用户名: 密码: 验证码:
冀南地区克拉通中新生代构造及现今发震构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
克拉通破坏与现今强震活动的关系是现今大陆构造和动力学研究的前沿科学领域。作为现今克拉通破坏响应的克拉通内部强震具有震级大、复发周期复杂、震源浅、浅表破裂带长度和垂直位移量小以及具有对地面建筑物和设施毁灭性破坏的特点,往往造成巨大的人员伤亡。长期以来,鉴于克拉通内部强震对人类生命的严重威胁,对其成因探索一直是国际地学界的关注焦点,也是各国政府城市化和工业化建设与可持续发展极其关注的热点问题。
     论文着眼于冀南地区克拉通强震的发震构造,充分利用前人的研究成果,结合石油地震剖面解释和邯郸市活断层探测深部资料的综合分析,综合考虑到地层沉积特征及断层展布形态,对冀南地区克拉通的破坏过程与中新生代沉积响应、区域地震构造背景及其未来地震活动性、尤其是强震构造活动机理进行了研究。鉴于研究区构造位于平原隐伏区,本文充分将项目的探测资料与三维构造模型、三维速度模型及有限元模拟相结合进行研究,取得了一些重要的成果及认识,解决了长期困惑研究人员的太行山山前构造体系的展布问题,重建了冀南地区克拉通的破坏过程,建立了磁县地震的发震机理,丰富了板内强震的孕震模式。
     一、初步认识了深浅部断层特征及构造组合
     1、古太行山断层
     古太行山断层为太行山强烈隆起区与山前隆起区(丘陵地带)的分界断层,在邢台西部呈北东向展布,出露较完整。从册井北部往南过武安至磁县,地表露头断续分布,逐渐转为北北东向或近南北向。该断层断距较大,导致其上部的脆性岩层(寒武系和奥陶系灰岩)强烈拉张,为赞皇核杂岩体的主拆离断层,同时也是上地壳和中地壳之间的拆离滑脱面,坳陷内的其他控制凹陷沉积的二级断层终止于此滑脱面之上。
     2、太行山山前断层(元氏断层、邯郸断层、汤西断层)
     在研究区内,太行山山前断层称为邯郸断层,是一条重要的隆起区与坳陷区的边界断层,断层附近既是太行山重力异常变化的梯度带,也是地壳形变特征的转折带。其西部表现为重力低异常,垂直形变为正值,水平滑移速率较小;东部则正好相反。
     通过对宽频带深部探测成果与小震精确定位所获得的速度结构的研究,认识到邯郸断层并非控制山前凹陷沉积的主控断层,而仅仅是盆地与隆起的分界断层,倾角上陡下缓,最陡处可达70°,断面下延的最大深度在4000~5000m,由一组近平行的东倾断层组成,断层主要形成于古近纪,由东向西上断点埋深有依次变浅,形成时间由老到新的特征。在邯郸凹陷内部,邯郸断层以下存在一个小规模的地堑,往北延伸至永年以北后地堑系的一条断层逐渐与邯郸断层合并。
     3、磁县-大名断层
     磁县-大名断层是北部临清坳陷与南部内黄隆起之间的边界断层,向东偏南过朝城镇与聊兰断层相交。经对华北盆地南部隐伏区石油地质资料揭示的盆地构造、地表活断层调查及隐伏区浅层地震探测以及磁县-大名断层地震活动性分布特征,将磁县-大名断层划分为三段,东段为大名-临漳段,以隐伏断层及中强震沿断层附近断续分布为特征;中段为磁县-峰峰段,以隐伏断层和控制地貌发育为特征;西段为南山村-岔口段,以部分地区出现1830年磁县地震地表破裂带为特征,总体表现出基岩区山体和山脊被断错的地貌现象。
     4、曲陌断层
     曲陌断层西起朱庄水库以西,东经北掌乡到曲陌,全长约60km,走向290°,倾向南,倾角70-80°,控制了邯郸断陷的北部边界。该断层断错二叠-三叠系1200m左右,始新统底界断距为500m,断错新近系底界约50m。断层落差由西往东逐渐减小,呈弧形弯曲,最后归并于邯郸东断层。该断层活动性较强,在与邯郸东断层交汇处曾发生了1708年5.5级地震,研究表明曲陌断层西端是未来强震最有可能发生的区域。
     5、紫山西断层
     该断层北起邢台市西侧,向南从过沙河,经北掌,顺延紫山西侧山前,到鼓山西的伯延一带消失,全长约70km。走向北北东,倾向西,倾角较陡,该断层控制着武安盆地的发育。根据宽频带深部探测成果与小震精确定位所获得的速度结构,认识到在其下部可能存在一条深大超壳断层,从而导致中地壳小震密集分布,地表中性-偏碱性的岩浆岩发育,过曲陌断层后岩浆岩急剧减少,小震活动也明显降低,表明深部结构有所变化。
     6、断层体系
     邯郸凹陷的断层体系分为三个层次:浅表断层系(0~2km)以断层端部常发生震源深度为6km左右的小震为特征,表现为浅表脆性岩系为调节局部应变而形成的捩断层,主要有永年断层、联纺路断层和马头断层;中层断层系(0.1~9km)断层控制或影响凹陷的沉积特征,大多数断层属于此类断层;深层断层系(10~12km)为拆离断层面,凹陷内的中层断层系大多归并于此滑脱面上,即古太行山断层。
     总体上看,由于北东向断层发育相对较晚,常常切割北西向断层,但由于曲陌断层活动性较强,在北东向断层形成后仍有过较强活动,所以在此断层上的北东向断层被错断,并呈现出左列的特征。在山前凹陷内,主要存在三条明显的调节带,由北向南分别为:(1)隆尧调节带;(2)永年-曲陌-曲周调节带;(3)马陵调节带。
     二、根据沉积特征重现了中新生代构造演化
     早中生代的印支运动波及整个中国,形成了北东-北北东向展布的东隆西坳的构造格局。到燕山中期强烈的左行剪切挤压作用,这种构造格局得到进一步加强,东部隆起进一步抬升。在侧向挤压和深部热力作用下,岩石圈及陆壳厚度急剧增大。在太行山隆起区尤为突出,在此构造背景之下,冀南地区发育了赞皇核杂岩体。这种单个核杂岩体的出现体现了深部的热力作用;其整体的带状展布,又反映了受深部的超壳断层控制。中生代中晚期与核杂岩体有关的拆离滑覆构造,经过了古近纪裂陷伸展作用强烈的改造仍有迹可循。
     从构造演化角度来看,冀南地区克拉通经历了二叠纪海陆交互相、三叠纪、侏罗纪-白垩纪的河湖相、古近纪的断陷沉积、新近纪的坳陷沉积阶段,其演化过程和沉积特征反映了板块运动和深部热力作用双重影响的结果。
     三、合理分析了华北克拉通破坏和岩石圈减薄的机制
     因为板块聚合的阶段性,即华北板块与扬子板块拼合、伊佐奈岐板块俯冲和消亡和青藏高原的隆升以及太平洋-菲律宾海板块的俯冲三个时期及其各具特征的沉积构造,可以将克拉通破坏划分为三个阶段,即前破坏期(257~161Ma)、破坏孕育期(161~65Ma)及破坏期(65~0Ma)三个阶段。从克拉通破坏的沉积响应来看,破坏孕育期的地幔和中下地壳的热事件最丰富,但在晚侏罗世-白垩纪的沉积以河流相和浅湖相沉积为主;破坏期的热事件较少,但此期的沉积却表现为强烈的断陷沉积作用。前者反映了内“热”外“冷”,以中深部热交换和热侵蚀为主;后者反映了外“热”内“冷”,以浅部强烈的断陷沉积作用为主。因此根据地壳结构在中上地壳之间存在滑脱面事实,将华北克拉通破坏分为两种破坏类型并建立了不同阶段的破坏机制:
     1、地幔主动上隆,地壳被动伸展
     在核杂岩形成之前,由于前破坏期的强烈造山引起地壳原有的平衡被打破,在重力均衡作用下,地幔物质强烈上涌,在中上地壳之内形成强烈的岩浆侵入作用,主要表现为岩浆大量喷发,并在壳内形成大量低速体。上地壳在岩浆侵入的作用下弱伸展; 2、地壳主动伸展,地幔被动上隆核杂岩的形成标志华北东部进入强烈的伸展时期,地壳在伸展过程中产生了强烈的断陷作用,在强烈拉张区地壳变薄,地幔由于负载降低而被动上隆。
     四、合理解释了太行山重力异常梯度带
     根据宽频带台阵深部探测和小震精确定位的研究结果,在邯郸断层以东,地壳各界面平缓变化,不存在深大断层。根据地表发育中性-偏碱性岩浆岩以及小震精确定位的速度结构分析,在紫山西断层下部的中下地壳存在一条深大断层,因此太行山山前的重力异常梯度带是该深大断层和莫霍面下陷的双重作用结果,且以莫霍面下陷为主导作用。
     五、初步掌握了邯郸凹陷及邻区的地壳结构
     由于邯郸凹陷以平原隐伏区为主,因此结合前人的研究成果,充分利用项目探测资料,引入三维可视化建模技术,对邯郸凹陷及邻区的深部地壳结构有了初步了解。
     宽频带深部探测给出了邯郸凹陷内部的地壳结构,结果表明地壳内部各界面平缓变化,莫霍面表现为北高南低,东西基本平整的形态;小震精确定位的速度结构反映了紫山西断层下部存在明显的低速异常带,小震震中表现为明显的分带性,主要集中在10~22km的中地壳,上下地壳小震明显稀少。根据以上结果,从上到下,可将地壳及上地幔可以为四个构造层,即:上地壳、中地壳、下地壳和上地幔。中、下地壳速度结构比较均匀,它与地表断层系统基本无关。据此推断,上地壳与中、下地壳之间存在运动变形的解耦,中间存在一条区域解耦面,表层断层体系归并于此解耦面上。
     地壳内的各个界面在紫山西断层以东横向上较为均匀,未见明显的错断或突变;而往西Moho面逐渐变深,在此转折点之上的中地壳存在一条明显的深大断层,从而导致地表有幔源岩浆侵入,后遭受剥蚀出露于地表。
     六、基本查明了冀南地区克拉通的板内强震与发震构造间的关系
     任县凹陷、邯郸凹陷和丘县凹陷为临清坳陷最西部的负向单元,地处太行山隆起区和华北平原坳陷区两大构造单元的分界线上,在任县凹陷的东北角和邯郸凹陷的西南角分别发生了1966年和1830年两次大地震,而两次地震位于许多学者提出的唐山-河间-磁县地震带上,从研究结果看,在邢台与磁县之间明显有一个地震空白区。
