononov, V.I., Tolstikhin, I.N., Mamyrin, B.A., Khabarin, L.V., 1976. The helium isotopes in thermal fluids. Thermal and chemical problems of thermal waters. In: Proceedings of the 119 Inter. Assoc. Hydrol. Sci. pp. 15–29.
    Porcelli D., Ballentine C.J., 2002a. Models for the distribution of terrestrial noble gases and the evolution of the atmosphere. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Rev Mineral Geochem 47:411-480
    Porcelli D., Ballentine C.J., Wieler R., 2002b. General Introduction. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Rev Mineral Geochem 47:
    Porcelli D., Pepin R.O., 2000. Rare gas constraints on early Earth history. In Canup RM, Righter K (eds) Origin of the Earth and Moon. The University of Arizona Press, Tucson, p 435-458
    Porcelli, D., Halliday, A.N., 2001. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192: 45–56.
    Porcelli, D., Woolum, D., Cassen, P., 2001. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251.
    Porcelli, D.R.,Wasserburg, G.J., 1995. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937.
    Poreda R.J., Craig H., Arnorsson S., Welhan J.A., 1992. Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry and 13C relations. Geochim Cosmochim Acta 56:4221-4228
    Poreda R.J., Schilling J.G., Craig H., 1986. Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet Sci Lett 78:1-17
    Poreda R.J., Schilling J.G., Craig H., 1993. Helium isotope ratios in Easter Microplate basalts. Earth Planet Sci Lett 119:319-329
    Poreda, R.J. and Craig, H., 1989. Helium isotope ratios in Circum-Pacific volcanic arcs. Nature, 338: 473-478.
    Poreda, R.J., Farley, K.A., 1992. Rare gases in Samoan xenoliths. Earth Planet. Sci. Lett. 113, 129–144.
    Poreda, R.J., Jeffrey, A.W.A., Kaplan, I.R. and Craig, H., 1988. Magmatic helium in subduction-zone natural gases. Chem. Geol.. 71: 199-210.
    Richet, P., Bottinga, Y. 1976a. PHYSIQUE MOLECULAIRE- Lenergie de zero des molecules et la fractionnement des isotopes stables. C.R. Acad. Sci. Ser. B282:425-428
    Richet, P., Bottinga, Y. 1976b. GEOCHEMIE- Distribution theorique des isotopes de lhydrogene das le systeme H2-HCL-OH-HCN-H2O-H2S-NH3-CH4. C.R. Acad. Sci. Ser. D283: 299-302
    Richet, P., Bottinga, Y., Javoy, M., 1977. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlourine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65-110.
    Rison W., Craig H., 1983. Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth Planet Sci Lett 66:407-426
    Rison W., Craig H., 1984. Helium isotope variations along the Galapagos Spreading Center. EOS Trans Am Geophys Union 65:1139-1140
    Roden M.F., Trull T., Hart S.R., Frey F.A., 1994. New He, Nd, Pb and Sr isotopic constraints on the constitution of the Hawaiian plume: results from Koolau Volcano, Oahu, Hawaii, USA. Geochim Cosmochim Acta 58:1431-1440
    Russell, S.A., Lay, T., Garnero, E.J., 1998. Seismic evidence for small scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot. Nature 396, 255–258.
    Rybach L., Muffler L. J. P., 1981. Geothermal Systems: Principles and Case Histories. Jonh Wiley and Sons Ltd. Sakamoto, M., Sano, Y. and Wakita, H., 1992. 3He ratio distribution in and around the Hakone volcano. Geochem. J., 26: 189-195.
    Samuel, H., Farnetani, C.G., 2003. Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett. 207, 39–56.
    Sano Y. and Marty B., 1995. Origin of carbon in fumarolic gas from island arc. Chem. Geol., 119: 265-274.
    Sano Y. and Wakita H., 1988. Precise measurement of helium isotopes in terrestrial gases. Bull. Chem. Sot. Jpn., 61: 1153-1157.
    Sano Y. and Williams S.N., 1996. Mantle carbon flux in subduction zone. Geophys. Res. Lett., 23: 2749-2752.
    Sano Y., Gamo T., Notsu K. and Wakita H., 1995. Secular variations of helium and carbon isotopes at Izu-Oshima volcano, Japan. J. Volcanol. Geothetm. Res., 64: 83-94.
    Sano Y., Nakamura Y., Notsu K. and Wakita H., 1988. Influence of volcanic eruptions on helium isotope ratios in hydrothermal systems. Geochim. Cosmochim. Acta, 52: 1305-1308.
