用户名: 密码: 验证码:
高温高压下镁橄榄石物性第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过第一性原理结合准简谐德拜模型研究了α和β镁橄榄石的高温高压结构及相变特征;计算了α和β镁橄榄石的弹性模量、波速、电子带结构、带隙等随压力的变化规律,并探讨了相变对这些性质的影响;研究了水对α镁橄榄石弹性模量、波速和带隙的影响;探讨了水对地幔中不连续层的作用以及矿物相变对过渡带波速不连续的作用。
     本文研究主要取得以下一些陈果:
     1.镁橄榄石晶格中存在水(H-O)会使镁橄榄石弹性模量及波速降低。在0-14GPa的压力下,含3.2wt%水的镁橄榄石比不含水镁橄榄石的Vp和vs值分别降低了3.1-7.1%和3.6-9.7%。在常温常压下,2个氢原子置换1个镁原子会使镁橄榄石的密度降低3.0%,是波速及弹性模量减小的原因,同时使镁橄榄石体系的基态总能增加,降低矿物的稳定性和键之间的强度。这可能是壳幔内形成低速层的重要原因。
     2.带结构和态密度研究表明随着压力的增加,α和β镁橄榄石带隙增加,绝缘性增强。这表明镁橄榄石的导电可能不是由镁离子位置上的质子移动引起的。自然界中橄榄石导电是因为其中掺杂了铁、氢或者别的杂质粒子引起,镁离子占据全部阳离子位置时,橄榄石不会导电。
     3.水减小了镁橄榄石带隙。两个氢原子替代了一个镁原子后,增强了晶体结构中的电子运移,但是含水镁橄榄石仍然是不导电的。氢替代橄榄石晶格中的二价离子可能对镁橄榄石导电性影响较小。
     4.第一性原理结合准简谐德拜模型可以在不耗费太多机时的情况比较快捷的计算物质的高压高温特性,计算的α和β橄榄石晶格参数随温度压力的变化与实验结果一致。同时发现,LDA比GGA近似更适合模拟橄榄石体系特征。
     5.计算的α-β相边界在0-1000K范围内与实验结果符合的较好,而且实验结果正好落在LDA和GGA范围内。
     6.利用LDA和GGA计算镁橄榄石α-β相变引起矿物Vs平均值分别增加11.6%和10.4%;Vp均值分别增加9.2%和9.0%。
In this thesis, the crystal structure and phase transition behaviors of a andβforsterite (Mg2SiO4) at high temperature and high pressure were investigated by the first principle calculations and the quasi-harmonic Debye model. Variations of elastic properties, band structure, density of state, band gap ofαandβforsterite with pressure were calculated, and the effect ofα/βphase transition on these characters was analyzed. The effects of water on elastic modulus, sound velocity and band gap of forsterite were also simulated. Finally, the effect ofα/βphase transition and water on seismic discontinuity in earth was discussed.
     The main achievements are as follows:
     1. Adding water (H-O) in forsterite crystal cell decreases bulk modulus (K), shear modulus (G), and sound velocities (Vp, Vs) of forsterite. The sound velocities of hydrous forsterite reduce by 3.1-7.1% (Vp) and 3.6-9.7% (Vs) respectively at 0-14 GPa with 3.2wt% water. At the same time, the K, G, Vp, and Vs of forsterite decreased too because of density decrease 3.0% caused by H atoms replacing Mg atoms in the crystal. Water also increases the total energy of the forsterite system, i. e. the crystal stability and the power of bond were reduced at high pressure and temperature. This may be the main reason for formation the low velocity layers in the earth.
     2. The study results of band structure and density of state (DOS) indicate that band gaps and insulativity of a andβphases forsterite increase with increasing pressure. It indicates that electrical conduction ofα- andβ-phases is not caused by transport of protons bounded at Mg tetrahedral position. Conduction of natural olivine is induced by mixing of other particles like Fe, H. When Mg atom holds all cation positions, olivine is not conductive.
     3. Adding water in the forsterite crystal reduces the bag gap of the crystal. To replace one magnesium atom with two hydrogen atoms increases the electron transport of forsterite crystal, and the hydrous forsterite dose not become a conductor. The substitution of hydrogen with cation of lattice in crystal structure of forsterite has little effect on forsterite conduction.
     4. Combination of first-principles and the quasi-harmonic Debye model is an efficient approach to simulate the behavior of minerals at high pressure and/or high temperature. Variations of the calculated forsterite properties with temperature and pressure agree well with the experimental data.
     5. The calculated results are compatible with the previous experimental work at 0-1000 K. The experimental data just fall between LDA and GGA results. The results also show that LDA is more suitable to simulate characters of the olivine mineral system than GGA.
     6. The average increases of velocities caused by a-|3 phase transition are 11.6% (LDA) and 10.4%(GGA) for Vs and 9.2%(LDA) and 9.0%(GGA) for Vp respectively.