     从小震震源分布来看,小震密集分布于10~20km的中地壳,正是壳内低速体分布区域。低速体上方为华北克拉通盆地的结晶基底以及早古生界脆性灰岩,在低速体端部容易形成应力集中。对于磁县-大名断层带东段,其上为巨厚的中新生代沉积,其下未有明显的低速异常体,所以局部应力集中在上地壳的伸展变形过程中会得到逐渐释放,表现为零星分布的小震或中强震;西段中新生代沉积较薄,因刚性结晶基底以及早古生界的脆性岩层的存在明显降低了伸展的速度,这可从地壳运动和构造形变特征上得到证明,从而在低速体的端部应力集中,当达到或超过结晶基底以及早古生界脆性岩层的极限破裂压力时,则产生地震。
     因此区内的孕震机理为:在盆地和隆起的边界,存在贯穿中下地壳的深大断层,形成上地幔物质上涌的通道,并在刚性结晶基底以及早古生界的脆性岩层下形成壳内低速体,导致局部应力集中,当达到或超过脆性岩层的极限破裂压力时,则产生强地震。
     七、初步建立了未来强震发震模型
     新近纪以来华北板块地处三大板块间的三角地带,由于印度板块与欧亚板块的碰撞,喜马拉雅山脉快速形成,青藏高原迅速隆升,致使周边老造山带重新活跃,同时西太平洋的菲律宾海板块北北西向俯冲,在北方又受到天山-兴安板块的阻挡,使冀南地区克拉通受到NEE向的挤压,整体处于一种挤压应力加强的状态。在此应力状态下,克拉通内部次级板块之间更加紧密的接触,当受到垂向力的作用时,更容易在垂向力作用区域的中地壳刚性岩层内发生破裂。
     根据前人的研究成果以及所获取的丰富资料,建立的冀南地区盆山结合部未来强震发震模型,同时根据有限元模拟对未来可能发生强震的区域进行了预测,结果证实在曲陌断层上盘的西部附近存在库仑应力增强区,该区域是未来强震最有可能发生的区域。根据建立的孕震模式推断认为曲陌断层上盘的西部是未来强震最有可能发生的区域,可能震级为6.0~7.0ML;按照应力加载模型推测,估计未来100年将是最可能发生的时间。
     总的看来,论文从研究冀南地区山前凹陷与太行山隆起之间的中新生代和现今构造特征出发,从浅部到深部对其构造特征、构造演化及与小震活动规律进行剖析,充分利用活断层探测深浅部资料,通过地表野外调查、浅层地震勘探、宽频带台阵深部探测、小震精确定位和三维可视化建模,对冀南地区克拉通深浅部构造之间的耦合关系、克拉通破坏与沉积构造响应、克拉通破坏机理和强震孕震机理做了有益的探讨,研究了该区的地壳结构特征,获得了构造与强震之间的成因机制,探讨克拉通板内地震的孕震机理,建立了冀南地区克拉通破坏与发震构造的关系模式。
The North China Craton (NCC) is one of the most active continental blocks in the world, as indicated by the frequent occurrence of devastating earthquakes. The natural hazards have enormous impacts on both the economy of China and the quality of life in the region. The study on the mechanism of the hazards requires a complete knowledge of geodynamics, lithology, tectonophysics, geochemistry, seismonogy and geology as well as synthetic analysis of them.
     This thesis focuses on the evolution of Meso-Cenozoic sedimentary and tectonics, craton destruction, crustal thinning and seismogenic faults of the southern area of the North China Craton (SANCC) and summarizes the progress and problems in these studies of the extensional tectonics represented by metamorphic core complexes and fault depressions. Some important subjects, which merit the further study and their significance in the study of the destruction and lithospheric thinning of the NCC, were discussed.
     Research has been carried out in three ways, fault investigation, sedimentary analysis and numerical simulation in SANCC. Some important results have been obtained and are presented as follows.
     1. Characteristics of surface structures and buried structures and structural system
     (1) The paleo-Taihangshan fault
     The paleo-Taihangshan fault is a bounding fault between The Taihangshan high uplift area and range-front uplift area (hilly terrain), which extends towards NE near the western Xintai and turns into NNE or nearly NS gradually from Cejing, passing by Wu’an, then to southern Cixian. Outcrops of the fault can be seen time and again. The fault is the main detechment fault of Zanhuang metamorphic core complexes. With large fault throw, the hanging wall was extended intensively and formed the topography with alternating trenches and ridges.
     (2) The Taihang range-frontal fault (including the Yuanshi fault, the Handan fault and the Tangxi fault)
     The Handan fault is a major bounding fault between The Taihangshang uplift area and North China depression area in SANCC. Near the faut, gravity anomaly belt and crustal deformation transition belt can be noticed. Low gravity anomalies and positive vertical deformation appear in its western area, while the values are just on the contrary in its eastern area. According to the survey of broad band array and small earthquakes relocation and interpretation of oil seismic profiles, The Handan fault does not control the sedimentary of the Handan depression, which is a listric nomal fault with dip 70 degrees and fault throw up to 4000~5000m and is composed of sevaral sub-faults.
     There maybe a basal fault extending to the detachment fault (Paleo-Taihangshan fault) under the Handan fault.
     (3) The Cixian-Daming fault
     The Cixian-Daming fault is the bounding fault between The Linqing depression and Neihuang uplift. The fault can be divided into three segments, the Daming-Linzhang segment, the Cixian-Fengfeng segment and the Nanshancun-Chakou segment, which are characteristic of buried faults and moderate earthquakes, buried faults and surface fractures, respectively.