    Sano Y., Nakamura Y., Wakita H., Urabe A. and Tominaga T., 1984. 3He emission related to volcanic activity. Science, 224:150-151.
    Sano Y., Nishio Y., Gamo T., Jambon A., andMarty B., 1998. Noble gas and carbon isotopes in Mariana Trough basalt glasses. Applied Geochemistry, 13: 441-449.
    Sano Y., Notsu K., Ishibashi J., Igarashi G. and Wakita H., 1991. Secular variations in helium isotope ratios in an active volcano: Eruption and plug hypothesis. Earth Planet. Sci. Lett.. 107: 95-100.
    Sano Y., Sasaki S. and Nagao K., 1992. Noble gas isotopes and chemical compositions in gas seeps from northwestern Cameroon. Bull. Volcanol. Sot. Jpn., 37: 85-93 (in Japanese).
    Sano Y., Takahata N., andSeno T., 2006. Geographical distribution of 3He/4He Ratios in the Chugoku District, southwestern Japan, Pure Appl. Geophys., 163, 745– 757, doi:10.1007/S00024-006-0035-0.
    Sano Y., Takahata N., Igarashi G., Koizumi N., and Sturchio N., 1998. Helium degassing related to the Kobe earthquake, Chem. Geol., 150,171–179.
    Sano Y., Wakita H. and Williams S.N., 1990. Helium-isotope systematics at Nevado de1 Ruiz volcano, Colombia: Implications for the volcanic hydrothermal system. In: S.N. Williams (Editor), Nevado de1 Ruiz Volcano, Colombia, II. J. Volcanol. Geotherm. Res., 42: 41-52.
    Sano Y., Wakita H., 1985. Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism, J. Geophys. Res., 90, 8729–8741.
    Sano Y., Wakita H., Ohsumi T. and Kusakabe M., 1987. Helium isotope evidence for magmatic gases in Lake Nyos, Cameroon. Geophys. Res. Lett., 14: 1039-1041.
    Sano, Y., Gamo, T. and Williams, S. N. ,1997. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J. Volcanol. Geotherm. Res. 77,255–265.
    Sano, Y., Nakamura, Y.,Wakita, H., Ishii, T., 1986. Light noble gases in basalt glasses from Mariana Trough. Geochim. Cosmochim. Acta 50, 2429–2432.
    Sano, Y., Nishio, Y., Sasaki, S., Gamo, T. and Nagao, K., 1998. Helium and carbon isotope systematics at Ontake volcano, Japan. J. Geophys. Res. 103, 23863–23873.
    Sarda P.; Staudacher T.; Schilling JG.; Allegre CJ.; Moreira M., 2000. Rare gas systematics on the southernmost Mid-Atlantic Ridge: Constraints on the lower mantle and the Dupal source. Journal of geophysical research, Vol.105,No.B3: 5973-5996
    Sarda, P., Moreira, M., 2002. Vesiculation and vesicle loss in midocean ridge basalt glasses: He, Ne, Ar elemental fractionation and pressure influence. Geochim. Cosmochim. Acta 66, 1449–1458.
    Sarda, P., Moreira, M., Staudacher, T., Schilling J.G., Allègre C.J., 2000. Rare gas systematics on the southernmost Mid-Atlantic ridge: constraints on the lower mantle and the Dupal source. J. Geophys. Res. 105, 5973–5996.
    Sarda, P., Staudacher, Th., Allegre, C.J., 1988. Ne-isotopes in submarine basalts. Earth Planet. Sci. Lett. 91, 73–88.
    Sasaki, S., 1999. Presence of a primary solar-type atmosphere around the Earth: evidence for dissolved noble gas. Planet. Space. Sci. 47, 1423–1431.
    Scarsi P., 2000. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochim Cosmochim Acta 64:3751-3762
    Scarsi P., Craig H., 1996. Helium isotope ratios in Ethiopian Rift basalts. Earth Planet Sci Lett 144: 505-516
    Schilling J.G, Kingsley R.H., Devine J.D., 1982. Galapagos hot spot-spreading center system 1. spatial petrological and geochemical variations (83°W-101°W). J Geophys Res 87:5593-5610
    Schilling J.G., 1973. Iceland mantle plume: Geochemical evidence along Reykjanes Ridge. Nature 242:565-571
    Schilling J.G., Kingsley R., Fontignie D., Poreda R., Xue S., 1998. Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey,Mohns and Knipovich Ridges. J Geophys Res 104:10543-10569
    Schilling J.G., Thompson G., Kingsley R.H., Humphris S.E., 1985. Hotspot-migrating ridge interaction in the South Atlantic: geochemical evidence. Nature 313:187-191
    Schmidt B.C., Keppler H., 2002. Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet Sci Lett 195:277-290
    Schultz, L., Kruse, H., 1989. Helium, neon, and argon in meteorites—a data compilation. Met. 24, 155–172 (Updated version, 2000).