引文
1.黄美纯.密度泛函理论的若干进展.物理学进展, 20(3):199, 2000.
    2.金日东,金振民.蛇纹石脱水与大洋俯冲带中源地震(70-300 km)的关系.地学前缘, 13:191-204, 2006.
    3.刘雷,杜建国,易丽.亚稳态橄榄石相变与深源地震研究进展.地震2007 ,27(3):41-49.
    4.汪志诚,热力学统计物理(第二版),北京:高等教育出版社, 1993.谢希德,陆栋.固体的能带理论.上海:复旦大学出版社, 1998.
    5. Agee CB. Phase transformations and seismic structure in the upper mantle and transition zone. In: Hemley RJ. (eds).“Ultrahigh-pressure mineralogy: physics and chemistry of the Earth’s deep interior”. Reviews Mineralogy, Washington, DC, 1998.
    6. Akamatsu T, Kumazawa M. Kinetics of intracrystalline cation redistribution in olivine and its implication. Phys Chem Minerals, 19:42-430, 1993.
    7. Akaogi M, Ito E, Navrotsky A. Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res, 94:15671–15685, 1989.
    8. Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T. Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, andα-β-γand post-spinel phase relations at high pressure. Phys Chem Minerals, 34:169–183, 2007.
    9. Akimoto S. High pressure research in geophysics: past, present, and future. In: Manghnani MH, Syono Y. (eds) High pressure research in mineral physics, Terra, Tokyo, 1987.
    10. Alder BJ, Wainwright TE. Studies in molecular dynamics: I. General method. J Chem Phys, 31:459–66, 1959.
    11. Artuioli G, Rinldi R, Wilson CC, Zanazzi PF. High temperature Fe-Mg cation partitioning in olivine: In situ single-crystal neutron diffraction study. Am Mineral, 80:197-200, 1995.
    12. Barin I, Knacke O. Thermochemical properties of inorganic substances. Springer, Berlin, 1973.
    13. Baroni S, de Gironcoli S, Dal Corso A. Gianozzi P. Phonons and related crystalproperties from density-functional perturbation theory. Rev Mod Phys, 73: 515–562, 2001.
    14. Barth U and Hedin L. A local exchange-correlation potential for the spin polarized case: I . J Phys C: Solid State Phys, 5:1629-1642, 1972.
    15. Bass JD. Elasticity of minerals, glass, and melts. In Ahrens TJ (eds), Mineral physics and crystallography: A handbook of physical Constants, Am Geophys Union Reference Shelf, Washington, DC, 1995.
    16. Bell D R, Rossman G R. Water in earth’s mantle: The role of nominally anhydrous minerals. Science 255:1391–1397, 1992.
    17. Belonoshko AB, Dubrovinsky L S. Molecular dynamics of. NaCl (B1–B2) and MgO (B1) melting: two-phase simulation. Am Mineral, 81: 303-306, 1996.
    18. Belonoshko AB. Molecular dynamics simulation of phase transitions and melting in MgSiO3 with the perovskite structure. Am. Mineral. 86: 193-194, 2001.
    19. Bernal JD. Geophysical discussion. Observatory, 59:286, 1936.
    20. Blanco M A, Francisco E and Lua?a V. GIBBS: isothermal isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun, 158:57–72, 2004.
    21. Blum J and Shen Y. Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa. Earth Planet Sci Lett, 217: 367-378, 2004.
    22. Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford, 1954.
    23. Boschi L, Ekstr?m G, New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies. J. Geophys. Res. 107 (B4). doi:10.1029/2000JB000059,2002.
    24. Bridgman P W. Polymorphic transition and geological phenomenon. Am J Sci, 247A:90-97, 1945.
    25. Brodholt JP, Patel A and Refson K. An ab initio study of the compressional behavior of forsterite. Am Mineral, 81:257-260, 1996.
    26. Brodholt JP. Ab initio calculations on point defects in forsterite (Mg2SiO4) and implications for diffusion and creep. Am Mineral, 82:1049–1053, 1997.
    27. Brown GE, Prewitt, CT. High temperature crystal chemistry of hortonolite. Am Mineral, 57:577-587, 1973.
    28. Brown JM, Shankland TJ. Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J Roy Astronomy Soc, 66: 579–596, 1981.
    29. Burnley P C, Green H WⅡ, Prior D. Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes. J Geophys Res, 96:425-443, 1991.
    30. Car R and Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett, 55:2471–4274, 1985.
    31. Carminati E, Negredo AM, Valera JL. Subduction related intermediate depth and deep seismicity in Italy: insights from thermal and rheological modeling. Phys Earth Planet Inter, 149:65-79, 2005.
    32. Catlow C R A and Norgett M J. Shell model calculations of the energies of formation of point defects in alkaline earth fluorides. J Phys C: Solid State Phys, 6:1325–39, 1973.