     (4) The Qumo fault
     The south-dipping Qumo fault is the north boundary fault of the Handan sub-depression, with length 60km, strike 290 degrees and dip 70-80 degrees. The fault extends to the Permian and Triassic formation with dislocation 1200m. The arc-like fault merges into the East Handan fault with reducing throw. The 1708 (M5.5) earthquake occurred near the convergence area with East Handan fault.
     (5) The West Zishan fault
     The West Zishan fault begins west of Xintai city, extends along the west of Zishan mountains, vanishing near Boyan county, with length 70km, strike NNE, west-dipping. According to the survey of broad band array and small earthquakes relocation, there is a fault extending to deep crust.
     (6) Fault system
     The fault system of the Handan sub-depression can be divided into three units, which are surface fault unit (0~2km), middle fault unit (0.1~9km) and lower fault unit (10~12km). The lower fault unit is mainly composed of the paleo-Taihangshan fault, and many faults of the middle faults unit merge into the lower fault unit-detachment plane.
     All in above, the faults trending NE developed later relatively than the faults of NWW strike. But the Taihangshan fault was cut by the Qumo fault because of the intensive activity of Qumo fault. There are three transition zones in SANCC, which are the Longyao transition zone, Qumo transition zone and Maling transition zone from north to south.
     2. Evolution of Meso-Cenozoic tectonics
     The Indosinian movement in the early Mesozoic occurred widespreadedly in the whole China and formed the tectonic regime of uplift in the east and depression in the west which extend in NE-NNE. The uplift in the east continued intensively with the left-lateral shearing and compressing in the Yanshan movement. With the leteral compressing and deep heating, the thickness of lithosphere and continental crust incresed sharply. Under the tectonic background, the Zanhuang metamorphic core complexes were formed, which indicated the deep heating and deep crustal faults.
     According to the tectonic evolution history, the sedimentary sequences in SANCC experienced marine and land facies(Permian), fluvial and lacustrine facies (Triassic, Jurassic and Cretaceous), fault depression (Paleogene), depression (Neogene) in turn. The sedimentary sequences and tectonic evolution history reflected the influence of plate movement and deep heating.
     3. NCC destruction and lithosphere thinning
     Through studies on the sedimentary sequences, this thesis determines the mechanism of transition from thrusting to extension, regional extensional kinematics and process of extension by taking metamorphic core complexes as the window. The NCC destruction can be divided into three stages including pre-destruction stage(257~161Ma), destruction developing stage(161~65Ma) and destruction stage(65~0Ma). Based on the chacteristics of sedimentary sequences, the weak sedimentary process responsed to the deep intensive heating events in late Jurassic-Cretaceous, while intensive sedimentary process responsed to the deep weak heating events in the Paleogene.
     As the sedimentary process has less relationship to the heating events in the craton basin, two kinds of manners of NCC destruction can be estimated: first, mantle active uplift and crust passive extention, second, crust active extention and mantle passive uplift. This study has improved the research on the extensional tectonics of the NCC and helped to make clear the crustal response to the lithospheric thinning and deep dynamics of destruction of the NCC.
     4. Interpretation of gravity anomalies along the Taihangshan mountains
     Based on the survey of broad band array and small earthquakes relocation, the crustal interfaces are all nearly horizontal and no deep crustal faults exist to the east of Handan fault. Combined with the neutral and alkaline magma along the west of the Zishan fault, this work can draw a conclusion that there is a deep crust fault under the mountains. So the gravity anomalies is the result of double actions of the deep crust fault and the Moho boundary depression.
     5. Crust structure in the Handan sub-depression and surrouding areas
     The crust structure in the Handan sub-depression and its surrouding areas was given by broadband array observations. The crustal interfaces changed smoothly, and the Moho boundary is high in the north and low in the south. A low velocity anomal belt can be found under the West Zishan fault by small earthquakes relocation, concentrating in the depth range 10~20km. The crust structure can be divided into 4 structural units including the upper crust, the middle crust, the lower crust and the Moho boundary.
     6. Relationshiop between earthquakes and seismgenic structure of SANCC
     In SANCC, two great earthquakes have occurred since 1830, i. e. 1830 (M7 1/2)and 1966 (M7.2) earthquakes which are located in Cixian and Xintai seismotectonic province, respectively. These two provinces lie in the Tangshan-Hejian-Cixian earthquake belt and has a seismic gap between them. The Qumo weakly active fault just passes through the seismic gap.
     In Cixian seismotectonic province, the small earthquakes are located in a depth range 10~20km which is abundance of low velocity bodies. The crystalline basement and early Paleozoic brittle layers of NCC maybe a stress accumulating area because of the existence of low velocity bodies. Therefore it would produce grand earthquakes when the strain accumulation reaches the critical value.
     All in above, the mechanism of the earthquakes occurred in Craton is: the existence of deep crust fault serves as the channel of molten lava, which forms the low velocity bodies under the crystalline basement. When the accumulation of stress reaches critical point of the crystalline basement, earthquakes will occur.
     7.Seismogenic stucture model
     The seismogenic structure model has been obtained based on the previous studies and the data from the project of active fault surveying. In the same while, earthquake prediction has been attempted by finite element simulation. The prediction shows that the dangerous region maybe in the western hanging wall of the Qumo fault and the earthquake occurrence period maybe in the next 100 years, with magnitude probably M6.0~M7.0.
引文
白武明、林邦慧、陈祖安,2003.1976年唐山地震发生对华北地区各地块运动与变形影响的数值模拟研究.中国科学(D辑),33(S):99~107.
    边庆凯,2000.华北地区中强地震活动周期的一些特征[J].山西地震,100(1):27~30.
    曹代勇、占文峰、张军,2002.邯峰矿区古构造应力场及构造演化[J].中国煤田地质,17(5):1~3.
    陈发景,2003.调节带(或传递带)的基本概念和分类[J].现代地质,17(2):186.
    陈发景、赵海玲、陈绐年、等,1996.中国东部中新生代伸展盆地构造特征及地球动力学背景[J].地球科学,21(4):357~365.
    陈国光、徐杰、马宗晋、等,2004.渤海盆地现代构造应力场与强震活动[J].地震学报,26(4):396~403.
    陈国星、田勤俭、任利生,1997.1830年磁县7 1/2级地震发震构造及强震复发间隔研究[J].地震,17(S):19~26.
    陈绍绪,1986.牛东断层的无震滑动[A],见:国家地震局科技监测司,文安-霸县地壳隆起的研究[M].北京:地震出版社:147~151.
    陈文寄、孙建中,1985.华北地区新生代玄武岩的时空分布特征与盆地演化[A].现代地壳运动研究[C],地震出版社,50~57.
    陈颙、周华伟、葛洪魁,2006.华北地震台阵探测计划[J].大地测量与地球动力学,25(4):1~5.
    陈运泰、林邦慧、林中洋、等,1975.根据地面形变观测研究1966年邢台地震的震源过程[J].地球物理学报,18(3):164~182.
    楚全芝、汪良谋,1994.华北地区构造应力场、断层滑动速率与强震的关系[J].华北地震科学,12(1):9~20.
    邓晋福、苏尚国、刘翠、等,2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代[J].地学前缘,13(2):105~119.
    邓晋福、苏尚国、刘翠、等,2006.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代[J].地学前缘,13(2):105~119.
    邓起东,范福田.1980,华北断块新生代现代地质构造特征[A],见:华北断块区的形成与发展[M].北京:科学出版社,190-205.
    邓前辉、张木生、詹艳、等,1998.邢台7.2级地震震源区的电磁阵列剖面法测量与电性特征研究[J].地球物理学报,41(2):218~225.
    刁桂苓,王兆军,1999.用现今小地震研究历史强震的震源断层-以1830年河北磁县7 1/2级
    李毅、吴泰然、罗红玲,2007.华北克拉通北缘早白垩世岩石圈减薄[J].北京大学学报(自然科学版),43(2):176~182.
    刘波、钱祥麟、王英华,1999.华北板块早古生代构造-沉积演化[J].地质科学,34(3):347~356.
    刘池洋,1987.渤海湾盆地基底正断层缓断面的形成原因及其地质意义[J].西北大学学报(自然科学版),1987(1):34~42.
    刘德来、王伟、马莉,1994.伸展盆地转换带分析[J].地质科技情报,13(2):613~619.