    Shangguan Z.G., Bai C.H., Song M.L., 2000. Mantle-derived magmatic gas releasing features at the Rehai area, Tengchong county, Yunnan Province, China. Scince in China (Series D), 43(2):132-140
    Shaw A.M., Hilton D.R., Macpherson C.G., Sinton J.M., 2001. Nucleogenic neon in high 3He/4He lavas from the Manus back-arc basin: a new perspective on He-Ne decoupling. Earth Planet Sci Lett 194:53-66
    Shen, Y., Solomon, S.C., Bjarnason, I.T.,Wolfe, C.J., 1998. Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395, 62–65.
    Sleep N.H., 1979. Thermal history and degassing of the Earth: some simple calculations. J Geol 87:671-686
    Sleep N.H., 1990. Hotspots and mantle plumes: some phenomenology. J Geophys Res 95:6715-6736
    Sorey M.L., Kennedy B.M., Evans W.C., Farrar C.D. and Suemnicht G.A., 1993. Helium isotope and gas discharge variations associated with crustal unrest in Long Valley caldera, California, 1989-1992. J. Geophys. Res., 98: 15,871-15,889.
    Staudacher T., Allègre C.J., 1988. Recycling of oceanic crust and sediments: The noble gas subduction barrier. Earth Planet Sci Lett 89:173-183
    Staudacher, T., 1987. Upper mantle origin for Harding County well gases. Nature 325, 605–607.
    Staudacher, T., Kurz, M.D., All`egre, C.J., 1986. New noble-gas data on glass samples from Loihi seamount and Hualalai and on dunites samples from Loihi and Reunion Island. Chem. Geol. 56, 193–205.
    Staudacher, T., Sarda, P., All`egre, C.J., 1990. Noble gases systematics of R′eunion Island. Indian Ocean. Chem. Geol. 89, 1–17
    Staudacher, T., Sarda, P., Richardson, S.H., All`egre, C.J., Sagna, I., Dmitriev, L.V., 1989. Noble gases in basalt glasses from a Mid-Atlantic ridge topographic high at 14? N: geodynamic consequences. Earth Planet. Sci. Lett. 96, 119–133.
    Staudacher,T., All`egre, C.J., 1989. Noble gases in glass samples from Tahiti, Teahitia, Rocard and Mehetia. Earth Planet. Sci. Lett. 93, 210–222.
    Stix J., Zapata J.A., Calvache V. M., Cortes G.P., Fischer T.P., Gomez D., Narvaez L., Ordonez M., Ortega A., Torres R. and Williams S.N., 1993. A model of degassing at Galeras volcano, Colombia, 1988-1993. Geology, 21: 963-967.
    Stuart F.M., Ellam R.M., Fitton J.G., Bell B.R., 2000. Constraints on mantle plumes from the helium isotope composition of basalts from the British Tertiary Igneous Province. Earth Planet Sci Lett 177:273-285
    Stuart F.M., Turner G., 1992. The abundance and isotopic composition of noble gases in ancient fluids. Chem. Geol. 101, 97–111.
    Stuart F.M., Turner G., Taylor R.P., 1994. He-Ar systematics of ancient hydrothermal fluids: resolving mantle and crustal contributions. In: Matsuda, J.I. (Ed.), Noble Gas Isotope Geochemistry and Cosmochemistry. Terra Publications, Tokyo, pp. 261-278.
    Sturchio N. C., Osawa S., Sano Y., Arehart G., Kitaoka K., and Yusa Y.,1996. Outflow plume of the Beppu hydrothermal system at Yufuin,Japan, Geothermics, 25, 215– 230.
    Sturchio N.C., Williams S.N. and Sano Y., 1993. The hydrothermal system of Volcan Purace, Colombia. Bull. Volcanal., 55: 289-296.