    33. Ceperley DM and Alder BJ. Ground State of the Electron Gas by a Stochastic Method. Phys ReV Lett, 45:566–569, 1980.
    34. ChenJ H, Inoue T, Yurimoto H, et al. Effect of water on olivine-wadsleyite phase boundary in the (Mg,Fe)2SiO4 system. Geophys Res Lett, 29:1-4, 2002.
    35. Cheung P S Y and Powles J G. The properties of liquid nitrogen: a computer simulation. Molec Phys, 30:921–36, 1975.
    36. Chopra PN, Paterson MS. The role of water in the deformation of dunite. J Geophys Res, 89:7861–7876, 1984.
    37. Chudinovskikh L, Boehler R. High-pressure polymorphs olivine and the 660 km seismic discontinuity. Nature, 411: 574-577, 2001.
    38. Churakov SV, Khisina N R, Urusov V S, Wirth R. First-principles study of (MgH2SiO4)·n (Mg2SiO4) hydrous olivine structures. I. Crystal structure modelling of hydrous olivine Hy-2a (MgH2SiO4)·3(Mg2SiO4). Phys Chem Minerals, 30: 1– 11, 2003.
    39. Clark SJ, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C. First principle methods using CASTEP. Zeitschrift fuer Krystallographie. 220(5-6):567-570, 2005.
    40. Cohen R E. Elasticity and equation of state of MgSiO3 perovskite. Geophys Res Lett, 14:1053–6, 1987.
    41. D’Arco Ph, Sandrone G, Dovesi R, ApràE. & Saunders VR. A quantum-mechanical study of the relative stability under pressure ofMgSiO3-ilmenite, MgSiO3-perovskite, and MgO-periclase, SiO2-stishovite assemblage. Phy Chem Miner, 21:285–293, 1994.
    42. D’Arco Ph, Sandrone G, Dovesi R, Orlando R, Saunders VR. A quantum mechanical study of the perovskite structure type of MgSiO3. Phys Chem Minerals, 20: 407-414, 1993.
    43. D??ler R, Yuen DA, Karato S. Two-dimensional thermo-kinetic model for the olivine-spinel phase transition in subducting slabs. Phys Earth Planet Inter, 94:217–239, 1996.
    44. Demouchy S,Mackwell S. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys Chem Minerals, 33: 347–355, 2006.
    45. Dennis J G, Walker C T. Earthquakes resulting metastable phase transitions. Tectonophysics, 2:401-407, 1965.
    46. Devaux JP, Schubert G, Anderson C. Formation of a metastable olivine wedge in a subducting slab. J Geophys Res, 102: 24627–24637, 1997.
    47. Duffy TS, Zha CS, Downs RT, Mao HK and Hemley RJ. Elasticity of forsterite to 16 GPa and the composition of the upper mantle. Nature, 378:170-173, 1995.
    48. Durinck J, Legris A and Cordier P. Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations. Am Mineral. 90: 1072-1077, 2005.
    49. Dziewonski AM, Anderson DL. Preliminary reference earth model. Phys Earth Plant Inter, 25:297-356, 1981.
    50. Fei Y, Bertka CM. Phase transitions in the Earths mantle and mantle mineralogy. In: Fei Y, Bertka CM, Mysen BO, eds.“Mantle Petrology: Field Observations at High Pressure Experimentation: ATribute to Francis R. (Joe) Boyd”, The Geochemical Society Special Publication 6: 189-207, 1999.
    51. Fei Y. Thermal expansion. In: Ahrens TJ (eds), Mineral physics and crystallography: A handbook of physical Constants. Am Geophys Union Reference Shelf 2, Washington, DC, 1995.
    52. Fletcher RC, Pollard DD. Anti-crack model for pressure solution surfaces. Geology, 9:419-421, 1981.
    53. Frohlich C. The nature of deep-focus earthquakes. Ann Rev Earth Planet Sci, 17:227-254, 1989.
    54. Frost DJ, Dolej? D. Experimental determination of the effect of H2O on the410-km seismic discontinuity. Phys Earth Planet Inter, 256: 182–195, 2007.
    55. Gibson JB, Goland AN, Milgram M, Vineyard GH. Dynamics of radiation damage. Phys Rev, 120:1229–53, 1960.
    56. Gillan MJ, Alfe D, Brodholt J, Vocadlo L, Price GD. First-principles modelling of Earth and planetary materials at high pressures and temperatures. Rep Prog Phys, 69: 2365–2441, 2006.