    刘德林,1988.1830年河北磁县7.5级地震的若干问题[J].山西地震,1988(1):18~22.
    刘福田.震源位置和速度结构的联合反演(I)—理论和方法[J].地球物理学报,1984,27(2):167~175.
    刘国栋,1985.华北平原新生代裂谷系及深部过程[A],现代地壳运动研究[C],国家地震局地质研究所编.北京地震出版社,32~39.
    刘国栋,1986.冀中坳陷地区的构造背景与孕震环境[A],见:国家地震局科技监测司,文安—霸县地壳隆起的研究[C].北京:地震出版社:149~157.
    刘国栋、史书林、王宝钧,1984.华北地区壳内高导层及其与地壳构造活动性的关系[J].中国科学,B辑,9:839~848.
    刘和甫,1996.中国沉积盆地演化与旋回动力学环境[J].地球科学,21(4):345~356.
    刘和甫、梁慧社、李晓清、等,2007.中国东部中新生代裂陷盆地与伸展山岭耦合机制[J].地学前缘,7(4):477~486.
    刘剑平、汪新伟、汪新文,2004.临清坳陷变换构造研究[J].地质科技情报,23(4):51~54.
    刘杰、陈棋福、陈顒,1996.华北地区地震目录完全性分析[J].地震,16(1):59~67.
    刘洁、宋惠珍,1999.用数值模拟方法评估华北北部地震危险性[J].地震地质,21(3):221~228.
    刘洁、宋惠珍,2002.低速体与深浅断层共同孕震过程的数值模拟初步研究[J].地震地质,24(3):355~367.
    龙汉春,1988.试论华北地区地壳拉张、挤压与裂谷、推覆构造的成因联系[J].地质论评,1988(3):105~113.
    路凤香、郑建平、李伍平、等,2000.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型[J].地学前缘,7(1):97~117.
    路凤香、郑建平、邵济安、等,2006.华北东部中生代晚期一新生代软流圈上涌与岩石圈减薄[J].地学前缘,13(2):86~92.
    马醒华、杨振宇,1993.中国三大地块的碰撞拼合与古欧亚大陆的重建[J].地球物理学报,36(4):476~488.
    马杏垣,1987.中国岩石圈动力学概要[J].地质学报,61(2):113~125.
    马杏垣、刘和甫、王维襄、等,1983.中国东部中、新生代裂陷作用和伸展构造[J].地质学报,57(1):22~32.
    马杏垣、索书田.1984.论滑覆及岩石圈内多层次滑脱构造[J].地质学报,58(3):205~213.
    马杏垣、吴正文、谭应佳、等,1979.华北地台基底构造[J].地质学报,53(4):293~304.
    马杏垣、张家声、白瑾、等,1986.中国前寒武纪历史过程中构造样式的变化[A],见:国际交流学术论文集[C].北京:地质出版社,1~29.
    马寅生,崔盛芹,赵越,等,2002.华北北部中新生代构造体制的转换过程[J].地质力学学报,8(1):15~25.
    马宗晋、陈鑫连、叶叔华、等,2001.中国大陆区现今地壳运动的GPS研究[A],见:现代
    地壳运动与地球动力学研究-中国地壳运动全球背景研究[M].上海:上海科技教育出版社,566~571.
    马宗晋、蒋铭,1987.中国的强震期和地震带[J].中国地震,3(1):47~50.
    马宗晋、张德成,1986.板块构造活动与地震[A],见:板块构造基本问题[M].北京:地震出版社:363~391.
    梅世蓉,1995,地震前兆场物理模式与前兆时空分布机制研究(一)-坚固体孕震模式的由来与证据[J].地震学报,17(3):273~282.
    梅世蓉,1996a.地震前兆场物理模式与前兆时空分布机制研究(二)-强震孕育时应力、应变场的演化与地震活动、地震前兆的关系[J].地震学报,18(1):1~10.
    梅世蓉,1996b.地震前兆场物理模式与前兆时空分布机制研究(三)-强震孕育时地震活动与地壳形变场异常及机制[J].地震学报,18(2):170~178.
    牛树银,1994.太行山阜平、赞皇隆起是中新生代变质核杂岩[J].地质科技情报,13(2):15~16.
    牛树银、董国润,1995太行山中北段褶皱构造序列[J].地质论评,41(4):301~310.
    牛树银、侯泉林、王宝德、等,2003.华北地区拆离滑脱带控震作用初探[J].地震研究,26(3):257~264.
    曲国胜、徐志忠、李彪、等,2001.印度古吉拉特邦Kutch地区2001年1月26日地震成因初探[A],卢演俦、高维明、陈国星、陈杰主编:新构造与环境[M].地震出版社,372~381.
    曲国胜、张华、叶洪,1993.黄骅坳陷井壁崩落法地应力测量[J].华北地震科学,11(3):9~18.
    曲国胜、周永胜、徐杰、等,1997.张强凹陷及邻区的构造应力分析[J].地震地质,19(4):341~352.
    冉勇康、陈立春、杨晓平、等,2003.鄂尔多斯地块北缘主要活动断层晚第四纪强震复发特征[J].中国科学D辑,33(B04):135~143.
    冉勇康、邓起东、杨晓平,1997.1679年三河-平谷8级地震发震断层的古地震及重复间隔[J].地震地质,19(3):193~202.
    任纪舜、牛宝贵、刘志刚,1999.软碰撞、叠覆造山和多旋回缝合用[J].地学前缘:6(3):85~93.
    任战利、王世成,1999.沁水盆地中生代晚期构造热事件[J].石油与天然气地质,20(1):46~48.
    商宏宽、吕梦林,1985.晋、冀、鲁、豫交界地区地震地质条件[J].华北地震科学,3(3):
    邵学钟,张家茹,1993.邢台地震区深部构造背景的地震转换波探测和研究[J].地球物理学报,36(5):609~620.
    沈正康、王敏、甘卫军、等,2003.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘,10(增刊):93~100.
    时秀朋、李理,2007.鲁西隆起晚中生代以来伸展构造物理模拟[J].新疆石油地质,28(4):490~493.
    时振梁、环文林、曹新岭、等,1974.中国地震活动的某些特征[J].地球物理学报,17(1):1~9.
    宋鸿林,1996.北京房山变质核杂岩的基本特征及其成因探讨[J].现代地质,10(2):149~158.
    宋松岩、周雪松、王椿镛、等,1997.泰安-忻州剖面S波资料解释及其与邢台地震相关性分析[J].地震学报,19(1):13~21.
    孙继源、邢集善、叶志光、等,1992.华北地区板块内构造及深部过程初探[J].地质科技情报,11(1):4~13.
    孙若昧、刘福田,1995.京津唐地区地壳结构与强震的发生-Ⅰ.P波速度结构[J].地球物理学报,38(5):599~607.
    孙若昧、刘福田,1996.京津唐地区地壳结构与强震的发生-Ⅱ.S波速度结构[J].地球物理学报,38(6):347~354.
    孙武城、李松林、杨玉春,1985.华北东部地区地壳结构的初步研究[J].地震地质,7(3):1~11.
    万天丰、曹瑞萍,1992.中国中始新世-早更新世构造事件与应力场[J].现代地质,6(3):275~285.
    万天丰、曹秀华,1997.中国三叠纪中晚期-早更新世构造应力值的估算[J].地球科学,22(2):145~152.
    万天丰、赵维明,2002.论中国大陆的板内变形机制[J].地学前缘,9(2):451~463.
    万天丰、朱鸿,1989.中国白垩纪-始新世早期构造应力场[J].地质学报,1999(1):14~25.
    万永革、沈正康、甘卫军、等,2005.华北地区大地震矩释放率和GPS应变率的一致性研究. [J].中国地震,21(1):33~40.
    汪素云、吴戈、时振梁、等,1998.《中国近代地震目录(公元1912~1990年,MS≥4.7)》简介[J].中国地震,14(4):83~87.
    王椿镛、张先康、林中洋、等,1994,束鹿断陷盆地及其邻近的地壳结构特征[J].地震学报,16(4):472~479.
    王椿镛、张先康、吴庆举、等,1994.华北盆地滑脱构造的地震学证据[J].地球物理学报,37(5):613~619.