    Sturm M.E., Klein E.M., Graham D.W., Karsten J., 1999. Age constraints on crustal recycling to the mantle beneath the southern Chile Ridge: He-Pb-Sr-Nd isotope systematics. J Geophys Res 104:5097-5114
    Sudo M., Ohtaka, O., Matsuda, J., 1994. Noble gas partitioning between metal and silicate under high pressures: the case of iron and peridotite. In: Matsuda, J. (Ed.), Noble Gas Geochemistry and Cosmochemistry. Terra Scientific Publishing Company, Tokyo, pp. 355–372.
    Sumino H., Nagao K., Notsu K., 2001. Highly sensitive and precise measurement of helium isotopes using a mass spectrometer with double collector system. J. Mass Spectrom. Soc. Japan 49, 61–68.
    Taran Y., Inguaggiato S., Varley N., Capasso G., Favara R., 2002. Helium and carbon isotopes in thermal waters of the Jalisco block, Mexico. Geofís. Int. 41, 459–466.
    Tedesco D., Allard P., Sano Y., Wakita H. and Pete R., 1990. Helium-3 in subaerial and submarine fumaroles of Campi Flegrei caldera, Italy. Geochim. Cosmochim. Acta, 54: 1105-1116.
    Tolstikhin I. N., Hofmann A.W., 2005. Early crust on top of the Earth’s core. Physics of the Earth and Planetary Interiors 148 :109–130
    Tolstikhin I.N., 1975. Helium isotopes in the Earth’s interior and in the atmosphere, a degassing model of the Earth. Earth Planet.Sci. Lett. 26, 88–96.
    Tolstikhin I.N., Kamensky I.L., Marty B., Nivin V.A., Vetrin V.R., Balaganskaya E.G., Ikorsky S., Gannibal M., Weiss D., Verhulst A., Demaiffe D., 2002. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component.Geochim. Cosmochim. Acta 66 (5), 881–901.
    Tolstikhin I.N., Marty B., 1998. The evolution of terrestrial volatiles: a view from helium, neon, argon and nitrogen isotope modelling. Chem. Geol. 147, 27–52.
    Tolstikhin, I., Hofmann, A.W., 2005. Early crust on top of the Earth’s core. Physics of the Earth and Planetary Interiors, 148 :109–130
    Torgersen T., 1989.Terrestrial helium degassing fluxes and the atmospheric helium budget: implications with respect to the degassing processes of continental crust. Chem. Geol. 79, 1–14.
    Trieloff M., Kunz J., 2000. Two basic noble gas components in Earth’s interior and constraints on mantle mixing. Preprint no.MPI H-V13-2000, Max-Planck-Institut f¨ur Kernphysik, Heidelberg.
    Trieloff M., Kunz J., 2001a. Primordial terrestrial noble gases: indicating core–mantle interaction rather than a primordial or heterogeneous mantle. J. Conf. Abstr. 6 (1), 422.
    Trieloff M., Kunz J., 2001b. Terrestrial noble gas systematics revised: evidence for primordial noble gases from Earth’s core? Eleventh Annual V.M. Goldschmidt Conference, Hot Springs, U.S.A. Abstract #3336. LPI Contribution No. 1088. 302-303. Lunar and Planetary Institute, Houston (CD-ROM).
    Trieloff M., Kunz J., All`egre C.J., 2002. Noble gas systematics of the R′eunion mantle plume source and the origin of primordial noble gases in Earth’s mantle. Earth Planet. Sci. Lett. 200, 297–313.
    Trieloff M., Kunz J., Clague D.A., Harrison D., All`egre C.J., 2001. Noble gases in mantle plumes. Science 291, 2269.
    Trieloff M., Kunz J., 2005. Isotope systematics of noble gases in the Earth’s mantle: possible sources of primordial isotopes and implications for mantle structure. Physics of the Earth and Planetary Interiors, 148: 13–38
    Trieloff M.,Kunz J., Clague D.A., Harrison D., All`egre C.J., 2000. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038.
    Truesdell A. H., 1975. Summary of SectionⅢ, Gelchemical techniques in exploration, UN Symposium on the Development and Utilization of Geothermal Resources, San Francisco, Proceedings, Vol.1, pp. 731-739
    Truesdell A. H., Nathenson M., Rye R. O., 1977. The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J. Geophys. Res., 82:3694– 3704
    Trull T.W., 1994. Influx and age constraints on the recycled cosmic dust explanation for high 3He/4He ratios at hotspot volcanos. In Matsuda J (ed) Noble Gas Geochemistry and Cosmochemistry. Terra Scientific, Tokyo, p 77-88
    Trull T.W., Nadeau S., Pineau F., PolvéM., Javoy M., 1993. C-He systematics in hotspot xenoliths: implications for mantle carbon contents and carbon recycling. Earth Planet Sci Lett 118:43-64
    Turner G., 1989.The outgassing history of the Earth’s atmosphere. J Geol Soc 146:147-154
    Umeda K., Kanazawa S., Kakuta C., Asamori K. and Oikawa T., 2006b. Variations in the 3He/4He ratios of hot springs on Shikoku Island, southwest Japan, Geochem. Geophys. Geosyst., 7, Q04009, doi:10.1029/ 2005GC001210.