    57. Goedcker G. Linear scaling electronic structure methods. Mod Phys Rev B, 71:1085, 1999.
    58. Goss EKU. Local density-functional theory of frequency-dependent linear response. Phys Rev Lett, 55:2850-2852, 1985.
    59. Grand SP and Hetmberger DV. Upper mantle shear structure of North America. Geophys J R Astron Sot, 76:399-438, 1984.
    60. Green H WⅡ, Burnley P C. A new self-organizing mechanism for deep-focus earthquakes. Nature, 341:733-737, 1989.
    61. Green H WⅡ, YoungT E, Walker D. Anticrack-associated faulting at very high pressure in natural olivine. Nature, 348: 720-722, 1990.
    62. Green HWⅡ, Scholz CH, Tingle TN. Acoustic emissions produced by anticrack faulting during the olivine→spinel tranformation. Geophys Res Lett, 19:789-792, 1992a.
    63. Green HW II, Y Zhou. Transformation-induced faulting requires an exothermic reaction and explains the termination of earthquakes at the base of the mantle transition zone. Tectonophysics, 256: 39-56, 1996.
    64. Griggs D, Handin J. Observations on fracture and a hypothesis of earthquakes. Mem Geol Soc Am, 79:347-373, 1960.
    65. Griggs D T, Baker D W. The origin of deep-locus earthquakes, in Properties of Matter under unusual conditions. New York: J Wiley, 23-42, 1968.
    66. Griggs D T. High-pressure phenomena with applications to geophysics, in Moden physics for the engineer. In: Ridenour LN (eds), New York: McGraw-Hill, 72-305, 1954.
    67. Griggs D. The sinking lithosphere and the focal mechanism of deep earthquakes, in The Norrrre of tlte Solid Emtlz. Robertson EC (eds), New York: McGraw-Hill, 361-384, 1972.
    68. Guyot F Y, Wang P, Gillet L and Ricard Y. Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature: Acomparison with experiment data. Phys Earth Planet Inter, 98:17– 29, 1996.
    69. Gwanmesia GD, Rigden S, Jackson I, Liebermann RC. Pressure dependence of elastic wave velocity forβ-Mg2SiO4 and the composition of the Earth’s mantle. Science, 250:794-797, 1990.
    70. Hafner J and Heine V. Theory of atomic interactions in (s,p)-bonded metals J. Phys F: Met Phys, 16:1429–58, 1986.
    71. Hamann DR, Schlüter M, Chiang C. Norm-Conserving Pseudo potentials. Phys Rev Lett, 43:1494–1497, 1979.
    72. Hazen RM, Downs RT, Finger LW. High pressure crystal chemistry of LiScSiO4, an olivine with nearly isotropic compression. Am Mineral, 81:327-334, 1996.
    73. Hazen RM, and Downs RT. High-Temperature and High-Pressure Crystal Chemistry, Reviews in Mineralogy and Geochemistry, Volume 41. Robert M. Hazen and Robert T. Downs, Editors. Mineralogical Society of America, Washington, DC, 2000.
    74. Hazen RM, Finger LW. Crystal structure of forsterite at 40 kbar. Carnegie Inst Wash Yearb, 79:364-367, 1980.
    75. Hazen RM. Effects of temperature and pressure on the crystal structure of forsterite. Am Mineral, 61:1280-1293, 1976.
    76. Hazen RM. Effects of temperature and pressure on the crystal structure of ferromagnesian olivine. Am Mineral, 62:286-295, 1977.
    77. Hazen RM. High pressure crystal chemistry of chrysoberyl Al2BeO4: Insights on the origin of olivine. Am Mineral, 62:286-295, 1987.
    78. Hendin L, Lundqvist BI. Explicit local exchange-correlation potential. J Phys C: Solid State Phys, 4:2064-2083, 1971.
    79. Hobbs B E, Ord A. Plastic instabilities: Implications for the origin of intermediate and deep focus earthquakes. J Geophys Res, 93:10521-10540, 1988.
    80. Hohenberg P and Kohn W. Inhomogeneous electron gas. Phys Rev. 136B: 864–71, 1964.
    81. Hosoya T, Kubo T, Ohtani E, et al. Water controls the fields of metastable olivine in cold subducting slabs. Geophys Res Lett, 32( L17305):1-4, 2005.
    82. Iidaka T, Suetsugu D. Seismological evidence for metastable olivine inside a subducting slab. Nature, 356:593-595, 1992.
    83. Ito E, Takahashi E. Postspinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J Geophys Res, 94:10637–10646, 1989.
    84. Jackson JM, Sinogeikin SV, Bass JD, Liebermann RCE, Isaak DGE. Sound velocities and elastic properties of gamma-Mg2SiO4 to 873K by Brillouin spectroscopy. Am Miner, 85 (2): 296–303, 2000.
    85. Jacobsen SD, Jiang F, Smyth JR, Duffy TS, Mao Z, Holl CM, Frost DJ. Sound velocities of hydrous olivine and the effect of water on the equation of state of nominally anhydrous minerals. American Geophysical Union, Fall Meeting 2006, abstract #V53F-03.