    王定一、梁苏娟,2001.任丘大油田形成与变换带演化[J].石油与天然气地质,22(1):9~12.
    王鸿祯、杨森楠、李思田,1983.中国东部及邻区中、新生代盆地发育及大陆边缘区的构造发展[J].地质学报,57(3):213~223.
    王敏、沈正康、牛之俊、等,2003.现今中国大陆地壳运动与活动块体模型.中国科学(D辑),33(增刊):21~32.
    王式洸、王廷印,1985.河北涞源王安镇花岗岩类岩石的碱笥长石及其地质意义[J].兰州大学学报(自然科学版),1985(2):100~108.
    王涛、郑亚东、张进江、等,2007.华北克拉通中生代伸展构造研究的几个问题及其在岩石圈减薄研究中的意义[J].地质通报,26(9):1154~1166.
    王挺梅,1979.北京地区近代构造与地震活动的初步研究[J].地震地质,1(2):38~45.
    韦士忠、陈培善、辛书义、等,1987.用中小地震波谱研究华北北部地区的应力场和地震危险性[J].地震,1987(2):1~9.
    邬光辉、漆家福,1999.黄骅盆地-级构造变换带的特征与成因[J].石油与天然气地质,20(2):125~128.
    吴忱,2001.华北山地的水系变迁与新构造运动[J].华北地震科学,19(4):1~6.
    吴福元、葛文春、孙德有、等,2003.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,10(3):51~60.
    吴福元、孙德有,1999.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,29(4):313~318.
    吴福元、孙德有、张广良、等,2000.论燕山运动的深部地球动力学本质[J].高校地质学报,2000(6):379~388.
    吴继龙、卢学祺,1986.冀中坳陷东部地区构造格架及其形成与发展[J].石油与天然气地质,7(1):20~31.
    吴智平、侯旭波、李伟,2007.华北东部地区中生代盆地格局及演化过程探讨[J].大地构造与成矿学,31(4):385~399.
    吴宗絮、邓晋福、赵海玲、等,1994.华北大陆地壳-上地幔岩石学结构与演化[J].岩石矿物学杂志,13(2):106~115.
    邢集善、刘建华、赵晋泉,2002.华北板内深部构造[J].山西地震,111(4):3~12.
    徐嘉炜,1994.再论郯庐断裂带的最大平移幅度-鲁西辽北地块的对比[J].中国地质科学院沈阳地质所所刊,(3):43~55.
    徐嘉炜、朱光,1995.中国东部郯庐断裂带构造模式讨论[J].华北地质矿产杂志,10(2):121~134.
    徐杰、方仲景、杨理华,1988.1966年邢台7.2级地震的构造背景和发震构造[J].地震地质,10(4):51~59.
    徐杰、高战武、宋长青、等,2000.太行山山前断裂带的构造特征[J].地震地质,22(2):111~122.
    徐杰、高战武、孙建宝、等,2001.区域伸展体制下盆-山构造耦合关系的探讨[J].地质学报,75(2):165~174.
    徐杰、洪汉净、赵国泽,1986.华北平原新生代裂谷盆地的演化及运动学特征[A],现代地壳运动研究(1)[C],北京:地震出版社:26~40.
    徐杰、牛娈芳、王春华,1996.唐山-河间-磁县新生地震构造带[J].地震地质.18(3): 193~198.
    徐杰、宋长青、楚全芝,1998.张家口-蓬莱断层带地震构造特征的初步探讨[J].地震地质,20(2):146~154.
    徐菊生、袁金荣、高士钧、等,1999.利用GPS观测结果研究华北地区现今构造应力场[J].地壳形变与地震,19(2):81~89.
    徐锡伟、邓起东,1988.晋北张性区盆岭构造及其形成的力学机制[J].中国地震,4(2):19~27.
    徐锡伟、于贵华、王峰、等,2000.1966年邢台地震群的发震构造模型-新生断层形成?先存活断层摩擦粘滑?中国地震,16(4):364~378.
    徐义刚,1999.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报,18(1):123.
    徐义刚,2004.华北岩石圈减薄的时空不均一特征[J].高校地质学报,10(3):324~331.
    许继锋、王人镜、杨淑荣,1994.北京云蒙山花岗岩基的岩石变形及其成因[J].地球科学,19(6):806~ 813.
    杨承先,1984.邯郸、汤阴断陷地质结构及其活动性[J].地震地质,6(3):59~66.
    杨国华、韩月萍、王敏,2003.近10年华北地壳水平运动的若干特征[J].中国地震,19(4):324~333.
    杨国华、李延兴、薄万举、等,1998.GPS用于区域地壳运动及地震危险区判定的初步研究[J].中国地震,14(1):40~46.
    杨理华,1987.邢台-河间-唐山强震带是地震构造破裂带[J].中国地震,18(3):193-198.
    杨明慧,2001.冀中坳陷北区的新生代伸展构造研究[A],见:中国博士后科学基金会,2000
    年中国博士后学术大会论文集(数学物理与地质分册)[C].北京:科学出版社,464~468.
    杨明慧、刘池阳、杨斌谊,2001.冀中坳陷中生代构造变形的转换及油气[J].大地构造与成矿学,25(2):113~119.
    杨明慧、刘池阳、杨斌谊、等,2002.冀中坳陷古近纪的伸展构造[J].地质论评,48(1):58~67.
    杨文采、张学民、于常青,2007.华北东部上地幔破裂带[J].地质学报,81(10):1305~1313
    杨主恩、陈国星、周伟新、等,1999.太行山东缘及临近地区的深部结构与浅部的关系探讨[A].构造地质学-岩石圈动力学研究进展[C].北京:地震出版社,322~329.
    曾融生、朱露培、何正勤、等,1991.华北盆地强震的震源模型兼论强震和盆地成因[J].地球物理学报,34(3):288~301.
    翟明国、范祺诚、张宏福、等,2005.华北东部岩石圈减薄中的下地壳过程:岩浆底侵、置换与拆沉作用[J].岩石学报,2005,21(6):1509~1526.
    翟明国、朱日祥、刘建明、等,2003.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑),33(10):913~920.
    张东宁、曾融生,1995.冀中坳陷滑脱构造动力的数值模拟[J].地震学报,17(4):414~421.
    张国民,1987.中国大陆强震活动的韵律性特征[J].地震地质,9(2):27~37.
    张国民、傅征祥,1985.华北强震的时间分布特点及其物理解释[J].地球物理学报,28(6):569~578.
    张国民、刘蒲雄、陈修启,1991.高潮期中成串强震间相互关系及其机理探讨[J].地震,1991(3):1~11.
    张国民、石耀霖、李丽,1999.地壳应变速率与地震活动关系的研究-从地壳应变场探索强震活动的场源关系[J].中国地震,J5(1):1~13.
    张国民、汪素云、李丽、等,2002.中国大陆地震震源深度及其构造含义[J].科学通报,47(9):663~668.
    张宏福、周新华、范蔚茗、等,2005.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理[J].岩石学报,21(4):1271~1280.
    张家声、徐杰、万景林、等2002.太行山山前中一新生代伸展拆离构造和年代学[J].地质通报,21(4-5):207~210.
    张培震,1999.中国大陆岩石圈最新构造变动与地震灾害[J].第四纪研究,1999(5):404~413.
    张培震、甘卫军、沈正康、等,2005.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,79(6):748~756.
    张培震、王敏、甘卫军、等,2003,GPS观测的活动断层滑动速率及其对现今大陆动力作用的制约[J].地学前缘,10(S):81~92.
    张四昌、赵军、刁桂苓,1995.华北地区震源断层与深浅构造关系的初步研究[J].华北地震科学,13(2):1~10.
    张文佑、江一鹏、李兴唐,1980.华北断块区的形成与发展[A],见:华北断块区的形成与发展[M].北京:科学出版社,1~8.
    张渝昌、秦德余、王荣福、等,1997.中国含油气盆地原型分析[M].南京:南京大学出版社,1~157.
    张裕明、汪良谋,1980.华北断块区中、新生代构造特征及其动力学问题[A],见:华北断块区的形成与发展[M].北京:科学出版社,170~178.
    张岳桥、董树文、赵越、等,2007.华北侏罗纪大地构造:综评与新认识[J].地质学报,81(11):1463~1479.