    Umeda K., Ogawa Y., Asamori K., Oikawa T., 2006a. Aqueous fluids derived from a subducting slab: observed high 3He emanation and conductive anomaly in a non-volcanic region, Kii Peninsula southwest Japan. J. Volcanol. Geotherm.Res. 149, 47–61.
    Umeda K., Sakagawa Y., Ninomiya A.and Asamori K., 2007b. Relationship between helium isotopes and heat flux from hot springs in a nonvolcanic region, Kii Peninsula, southwest Japan, Geophys. Res. Lett., 34, L05310, doi:10.1029/2006GL028975.
    Umeda, K; Hanamuro, T; Yamada, K; Negishi, Y; Iwano, H; Dan, 2007a. Thermochronology of non-volcanic hydrothermal activity in the Kii Peninsula, Southwest Japan: Evidence from fission track dating and helium isotopes in paleo-hydrothermal fluids. Radiation measurements, vol.42, no.10:1647-1654
    Urey, H. C. 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. pp. 562-581
    Valbracht P.J., Honda M., Matsumoto T., Mattielli N., McDougall I., Ragettli R., Weis D., 1996a. Helium, neon and argon isotope systematics in Kerguelen ultramafic xenoliths, implication for mantle source signatures. Earth Planet. Sci. Lett. 138, 29–38.
    Valbracht P.J., Honda M., Staudigel H., McDougall I., Trost A.P., 1994. Noble gas partitioning in natural samples: results from coexisting glass and olivine phenocrysts in four Hawaiian submarine basalts. In Matsuda J (ed) Noble Gas Geochemistry and Cosmochemistry. Terra Scientific, Tokyo, p 373-381
    Valbracht P.J., Staudacher Th., Malahoff A., All`egre C.J., 1997. Noble gas systematics of deep rift zone glasses from Loihi seamount. Hawaii. Earth Planet. Sci. Lett. 150, 399–411.
    Valbracht P.J., Staudigel H., Honda M., McDougall I., Davies G.R., 1996b. Isotopic tracing of volcanic source regions from Hawaii: decoupling of gaseous from lithophile magma components. Earth Planet. Sci. Lett. 144, 185–198.
    van Keken P.E. Ballentine C.J., 1998. Whole-mantle versus layered mantle convection and the role of a high viscosity lower mantle in terrestrial volatile evolution, Earth Planet. Sci. Lett. 156: 19– 32.
    van Keken P.E., Ballentine C.J., Porcelli D., 2001. A dynamical investigation of the heat and helium imbalance. Earth Planet Sci Lett 188:421-434
    van Soest M. C., Hilton D. R. and Kreulen R., 1998.Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids.Geochimica et Cosmochimica Acta, 62: 3323–3335
    Van Soest M. C., Kennedy B. M., Evans W. C., Mariner R. H., and Schmidt M. E., 2002. Helium Isotope Ratios in South Sister Volcano Vicinity, Cold springs. Fundamental and Exploratory Research Program, Earth Sciences Division, Berkeley Lab, Research Summaries, 2002-2003
    Vance D., Stone J.O.H., O’Nions R.K., 1989. He, Sr, and Nd isotopes in xenoliths from Hawaii and other oceanic islands. Earth Planet Sci Lett 96:147-160
    Wakita H., Sano Y., Mizoue M., 1987. High 3He emanation and seismic swarms observed in a nonvolcanic forearc region. J. Geophys. Res. 92, 12539–12546.
    Wang C. Y., Huangfu G. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87
    White D. E., 1970. Gelchemistry applied to the discovery, evaluation and exploitation of geothermal energy resources, rapporteur’s report. UN Symposium on the Development and Utilization of Geothermal Resources, Pisa, Proceedings, Geothermics, Spec. Iss. 2, Vol.1, pp. 58-80
    White D. E., Hem J. D. Waring G. A., 1963. Chemical compostion of subsurface waters. Geol. Survey Prof. Paper, 400-F Williams S.N., Calvache V.M.L., Sturchio N.C., Zapata G.J.A., Mendez F.R.A., Calache O. B., Londofio C. A., Gil C.F. and Sano Y., 1990. Premonitory geochemical evidence of magmatic reactivation of Galeras volcano. Colombia. EOS, 71(17): 647.