    86. Jagoutz E, and eight co-authors. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proc Lunar Planet Sci Conf, X: 2031-2050, 1979.
    87. Jaoul O, Bertran-Alvarez Y, Liebermann R C and Price G D. Fe-Mg interdiffusion in olivine up to 9 GPa at T = 600–900 ?C experimental data and comparison with defect calculations Phys. Earth Planet. Inter.89:199–218, 1995.
    88. Jiang XF and Guo G Y. Electronic structure, magnetism, and optical properties of Fe2SiO4 fayalite at ambient and high pressures: A GGA+U study. Physical Review B, 69:155108-1-6, 2004.
    89. Jiang XF and Guo G Y. First-principles studies of the electronic structure and magnetism in fayalites: M2SiO4 (M=Fe and Co). Journal of Magnetism and Magnetic Materials, 282:287-290, 2004.
    90. Jorgensen W, Chandrasekhar J, Madura J D, Impey R W and Klein M L. Comparison of simple potential functions for simulating liquid water. J Chem Phys, 79:926–41, 1983.
    91. Karato S. The role of hydrogen in the electrical conductivity of the upper mantle.Nature, 347: 272–-273, 1990.
    92. Karato SI, Paterson MS, FitzGerald JD. Rheology of synthetic olivine aggregates: influence of grain size and water.J Geophys Res 91:8151–8176, 1986.
    93. Karki B B, Stixrude L, Clark S J, Warren MC, Ackland G J and Crain J. Elastic properties of orthorhombic MgSiO3 at lower mantle pressures. Am Miner, 82:635–8, 1997.
    94. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286:1705–1707, 1999.
    95. Karki BB, Wentzcovitch RM, de Gironcoli S. Baroni S. High-pressure lattice dynamics and thermoelasticity of MgO. Phys Rev B: Condens Matter,61:8793–8800, 2000a.
    96. Katsura T, Ito E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J Geophys Res, 94:15663–15670, 1989.
    97. Kawada K. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures in the earth’s interior. PhD thesis, University of Tokyo, 1977.
    98. Kawakatsu H. Insignificant isotropic component in the moment tensor of deep earthquakes. Nature, 351:50-53, 1991.
    99. Khisina NR, Wirth R. Hydrous olivine (Mg1-yFey)2-xVxSiO4H2x a new DHMS phase of variable composition observed as nanometer-sized precipitations in mantle olivine. Phys Chem Minerals, 29: 98-111, 2002.
    100.Kirby SH, Durham WB, Stem L A. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science, 52:216-225, 1991.
    101.Kirby SH,Stein S,Okal E A. Metastable mantle phase transformation and deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 4(2):261- 306, 1996.
    102.Kirby SH. Localized polymorphic phase transformations in high-pressure faults and applications to the physical mechanism of deep earthquakes. J Geophys Res, 92: 13789–13800, 1987.
    103.Kohlstedt DL, Keppler H, Rubie DC. Solubility of water in theα、βandγphases of (Mg, Fe)2SiO4. Contrib Mineral Petrol, 123:345–357, 1996.
    104.Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects. Phys Rev A, 140:1133-1138, 1965.
    105.Kohn W. Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms. Phys Rev Lett, 76:3168-3171, 1996.
    106.Koper KD, Wiens DA. The wave guide effect of metastable olivine in slabs. Geophys Res Lett, 27:573–576, 2000.
    107.Koper KD, Wiens DA, Dorman LM. Modeling the Tonga slab: can travel time data resolve a metastable olivine wedge? J Geophys Res, 103:30079-30100, 1998.
    108.Kubo T, Ohtani E, Kato T, Shinmei T, Fujino K. Effects of Water on theα-βTransformation Kinetics in San Carlos Olivine. Science, 281: 85-87, 1998.
    109.Kudoh Y, Takeuchi T. The crystal structure of forsterite Mg2SiO4 under highpressure up to 149 kbar. Z Kristallogr, 117:192-302, 1985.
    110.Kudoh Y, Takeuchi T. Single crystal X-ray diffraction study on the bond compressibility of fayalite, Fe2SiO4 and rutile, TiO2 under high pressure. Physica 139&140B:333-336, 1986.
    111.Lager GA, Meagher EP. High temperature structure study of six olivines. Am Mineral, 63:365-377, 1978.
    112.Laio A and Parrinello M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99: 12562-12566, 2002.
    113.Li B. Compressional and shear wave velocities of ringwoodite gamma-Mg2SiO4 to 12 GPa. Am Miner, 88: 1312–1317, 2003.
    114.Lichtenstein A, Katsnelson M. Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach. Phys Rev B, 57:6884-6897, 1998.
    115.Litasov KD, Ohtani E, Kagi H and Ghosh S. Influence of water on olivine-wadsleyite phase transformation and water partitioning near 410-km seismic discontinuity.Water Dynamics: 3rd international workshop on water dynamics, edited by Tohji K, Tsuchiya N, Jeyadevan B. American Institute of Physics, 2006.