    张岳桥、马寅生、杨农,2003.太行山南缘断层带新构造活动及其区域运动学意义[J].地震地质,25(2):169~182.
    张岳桥、赵越、董树文、等,2004.中国东部及邻区早白垩世裂陷盆地构造演化阶段[J].地学前缘(中国地质大学,北京),11(3):123~127.
    张祖胜,1984.利用大地测量资料反演地震震源参数的若干问题[J].地震学报,6(2):167~181.
    章淮鲁,1989.华北地区强震的北景地震活动性的研究[J].地震学报,11(3:)225~235.
    赵国泽、赵永贵,1986.华北平原盆地演化中深部热、重力作用初探[J].地质学报,60(1):102~113.
    赵俊青、夏斌、纪友亮、等,2005.临清坳陷西部侏罗纪-晚白垩世原型盆地恢复[J].石油勘探与开发,32(3):15~22.
    赵希俊、刘锡大,1997.1966年邢台7 1/2级地震的动力学模型[J].华北地震科学,15(3):9~17.
    赵越、徐刚、张拴红,2004.燕山运动与东亚构造体制的转变[J].地学前缘,l1(3):319~328.
    赵越、杨振宇、马醒华,1994.东亚大地构造发展中的重要转折[J].地质科学,29(2):105~128.
    郑炳华、虢顺民、徐杰、等,1980.燕山地区大地构造基本轮廓[A],见:中国科学院地质
    研究所、国家地震局地质研究所编,华北断块区的形成与发展[C].北京:科学出版社,170~178.
    郑炳华、马宗晋,1991.华北北部断块构造及中下地壳的构造滑脱[J].中国地震,7(3):1~10.
    郑大海、杨明慧、杨斌谊,2000.伸展盆地拆离构造分析及石油地质意义[J].西安工程学院学报,22(4):14~16.
    郑建平、路风香、Griffin W L、等,2006.华北东部橄榄岩与岩石圈减薄中的地幔伸展和侵蚀置换作用[J].地学前缘,13(2):76~85.
    周新华,张宏福,2006.中生代华北岩石圈地幔高度化学不均一性与大陆岩石圈转型[J].地球科学,31(1):12~13.
    周永胜、何昌荣,2003.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,25(1):109~22.
    朱成熹、郑兴树,1989.华北及西北地区地震活动性的统计分析[J].地震学刊,1989(4):47~54.
    朱日祥,2007.地球内部结构探测研究-以华北克拉通为例[J].地球物理学进展,22(4):1090~1100.
    朱夏,1991.活动论构造历史观[J].石油实验地质,13(3):201~209.
    朱志澄,1987.伸展构造和拆离断层[J].地质科技情报,1987(1):19~22.
    祝治平、张先康、盖玉杰、等,1995.邢台震源区及相邻地区地壳上地幔速度结构研究[J].地震学报,17(3):328~334.
    AKI K., RICHARDS P. G.., 1980. Quantitative seismology , Volume I. W H Freeman , San Francisco. ANDERSON D. L., Chemical plume in the mantle [J].Geol.Soc.Am.Bull,1975,86:1593~1600.
    ANDRONICOS C. L., CHARDON D.H., HOLLISTER L.S., et al., 2003. Strain partitioning in an obliquely convergent orogen, plutonism, and synorogenic collapse: Coast Mountains batholith, British Columbia, Canada[J]. Tectonics, 22(2), 1012, doi: 10.1029/2001TC001312.
    ARMSTRONG R. L., 1972. Low-angle(denudation)faults, hinterland of the Sevier orogenic belt, Eastern Nevada and Western Utah[J]. Geol Soc. America Bull, 83: 1729~1754.
    BEAUMONT C., JAMIESON R. A., NGUYEN M. H., et al.,2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 414, 13: 837~742.
    BEN A., PLUIJM V. D., JOHN P., et al, 1997. Paleostress in cratonic North America: implications for continental interiors[J]. Science, 277(8): 794~796.
    BLOCK L., ROYDEN L.H., 1990. Core complex geometries and regional scale fl ow in the lower crust[J]. Tectonics, 9: 557~567.
    BRADFORD J. J., 2006. Extensional shear zones, granitic melts, and linkage of overstepping normal faults bounding the Shuswap metamorphic core complex, British Columbia[J]. GSA Bulletin, 118(3/4): 366~382.
    BROWN R.L., CARR S.D., 1990. Lithospheric thickening and orogenic collapse within the Canadian Cordillera[A]. in Proceedings, 1990 Pacifi c Rim Congress[C]. v. II: Gold Coast, Queensland, Australasian Institute of Mining and Metallurgy: 1~10.
    BUCCI D. D., MASSA B., ZUPPETTA A., 2006. Relay ramps in active normal fault zones: A clue to the identifi cation of seismogenic sources (1688 Sannio earthquake, Italy)[J]. GSA Bulletin 118(3/4): 430~448.
    BUTLER R., Stewart G. S., Kanamon H.,1979. The July 27,1976 Tangshan,China earthquake-a complex sequence of intraplate events[J]. Bull Seismol Soc Amer, 69(1):207~220.
    CHEN R. H., 1993. The Study on seismicity and the estimate of the earthquake risk recently in North China[J]. Northwestern Seismological Journal, 15(3):105~109.
    DECELLES P. G., Giles K. A., 1996. Foreland basin systems[J]. Basin Research,8: 105~123.
    DEFFEYA K. S., Plume convection with a upper mantle temperature inversion[J].Nature,1972,(240):539~544.
    DENG J. F., MO X. X., ZHAO H. L., et a1., 2004. A new model for the dynamic evolution of Chinese lithosphere: continental roots plume tectonics[J]. Earth Science Reviews, 65: 223~275.
    DRISCOLL N. W., KARNER G. D., 1998. Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment[J]. Journal of Geophysical Research–Solid Earth, 103: 4975~4991.
    EBINGER C. G., RASENDAHL B. R., REYNOLDS D. J., 1987. Tectonic model of the Malawi rift, Africa[J].Tectonophysics, 141: 215~235.
    ELLIS, M., GOMBERG J., and SCHWEIG E., 2001. Indian earth-quake may serve as analog for New Madrid earth-quakes, Eos, Transactions[J]. AGU, 82: 345~350.
    ENGLAND P. C., 1987. Diffuse continental deformation: length scale, rates and metamorphic evolution[J].Phil. Trans. R. Soc. Lon., 1987(A321): 3~22.
    FAULDS J. E., VARGA R. J., 1998. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes[C], In: FAULDS J. E. and STEWART J. H(.eds). Accommodation zones and transfer zones: the regional segmentation of the basin and range province: Boulder Colorado, Geological Society of American Special Paper, 323: 1~46.
    FAY N., HUMPHREYS E., 2006. Dynamics of the Salton block: Absolute fault strength and crust-mantle coupling in Southern California[J]. Geological Society of America, 34(4):261~264.
    GAO S., RUDNICK R. L., CARLSON R. W., et a1., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth Planet. Sci. Lett., 198:307~322.
    GAWTHORPE R. L., HURST J. M.,1993. Transfer zones in extensional basins: their structural style and influence on drainage development and stratigraphy[J]. Journal of the Geological Society, London, 150: 1137~1152.
    GIBBS A. D., 1984. Structural evolution of extensional basin margins[J]. Jour. Geol. Soc. London, 141:609~620. HARKINS N. W., ANASTASIO D. J., PAZZAGLIA F. J., 2005. Tectonic geomorphology of the Red Rock fault, insights into segmentation and landscape evolution of a developing range front normal fault[J]. Journal of Structural Geology.27(11):1925~1939.
    HOUGH S.E., ARMBRUSTER J.G., Seeber L., and Hough J.F., 2000. On the modified Mercalli intensities and magnitudes of the 1811-1812 New Madrid earth-quakes[J]. J. Geophys. Res., 105(23): 839~864.
    HUANG B. C., YANG Z. Y., OTOFUJI Y., et al., 1999. Early Paleozoic paleomagnetic poles from the western part of the North China Block and their implications[J]. Tetonophysics, 308:473~508.