    Williams S.N., Fischer T.P., Calvache V. M.L., Zapata J. and Sano, Y., 1993. 3He/4He variations and eruptions of Galeras ‘Decade Volcano’, Colombia. EOS, 74(43): 690.
    Williams S.N., Sano Y. and Wakita H., 1987. Helium-3 emission from Nevado de1 Ruiz volcano, Colombia. Geophys. Res. Lett., 14: 1035-1038.
    Williams S.N., Sano Y. and Wakita H., 1992. 3He/4He variations at erupting volcanoes. 29th Int. Geol. Congr., 3: 608 (abstract).
    Xu S, Nakai S, Wakita H, Wang X B, Chen J F. 1994. Helium isotopic compositions in Quaternary volcanic geothermal area near Indo-Eurasian collisional margin at Tengchong, China.In:Matsuda J (ed.). Noble Gas Geochemistry and Cosmochemistry.Tokyo :Terra Scientific Publishing Company(TERRAPUB),305-313
    Yamamoto, J; Kaneoka, I; Nakai, S; Kagi, H; Prikhod'ko, VS; Arai, S, 2004. Evidence for subduction-related components in the subcontinental mantle from low He-3/He-4 and Ar-40/(36) Ar ratio in mantle xenoliths from Far Eastern Russia. Chemical geology, vol.207 no.3-4: 237-259
    Yatsevich I., Honda M., 1997. Production of nucleogenic neon in the Earth from natural radioactive decay. J. Geophys. Res. 102, 10291–10298.
    Zartman R. E., Wasserburg G. J., and Reynolds J. H., 1961. Helium, argon and carbon in natural gases, J. Geophys. Res., 66, 277– 306
    Zhong D L, Ding L. 1993. Discussion on Gondwana dispersion and Asian accretion after evolution of Tethys Orogenic Belt in Sanjiang and adjacent area. In: ed. Chineas group of IGCP321. Beijin: Science Press, 5-8
    Zindler A., Hart S.R., 1986b. Chemical geodynamics. Ann Rev Earth Planet Sci 14:493-571
    Zindler A., Hart S.R., 1986a. Helium: problematic primordial signals. Earth Planet Sci Lett 79:1-8
    白登海,廖志杰,赵国泽,王绪本.1994.从MT探测结果推论腾冲热海热田的岩浆热源.科学通报,39(4):344-347
    车用太,鱼金子,刘五洲,1999.地壳放气动态监测与张北——尚义Ms6.2级地震预报.地质评论,45(1):59-65
    陈廷方,赵崇贺.1994.腾冲新生代火山岩的构造环境分析.西南工学院学报,9(4):52-59
    陈廷方,赵崇贺.1995.腾冲新生代火山群岩石化学和地球化学特征.西南工学院学报,10(4):102-108
    陈延方,2003.云南腾冲火山岩岩石学特征.沉积与特提斯地质,23(4):56-61
    陈延方.1997a.一种新的构造岩浆类型——滞后型弧火山的特征.西南工学院学报,12(3):49-52
    陈延方.1997b.腾冲火山岩岩浆源区性质探讨.建材地质,1997(6):7-9
    从柏林,陈秋媛,张儒瑗,吴根耀,徐平.1994.中国滇西腾冲新生代火山岩的成因.中国科学B辑,24(4):421-428
    杜建国,宇文欣,李圣强,1998.八宝山断裂带逸出氡的地球化学特征及其映震效能.地震,18(2):155-161
    樊祺诚,刘若新,魏海泉.1999.腾冲活火山的岩浆演化.地质论评,45 (增刊):895-904.