    116.Liu L. Phase transformation, earthquakes and the descending lithosphere. Phys Earth Planet Inter, 32:226-240, 1983.
    117.Liu L. Phase transformation and deep-focus earthquakes. Physica A, 221:143-151, 1995.
    118.Liu LG. Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature. Earth Planet Sci Lett, 24: 224-228, 1974.
    119.Maaloe S, Aoki K. The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib Mineral Petrol, 63:167-173, 1977.
    120.Mackwell SJ, Kohlstedt DL, Paterson MS. The role of water in the deformation of olivine single crystals. J Geophys Res, 90:11319-11333, 1985.
    121.Martin R M. Electronic Structure. Cambridge: Cambridge University Press, 2004.
    122.Martin RF and Donnay G. Hydroxyl in the mantle. Am Mineral, 57:554–570, 1972.
    123.Marton FC, Shankland TJ, Rubie DC, Xu Y. Effects of variable thermal conductivity on the mineralogy of subducting slabs and implications for mechanisms of deep earthquakes. Phys Earth Planet Inter, 149:3–64, 2005.
    124.Marton FC, Cohen RE. Prediction of a high-pressure phase transition in Al2O3 Am. Mineral. 79:789–92, 1994.
    125.Martoňák R, Laio A, Parrinello M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys Rev Lett, 90: 075503, 2003.
    126.Martoňák R, Laio A, Bernasconi M, Ceriani C, Raiteri P, Parrinello M. Simulation of structural phase transitions by metadynamics. Z Kristallogr. 220: 489-498, 2005.
    127.McGarr A. Seismic moments of earthquakes beneath island arcs, phase change, and subduction velocities. J Geophys Res, 82:256-264, 1977.
    128.Meade C, Jeanloz R. Acoustic emmissions and shear instabilities during phase transformation in Si and Ge at ultrahigh pressure. Nature, 339:616-618, 1989.
    129.Mechie J, Egorkin AV, Fuchs K, Ryberg T, Solodilov L, Wenzel F. P-wave mantle velocity structure beneath northern Eurasia from long-range recordings along the profile Quartz. Phys Earth Planet Inter, 79:269-286, 1993.
    130.Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state by fast computing machines. J Chem Phys, 21:1087–92,1953
    131.MgSiO3-perovskite: consequences for the inferred properties of the lower mantle. Geophys Res Lett, 28:2699–2702, 2001.
    132.Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T. The phase boundary between a- and b-Mg2SiO4 determined by in situ X-ray observation. Science, 265:1202–1203, 1994.
    133.Morozova EA, Morozov I.B, Smithson SB, Solodilov L. Lithospheric boundaries and upper mantle heterogeneity beneath Russian Eurasia; evidence from the DSS profile QUARTZ. Tectonophysics 329:333–344, 2000.
    134.Mosenfelder JL, Deligne NI, Asimow PD, Rossman GR. Hydrogen incorporation in olivine from 2–12 GPa. Am Mineral, 91:285–294, 2006.
    135.Mosenfelder JL, Marton FC, Ross, II CR, et al. Experimental constraints on the depth of olivine metastability in subducting lithosphere. Phys Earth Planet Inter, 127:165–180, 2001.
    136.Motoyama T, Matsumoto T. The crystal structure and the cation distributions of Mg and Fe of natural olivines. Mineralogical Journal, 14, 338-350, 1989.
    137.Murakami M, Hirose K, Kawamura K, Sata N and Ohishi Y. Post-perovskite phase transition in MgSiO3. Science, 304: 855–858, 2004.
    138.National Research Council. The role of fluids in crustal processes. NationalAcademy Press, Washington, 1990.
    139.Nielsen OH, Martin RM. First-Principles Calculation of Stress, Phys Rev Lett 50:697-770, 1983.
    140.Nielsen OH, Martin RM. Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. Phys Rev B, 32:3792- 3805, 1985.
    141.Nolet G, Grand SP, Kennett BLN. Seismic heterogeneity in the upper mantle. J Geophys Res, 99:23,753-23,766, 1994.
    142.Oganov A R, Shigeaki Ono. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’layer. Nature, 430: 445-448, 2004.
    143.Oganov AR, Brodholt JP, Price GD. Ab initio theory of thermoelasticity and phase transitions in minerals. EMU Notes in Mineralogy 4:83-170, 2002.
    144.Oganov AR, Brodholt JP, Price GD. Ab initio elasticity and thermal equation of state of MgSiO3 perovskite, Earth Planet Sci Lett, 184: 555-560, 2001.
    145.Oganov AR, Brodholt JP, Price GD. The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle. Nature, 411: 934-937, 2001.
    146.Ogawa M. Shear instability in a visco-elastic material as the cause of deep-focus earthquakes. J Geophys Res, 92: 13801-13810, 1987.