    IKEDA M., ZHAO D. P., OHNO Y., 2006. Crustal structure, fault segmentation, and activity of the Median Tectonic Line in Shikoku, Japan[J]. Tectonophysics. 412(1-2):49~60.
    JOHNSON B. J., 2006. Extensional shear zones, granitic melts, and linkage of overstepping normal faults bounding the Shuswap metamorphic core complex[J]. GSA Bulletin: 118(3/4): 366~382.
    JOHNSTON A.C., and Schweig E.S., 1996. The enigma of the New Madrid earthquakes of 1811-1812[J]., Ann. Rev. Earth Planet. Sci, 24: 339~84.
    KING G. C. P., STEIN R. S., LIN J., 1994. Static stress changes and the triggering of earthquakes[J]. Bull Seism Soc Amer, 84: 935~953.
    LI S. T., Mo X. X., Yang S. G., 1995. Evolution of circum-Pacific basins and volcanic belts in East China and their geodynamic background [J]. Journal of China University of Geosciences, 6(1):48~58.
    LISTER G. S., 1986. Detachment fault and evolution of passive continental margins[J]. Geology, 14(3):246~250.
    LISTER G. S., DAVIS G. A., 1989. The origin of metamorphic core complexes and detachment faults formed duringTertiary continental extension in the northern Colorado River region, USA[J]. Struct Geol, 11: 65~94.
    LISTER G. S., SNOKE A. W., 1984. S-C mylonites[J]. Journ. Struct. Geol.Econ Geol., 1984(6): 617~638. LONG L. T., ZELT K. H., 1991. A local weaking of the brittle-ductile transition can explain can explain some intraplate seismic zones[J].Tectonophysics,186:175~192.
    MARUYAMA S., ISOZAKI Y., KIMURA G., et al., 1997. Paleogeographic maps of the Japanese Island: plate tectonic synthesis from 750Ma to the present[J]. Island Arc, 6: 121~142.
    MARUYAMA S., SANO T., 1986. Orogeny and relative plate motion:Example of the Japanese Island[J]. Tectonophysics, 102: 53~84.
    MARUYAMA S, 1994. Plume motions and deep mantle convection[J],Soc.Japan, 100: 24~49.
    MCCLAY K., BONORA M., 2001. Analog models of restraining stepovers in strike-slip fault systems[J]. AAPG Bulletin, 85(2): 233~260.
    MELOSH H, RAEFSKY A., 1981. A simple and efficient method for introducing faults into finite element computations[J]. Bull seism Soc Am, 135: 1391-1400.
    MOORES G. W., 1988. Mesozoic and Cenozoic paleogeographic development of the Pacific region[C]. Abstract, 28th International Geological Congress[A], Washington D C, USA, 2:455~456.
    MORGAN W. J., 1972. Plate motions and deep mantle convection[J]. Geol. Soc. Am. Mem., 132: 7~22. MORLEY C. K., 1987. Extension, detachments and sedimentation in continental rifts(with particular reference to east Africa)[J]. Tectonics, 8: 1175~1192.
    MORLEY C. K., 1999. Patterns of displacement along large normal faults:implications for basin evolution and fault propagation, based on examples from East Africa[J]. American Assoc Petroleum Geol Bull, 74: 1234~1253.
    MORLEY C. K., GABDI S., SEUSUTTHIYA K., 2007. Fault superimposition and linkage resulting from stress changes during rifting: Examples from 3D seismic data, Phitsanulok Basin, Thailand[J]. Journal of Structural Geology, 29: 646~ 663.
    MORLEY C. K., IONNIKOFF Y., PINYOCHON N., et al., 2007. Degradation of a footwall fault block with hanging-wall fault propagation in a continental-lacustrine setting: How a new structural model impacted field development plans, the Sirikit field, Thailand[J]. AAPG Bulletin, 91(11): 1637~1661.
    MORLEY C. K., NELSON R. A., PATTON T. L., et al., 1990. Transfer zones in the East African rift system and their relevance to Hydrocarbon exploration in Rifts[J]. The American Association of Petroleum Geologists Bulletin, 74(8): 1234~1253.
    MORLEY C. K., WONGANAN N., Kornasawan A., et al., 2004. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: Examples from the rifts of Thailand[J]. Journal of Structural Geology, 26: 1803~1829.
    MOUSTAFA A. R., 2002. Controls on the geometry of transfer zones in the Suez rift and northwest Red Sea: Implications for the structural[J]. AAPG Bulletin, 86(6):979~1002.
    OTHMAR T. T., JASON B. S., PAUL R. R., et al., 1995. Variations in deformation fields during development of alarge-volume magmatic arc, central Zierra Nevada,California[J]. GSA Bull, 107(2): 148~166.
    REN J. Y., Li S. T., LIN C. S., 1997. Late Mesozoic intracontinental rifting and basin formation in Eastern China[J]. Journal of China University of Geosciences, 8(1):40~44.
    RICE J. R., 1992. Fault stress states, pore pressure distribution, and the weakness of the San Andreas fault. Fault mechanics and transport properties of rock, Eds. Evans B and Wong T F. Academic Press, London, 475~503.
    ROSENBAUM G., REGENAUER-LIEB K., WEINBERG R. F., 2005. Continental extension: From core complexes to rigid block faulting[J]. Geology, 33: 609~612.
    STEIN R. S., KING G. C. P., LIN J., 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake[J]. Science, 258: 1328~1332.
    STEIN S., SELLA G. F., and OKAL E. A., 2002. The January 26, 2001 Bhuj earthquake and the diffuse western boundary of the Indian plate, in Plate Boundary Zone[A], edited by STEIN S., and FREYMUELLER J. [M], AGU, Washington, D.C., 243~254.
    STEWART S. A., REEDS A., 2003. Geomorphology of kilometerscale extensional fault scarps: Factors that impact seismic interpretation[J]. AAPG Bulletin, 87: 251~272.
    THURBR C. H., 1983. Earthquake locations and three-dimensional crustal structure in the Coyote late area, Central California [J]. J. Geophys. Res., 88: 8226~8236.
    WANG Y., LI H. M., 2008. Initial formation and mesozoic tectonic exhumation of an intracontinental tectonic blt of the northern part of the Taihang Mountain belt, Eastern Asia[J]. Jounal of Geology, 116(4): 155~172.
    WANG C. Y., WU Q. J., ZHANG X. K., 1994. A detachment revealed by deep seismic reflection profiling in Jizhong Depression[J]. Chinese Science Bulletin, 39(13): 1112~1116.
    WANG Q., ZHANG P. ZH., FREYMULLER T. J., et al, 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science, 2001(294):574~577.
    WEINBERG R. F., REGENAUER-LIEB K., ROSENBAUM G., 2007. Mantle detachment faults and the breakup of cold continental lithosphere[J]. The Geological Society of America, 35(11): 1035~1038.
    WERNICKE B., 1989. Low-angle normal faults in the basin and range province: nappe tectonics in an extending orogen[J]. Nature, 291: 645~648.
    WILSON J. T.,1963. Mantle plume and Plate motionl[J]. Tectonophysics, 19(2): 149~164.
    WU F. Y., WALKER R. J., REN X. W., et a1., 2003.Osmium isotopic constraints on the age of hthospheric mantle beneath northeastern China[J]. Chem. Geo1., 196: 107~129.
    YANG J. H., WU F. Y., WILDE S. A., 2003. Geodynamic setting of argescale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning[J]. Ore Geo1. Rev., 23: 125~152.
    YOSHIHISA I., KOBAYASHI Y., 2002. A physical understanding of large intraplate earthquakes[J]. Earth Planets Space, 54, 1001~1004.
    ZHANG Y. Q., DONG S. W., SHI W., 2003. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province,Eastern China[J]. Tectonophysics, 363(3-4):243~ 258.
    ZHAO D., HASEGAWA A., HORIUCHI S., 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan[J]. J. Geophys. Res., 97: 19909~19928.
    ZHENG Y., WANG Y., LIU R., et al., 200?. Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beijing,China[J]. J Struct Geol, 10(2): 135~144.
    GAO S. S., LIU K. H., CHEN C., 2004. Significant crustal thinning beneathe Baikal rift zone:New constraints from receiver function analysis[J]. Geoph sical Research Letters, 2004(31):L20610, doi: 10.1029/2004GL020813.