    樊祺诚,隋建立,刘若新.2001.五大连池、天池和腾冲火山岩Sr、Nd同位素地球化学特征与岩浆演化.岩石矿物学杂志,20(3):233-236
    高崇伊,1996.行星大气的金斯逃逸,大学物理,15(3):3-6;
    国家地震局地质研究所,云南省地震局.1990.滇西北地区活动断裂.北京:地震出版社,20-28
    韩新民.1996.腾冲火山地质研究评述.地震地磁观测与研究,17(6):20-30
    贺传松,王椿镛,吴建平.2004.腾冲火山区S波速度结构接收函数反演.地震学报,26(1):11-18
    贺传松,王椿镛,吴建平.2004.腾冲火山区S波速度结构接收函数反演.地震学报,26(1):11-18
    皇甫岗,姜朝松.2000.腾冲火山研究.昆明:云南科技出版社,1-417
    季建清,钟大赉,张连生.2000a.滇西南新生代走滑断裂运动学、年代学、及对青藏高原东南部块体运动的意义.地质科学,35(3):336—349
    季建清,钟大赉,陈昌勇.2000b.滇西南那邦变质基性岩地球化学与俯冲板片裂离.岩石学报, 16 (3):433~442
    姜朝松,1985.以腾冲玉壁山地震为例再论腾冲火山地震.地震研究,1985,8(3)
    姜朝松,1990a.火山地震波动特征——以腾冲火山地震为例东北地震研究,5(1)
    姜朝松,1990b.腾冲火山地震活动特征.在:火山研究与发展,北京:地震出版社
    姜朝松,周瑞琦,姚孝执.1998.腾冲火山断裂构造.地震研究,21(4):330-336
    姜朝松,周瑞琦,赵慈平.2003.腾冲地区构造地貌特征与火山活动的关系.地震研究,26(4):361-366
    姜朝松.1998a.腾冲地区新生代火山活动分期.地震研究,21(4):320-329
    姜朝松.1998b.腾冲地区新生代火山活动分期地震研究,21(4):320-329
    姜朝松等,1985.腾冲的火山与地震(英).地震研究,1985,8(1)
    阚荣举,赵晋民,阚丹.1996.腾冲火山地热区的构造演化和火山喷发.地震地磁观测与研究,17(4):28-33
    阚荣举等,1979.龙陵地震序列的震源机制特征.地震研究,2(4)
    孔令昌,1997.自然界的氦同位素.北京:专利文献出版社,p1
    黎炜,刘玉权,邵德晟.1998.腾冲火山区水平形变初探.地震研究,21(4):362-373
    李大明,李齐,陈文寄.2000.腾冲火山区上新世以来的火山活动.岩石学报,16(3):362:37020
    李善邦,1981.中国地震.北京:地震出版社
    廖志杰,1988.滇缅泰构造域及特殊的新生代火山活动.北京大学学报(自然科学版),24(4):494-503
    林依再,2001.土壤氡气异常特征与台湾南投7.6级地震.地震研究,24(4):321-325
    林依再,长乐筹,2006.CO2观测方法与地震前兆异常初探.地震研究,29(1):30-34
    刘宝诚等,1986.腾冲火山地热区的微震观测.地球物理学报,29(6)
    刘若新,魏海泉,郑德文,李霓.1999.活火山的监测与喷发预报.矿物岩石地球化学通报,18(2):106-112
    楼海,王椿镛,皇甫岗,秦嘉政.2002.云南腾冲火山区上部地壳三维地震速度层析成像.地震学报,24(3): 243-251
    楼海,王椿镛,皇甫岗,秦嘉政.2002.云南腾冲火山区上部地壳三维地震速度层析成像.地震学报,24(3): 243-251
    穆桂春,戴鹤之,1962.腾冲的火山地理
    穆治国,佟伟,Garniss H C.1987.腾冲火山活动的时代和岩浆来源问题.地球物理学报,30(3):261-270
    秦嘉政、皇甫岗、李强、钱晓东、苏有景、蔡明军,2000.腾冲火山及邻区速度结构的三维层析成象.地震研究,23(2):157-164
    上官志冠,1995.地热流体融解CO2总参数的地震前兆特征.科学通报,40(9):814-817
    上官志冠,2000.腾冲热海地热田热储结构与岩浆热源的温度.岩石学报,16(1):83-90
    上官志冠,白春华,孙明良,2000.腾冲热海地区现代幔源岩浆气体释放特征.中国科学(D辑),30(4):407-414
    上官志冠,高清武,赵慈平,2004.腾冲热海地区NW向断裂活动性的地球化学证据.地震地质, 26(01):46-51