    147.Ono K, Esfarjani K, and Kawazoe Y. Computational Materials Science, Berlin: Springer, 1999.
    148.Ohtani E. Effect of water on phase transitions in the earth's mantle.CP898, Water Dynamics: 4th International Workshop on Water Dynamics edited by Tohji K, Tsuchiya N, and Jeyadevan B, 2007.
    149.Payne MC, Teter MP, Allan DC, Arias TA and Joannopoulos JD. Iterative minimization techniques for ab inito total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics. 64:1045-1097, 1992.
    150.Perdew JP, CheVary JA, Vosko SH. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 46:6671–6687, 1992.
    151.Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems, Phys Rev B, 23:5048-5079, 1981.
    152.Perpew JP and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 45:13244-13249, 1992.
    153.Piekarz P, Jochym PT, Parlinski K, ?azewski J. High-pressure and thermal properties ofγ-Mg2SiO4 from first-principles calculations. J Geophys Res, 17:3340-3344, 2002.
    154.Pontevivo A, Thybo H. Test of the upper mantle low velocity layer in Siberia with surface waves. Tectonophysics 416:113-131, 2006.
    155.Post RL Jr. High-temperature creep of Mt.Burnet dunite. Tectonophysics, 42:75-110, 1977.
    156.Priestley K, Debayle E. Seismic evidence for a moderately thick lithosphere beneath the Siberian Platform. Geophys. Res. Lett. 30 (3):1118-1121, 2003.
    157.Price GD Parker S C and Leslie M. The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys Chem Miner, 15: 181–90, 1987.
    158.Rahman A, Stillinger F H. Molecular dynamics study of liquid water. J Chem Phys, 55:3336–59, 1971.
    159.Redfern SAT, Henerson CMB, Knight KS, Wood BJ. High temperature order-disorder in (Fe0.5Mn0.5)2SiO4 and (Mg0.5Mn0.5)2SiO4 olivines: an in situ neutron diffraction study. Eur J Mineral, 9:287-300, 1997.
    160.Ringwood A E. Composition and petrology of the Earth’s mantle. New York: MeGraw-Hill, 1975.
    161.Ringwood A E. Phase transformations in descending plates and implications for mantle dynamics. Tectonophysics, 32:129-143, 1976.
    162.Ringwood AE, Major A. Synthesis of Mg2SiO4-Fe2SiO4 spinel solid solutions. Earth Planet Sci Letters, 1: 241-245, 1966.
    163.Ringwood AE. Olivine-spinel transformation in cobalt orthosilicate. Nature, 198:79-80, 1963.
    164.Ringwood AE. Prediction and confirmation of the olivine to spinel transition in Ni2SiO4. Geochim Cosmochim Acta, 26:457-469, 1962.
    165.Ringwood AE. The constitute of the mantle II: Further data on the olivine-spinel transition. Geochim Cosmochim Acta, 26:18-29, 1958.
    166.Ringwood A E. Composition and petrology of the Earth’s mantle. MeGraw-Hill, New York, 1975.
    167.Rubie D C, Ross C R II. Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes. Phys Earth Planet Inter, 86:223–241, 1994.
    168.Rubie DC. The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism. Mineral Ma, 50:399–415, 1986.
    169.Sharp ZD, Hazen RM, Finger LW. High pressure crystal chemistry of monticellite CaMgSiO4. Am Mineral, 72:748-755, 1987.
    170.Sherman DM. The high-pressure electronic structure of magnesiowüstite (Mg,Fe)O– applications to the physics and chemistry of the lower mantle. J Geophys Res, 6:14299–14312, 1991c.
    171.Shim S, Duffy TS, Shen G. The post-spinel transformation in Mg2SiO4 and its relation to the 660km seismic discontinuity. Nature, 411: 571-574, 2001.
    172.Sidorin I, Gurnis M, Helmberger DV. Dynamics of a phase change at the base of the mantle consistent with seismological observations. J Geophys Res, 104: 15005–15023, 1999.
    173.Sidorin I., Gurnis M, Helmberger DV,Ding X. Interpreting D’’seismic structure using synthetic waveforms computed from dynamic models. Earth Planet Sci Lett, 163: 31–41, 1998.
    174.Sinogeikin SV, Bass JD, Katsura T. Single-crystal elasticity of ringwoodite to high pressures and high temperatures; implications for 520 km seismic discontinuity. Phys Earth Planet Inter, 136 (1/2): 41–66, 2003.
    175.Slater J. A simplification of the Hartree–Fock method. Phys Rev, 81: 385 -390, 1951.
    176.Smyth JR, Hazen RM. The crystal structures of forsterite and hortonolite at several temperatures up to 900℃. Am Mineral, 58:588-593,1973
    177.Smyth JR,Frost DJ. The effect of water on the 410-km discontinuity: An experimental study. Geophysical Research Letters, doi:10.1029/2001GL014418, 2002.