    DENG J. F., MO X. X., ZHAO H. L., et a1., 2004. A new model for the dynamic evolution of Chinese lithosphere: continental roots plume tectonics[J]. Earth Science Reviews, 2004(65): 223~275.
    WILDE S. A., ZHOU X. H., SUN M., 2003. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia[J]. Geology, 2003(31): 817~820.
    
    WINDLEY B. F., MARUYAMA S., XIAO W., 2005. Multiple subduction of hydrated oceanic lithosphere as the cause of the removal of hydroweakened subconfinental lithosphere under eastern China[C]. in: The Origin, Evolution and Present State of Subcontinental Lithosphere. IUGS-SECE(Commission on SoLd Earth Composition & Evolution), Abstract, Conference, June 25~30, Beijing, 31~33.
    白瑾、黄学光、王惠初、等,1996.中国前寒武纪地壳深化(第二版)[M].北京地质出版社:1~259.
    蔡希源、王根海、迟元林、等,2001.中国油气区反转构造[M].北京:石油工业出版社,1~563.
    崔盛芹、李锦蓉、孙家树、等,2000.华北陆块北缘构造运动序列及区域构造格局[M].地质出版社:1~318.
    邓晋福、赵海玲、莫宣学、等,1996.中国大陆根柱构造—大陆动力学的钥匙[M].北京:地质出版社,1~110.
    高文学、马瑾,1993.首都圈地震地质环境与地震灾害[M].北京:地震出版社,1~452.
    管守锐、赵澂林,1991.岩浆岩及变质岩简明教程[M].石油大学出版社,8~229.
    国家地震局震害防御司,1995.中国历史强震目录(公元前21世纪至公元1911年,M≥4.7)[M].北京:地震出版社,1~514.
    国家地震局震害防御司编,1999.中国近代地震目录(公元1912年至1990年,M≥4.7),1~637. 河北省地震局,1980.一九六六年邢台地震.地震出版社,1~294.
    河北省地质矿产部,1989.河北省、北京市、天津市区域地质志(1:500000)[M].地质出版社,1~635.
    黄汲清、任纪舜,1981.中国大地构造及其演化[M].北京:科学出版社,1~124.
    李丕龙、张善文、曲寿利、等,2003.陆相断陷盆地油气地质与勘探[M].卷一“陆相断陷盆地构造演化与构造样式”.石油工业出版社及地质出版社:1~200.
    李行船,2007.油气运移动力学及动力耦合作用机制研究-以东营凹陷为例(博士论文).中国地震局地质研究所,1~131.
    陆克政、漆家福,1997,渤海湾新生代含油气盆地构造模式[M].北京:地质出版社,1~251.
    罗照华、邓晋福、韩秀卿,1999.太行山造山带岩浆活动及其造山过程反演[M].北京:地质出版社,1~124.
    马文璞,1992.区域构造解析[M].地质出版社:1~308.
    马杏垣、丁国瑜、高文学、等,1989.中国岩石圈动力学地图集[M].中国地震局《中国岩石圈动力学地图集》编委会编制,中国地图出版社:1~68.
    马宗晋、杜品仁、洪汉净,2003.地球构造与动力学[M].广东科技出版社,1~564.
    马宗晋、傅征祥、张郢珍、等,1982.1966~1976年中国九大地震[M].北京:地震出版社,1~216.
    牛树银、陈路、许传诗、等,1994.太行山山区地壳演化及成矿规律[M].地震出版社:1~200.
    漆家福、夏义平、杨桥,2006.油区构造解析[M].石油工业出版社:1~155.
    任纪舜、陈廷愚、牛宝贵、等,1990.中国东部及邻区大陆岩石圈的构造演化及成矿[M].北京:科学出版社,1~205.
    宋长青,1998.邢台地震区浅、深部构造关系及震源破裂结构和破裂过程的研究.中国地震局地质研究所硕士学位论文(论著98H0004).
    孙冬胜,2001.冀中坳陷中区中新生代复合伸展构造(博士论文).西北大学,1~90.
    唐方头,2003.华北地块近期构造变形和强震活动特征研究(博士论文).中国地震局地质研究所,1~131.
    唐智、吴华元,1989.中国石油地质志(5)-华北油田[M].北京:石油工业出版社,1~569.
    田在艺,1997.田在艺石油地质论文选集(第1版)[M].北京:石油工业出版社:1~342.
    万天丰,2004.中国大地构造学纲要[M].地质出版社:1~386.
    万天丰,2004.中国大地构造学纲要[M].地质出版社:216~231.
    王鸿祯,1985.中国古地理图集[M].北京:地图出版社:1~281.
    吴忱、马永红、张秀清、等,1999.华北山地地形面地文期与地貌发育史[M].石家庄:河北科技出版社,1~285.
    徐杰,1986.华北平原新生代裂陷区的伸展构造及与地震活动的关系[博士论文].中国地震局地质所,1~113.
    徐锡伟、吴为民、张先康、等,2002.首都圈地区地壳最新构造变动与地震[M].北京:科学出版社,1~376.
    叶连俊,1983.华北地台沉积建造[M].北京:科学出版社:科学出版社,1~141.
    张国民、傅征祥、桂燮泰、等,2001.地震预报引论[M].北京:科学出版社,1~399.
    赵重远、刘池洋,1990.华北克拉通沉积盆地形成与深化及油气赋存[M].西安:西北大学主出版社:1~189.
    郑建平,1999.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社,1~148.
    中国地震局分析预报中心的台网目录(1970-现在),电子版.
    朱夏、徐旺,1990,中国中新生代沉积盆地[M].北京:石油工业出版社,1~319.
    FRIEDMANN J.S.著、张映红译,1997,裂陷盆地与强拆离盆地-陆内伸展盆地的两个端元[J].世界地质,16(4):1~9.
    RINGWOOD A.E.,1975.Composition and petrology of the earth’s mantle[M].Printed 1975 by McGraw Hill,Inc.U.S.A.(杨美娥、何永年、胥怀济等译,1981.地幔的成份及岩石学[M].地震出版社:1~176.)
    段智斌,1995.济阳坳陷第三系古应力测定及应力场分析.中石化胜利油田地质院.
    华北石油管理局勘探开发研究院,1992.临清坳陷巨鹿地区早期含油气评价及勘探方向(内部资料).
    纪友亮、王金友、赵俊青、等,1999.临清坳陷西部构造沉积特征及成藏条件分析(内部资料).
    李亦纲、陈建强、常树国,等,2006.“邯郸市区第四系三维层序-构造可视化建模与分析”项目报告.
    刘启元、陈九辉、李顺成,等,2006.“邯郸市辖区宽频带地震台阵深部探测”项目报告.
    秦云龙、于文君、王俊鸿,1992.临清坳陷冀南地区基本石油地质特征及勘探方向(附图集).华北石油管理局勘探开发研究院(内部资料).
    秦云龙、于文君、王俊鸿,1992.临清坳陷冀南地区基本石油地质特征及勘探方向.华北石油管理局勘探开发研究院(内部资料).
    曲国胜、陈建强、许华明,等,2007.《邯郸市活断层探测与地震危险性评价和市区震害预测工程》“跨断层钻孔探测和断层活动性评价”项目报告.
    王东良,1992.巨鹿地区巨1井油气条件综合评价.华北石油管理局勘探开发研究院(内部资料).
    徐明才、柴铭涛、王广科,等,2006.“邯郸市目标断层区域和详勘浅层地震探测综合解释”项目报告.
    许华明、李亦纲、周龙泉,等,2007.《邯郸市活断层探测与地震危险性评价和市区震害预测工程》“综合地质地球物理解释(含小震重新定位)”项目报告.
    徐杰、董瑞树、王若柏等,1998.华北地区新生地震构造带和区域地震构造格局研究结题报告,中国地震局地质所.
    赵瑞斌、许华明、陈建强,2006.“邯郸市区域地震构造图与辖区活断层分布图编制”专题《邯郸市区域地震构造图》说明书(1:250,000).
    赵瑞斌、许华明、陈建强,2006.“邯郸市区域地震构造图与辖区活断层分布图编制”专题《邯郸市辖区活断层分布图》说明书(1:50,000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700