    上官志冠,孔令昌,孙凤民,高松升,许相希.1996a.长白山天池火山区深部流体成分及其稳定同位素组成.地质科学,32(1):54-64
    上官志冠,孙明良,1996b.长白山天池火山区幔源稀有气体释放特征.科学通报,41(18):1695-1698
    上官志冠,孙明良,李恒忠,1999.云南腾冲地区现代地热流体活动类型.地震地质.21(4):436-442
    上官志冠,赵慈平,李恒忠,高清武,孙明良,2004.腾冲热海火山地热区近期水热爆炸的阶段性演化特征.矿物岩石地球化学通报,23(2):124-128
    上官志冠,郑雅琴,董继川,1997.长白山天池火山地热区逸出气体的物质来源.中国科学(D辑),27(4):318-324
    孙洁,徐常芳,江钊,史书林,王继军,何明.1989.滇西地区地壳上地幔电性结构与地壳构造活动的关系.地震地质,11(1):35-45
    佟伟,章铭陶,1989.腾冲地热.北京:科学出版社
    佟伟,章铭陶.1994.横断山区温泉志.北京:科学出版社,1-326
    万天丰.2004.中国大地构造学纲要.北京:地质出版社,162-165,180
    汪集旸,黄少鹏.1988.中国大陆地区热流数据统计分析.科学通报,17:1326-1329
    汪洋,邓晋福,汪集旸,熊亮萍.2001.中国大陆热流分布特征及热-构造分区.中国科学院研究生院学报,18(1):51-58
    王椿镛,楼海,吴建平,白志明,皇甫岗,秦嘉政.2002.腾冲火山地热区地壳结构的地震学研究.地震学报,24(3):231-242
    王先彬,1989.稀有气体同位素地球化学和宇宙化学.北京:科学出版社,p2-9
    徐弘祖,绪绍唐,吴应寿,1981.徐霞客游记(卷八下).上海:上海古籍出版社
    晏凤桐等,1979.龙陵地震的震源机制.地震研究,2(1)
    叶建庆,蔡绍平,陈敏恭,蔡明军,刘学军,李白基,秦嘉政,皇甫岗.2000.腾冲火山地区微震观测(Ⅱ).地震研究,23(2):100-107
    叶建庆,蔡绍平,刘学军,王绍晋,蔡明军.2003.腾冲火山地震群的活动特征.地震地质,25(Suppl):128-137
    叶建庆,陈敏恭,刘学军,蔡绍平,蔡明军,秦嘉政,皇甫岗,刘祖荫.1998.腾冲火山地区微震观测(Ⅰ).地震研究,21(4):341-348
    尹功明,李盛华.2000.云南腾冲马鞍山最后一次喷发的热释光年龄.地震研究,23(4):388-391
    尹赞勋,1937.中国近代火山.地质评论,2(4):321-328
    永昌府文徵(卷卅),昆明版本,1942
    鱼金子,车用太,刘五洲,1998.地壳中的CO2及其释放与地震短临预测.国际地震动态,3(8):8-13
    张加桂,胡海涛,1999.深大断裂对幔源CO2释放作用研究综述.中国岩溶,18(1):95-102
    张知非,刘时彬,赵凤三.1989.腾冲水热流体的地球化学.在:佟伟,章铭陶(编),1989.腾冲地热.北京:科学出版社.81-101
    张忠胤,1948.云南西部腾冲的死火山(英文).国立清华大学科学报告,第三种:地质、地理、气象,第一卷,第四号
    章鸿钊,1930.火山.万有文库商务印书馆
    赵崇贺,陈廷方.1992.腾冲新生代火山作用构造-岩浆类型的探讨:一种滞后型的弧火山.现代地质,6(2):119-129
    中国科学院腾冲遥感实验组,1981.航空遥感图集(腾冲试验区).北京:科学出版社
    钟大赉,丁林.1993.从三江及邻区特提斯带演化讨论冈瓦那大陆离散与亚洲增生.见:IGCP321项中国工作组.亚洲的增生.北京:科学出版社,5-8
    周真恒,韩新民,周瑞琦.1996.云南腾冲地区的岩石圈热结构.地震地磁观测与研究,17(4):34-41
    周真恒,向才英,姜朝松.2000a.腾冲火山岩稀土和微量元素地球化学研究.地震研究,23(2):215-230
    周真恒,向才英,杨海林.2000b.腾冲火山岩同位素地球化学研究.地震研究,23(2):194-200
    朱炳泉,毛存孝.1983.印度与欧亚板块东部碰撞边界—腾冲火山岩的Nd-Sr同位素和微量元素研究.地球化学,1983(1):1-14
    http://lvo.wr.usgs.gov/helium.html, Helium Discharge at Mammoth Mountain Fumarole (MMF)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700