    178.Smyth JR. High temperature crystal chemistry of fayalite. Am Mineral, 72:1051-1055, 1975.
    179.Stein CA, Stein S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359:123–129, 1992.
    180.Stixrude L and Cohen RE. Stability of orthorhombic MgSiO3 perovskite in the Earth’s lower mantle, Nature, 364: 613-616, 1993.
    181.Sung, C M, Burns R G. Kinetics of the olivine-spinel transition: Implications to deep-focus earthquake genesis. Earth Planet Sci Lett, 32:165-170, 1976a.
    182.Sung C M, Burns R G. Kinetics of the high-pressure phase transformations: Implications to the evolution of the olivine-spinel phase transition in the downgoing lithosphere and its consequences on the dynamics of the mantle. Tectonophysics 31:1-32, 1976b.
    183.Suzuki. Thermal expansion of periclase and olivine and their anharmonic properties. J Phys Earth, 28:273-280, 1975.
    184.Sykes LR. Deep earthquakes and rapidly-running phase changes: A reply to Dennis and Walker. J Geophys Res, 73:1508-1510, 1968.
    185.Thybo H, Zhou S, Perchuc E. Intraplate earthquakes and a seismically defined lateral transition in the upper mantle. Geophys. Res. Lett. 27: 3953-3956, 2000.
    186.Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch R M. Phase transition in MgSiO3 perovskite in the earth’s lower mantle, Earth and Planetary Science Letters 224:241–248, 2004.
    187.Vaisnys JR, Pilbeam CC. Deep-earthquake initiation by phase transformation. J Geophys Res, 81:985-988, 1976.
    188.Van der Meijde, Marone MF, Giardini D, van der Lee S, Seismic evidence for water deep in Earth's upper mantle. Science, 300:1556-1558, 2003.
    189.Van der Meijde M, Van der Lee S, Giardini D. Seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter, 148:233–250, 2005.
    190.Vanderbilt D. Soft self-consistent pseudo potentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892-7895, 1990.
    191.Vaughan P J, Coe R S. Creep mechanism flow properties of the germanate analog of forsterite. Techtonophysics 86:389-404, 1981.
    192.Vo?adlo NL, Wall A, Parker SC and Price GD. Absolute ionic diffusion in MgO-computer calculations via lattice dynamics. Phys Earth Planet Inter, 89:199–218, 1995.
    193.Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations a critical analysis. Can J Phys, 58:1200-1211, 1980.
    194.Wang Duojun, Mookherjee M, Xu Yousheng, Karato S. The effect of water on the electrical conductivity of olivine. Nature, 443:977-980, 2006.
    195.Wang H, Chen Y, Kaneta Y, Iwata S. First-principles investigation of the structural, electronic and optical properties of olivine-Si3N4 and olivine-Ge3N4. J Phy: Condens Matter, 18:10663–10676, 2006.
    196.Wei S, Chou MY. Ab inito calculation of force constants and full phonon dispersions. Phys Rev Lett, 69:2799-2802, 1992.
    197.Wentzcovitch R, Ross NL and Price GD. Ab initio study of MgSiO3 and MgSiO3 perovskites at lower mantle pressures. Phys Earth Planet Inter, 90 101–12, 1995.
    198.Wentzcovitch R M, Martins J L and Price G D. Ab initio molecular dynamics with variable cell shape: application to MgSiO3, Phys Rev Lett, 70:3947–50, 1993.
    199.Wentzcovitch RM, Stixrude L. Crystal chemistry of forsterite; a first-principles study. Am Mineral, 82(7– 8):663– 671, 1997.
    200.Wood BJ. The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268: 74-76, 1995.
    201.Woodcock LV and Singer K. Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. Trans Faraday Soc, 67:12–32, 1971.
    202.Xu Y, Shankland TJ, Linhardt S, Rubie DC, Langenhorst F, Klasinski K. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Phys Earth Planet Inter, 143–144:321–336, 2004.
    203.Xu Yousheng, Poe BT, Shankland TJ, Rubie DC. Electrical conductivity of olivine, wadsleyite, and ringwoodite under upper-mantle conditions. Science, 280:1415-1418, 1998.
    204.Zha CS, Duffy TS, Downs RT, Mao HK, Hemley RJ, Weidner DJ. Single-crystal elasticity of the o and p polymorphs of Mg2SiO4 at high pressure, in: High-Pressure Temperature Research: Properties of Earth and Planetary Materials, Manghnani MH and Yagi T (eds), American Geophysical Union,Washington D C,1998.
    205.Zhao Yong-Hong, Ginsberg SB, Kohlstedt DL. Solubility of hydrogen in olivine: dependence on temperature and iron content. Contrib Mineral Petrol, 147: 155–161, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700