用户名: 密码: 验证码:
肾虚骨质疏松症大鼠骨、肾、下丘脑组织BMP6/BMP7、Smurf1/Smurf2的mRNA及其蛋白表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过研究摘除卵巢致肾虚骨质疏松症大鼠骨、肾、下丘脑组织中BMP6、BMP7、Smurf1、Smurf2的mRNA和蛋白的表达,揭示摘除卵巢致肾虚骨质疏松症的病理机制,并研究补肾壮骨益髓的补肾中药防治疗效及其作用机制。
     材料与方法:通过采用摘除大鼠双侧卵巢的方法,复制肾虚骨质疏松症模型。采用方证结合的办法,使用补肾中药对实验大鼠防治12周,同时用骨疏康颗粒剂、盖天力片(牡蛎钙)作为阳性对照组,正常大鼠、假手术组作为标准对照组,模型大鼠作为空白对照组,并与补脾中药(补中益气汤)作疗效的比较。12周后进行取材及实验指标的检测:使用双能X线骨密度仪检测离体大鼠左侧股骨的骨密度(BMD);用RT-PCR法及Western印迹法检测大鼠骨、肾、下丘脑组织中BMP6、BMP7、Smurf1、Smurf2的mRNA和蛋白表达。
     结果:
     (1)实验大鼠子宫指数比较:与正常组、假手术组比较,模型空白组明显降低,P<0.01。与模型空白组比较,补肾中药复方各组、盖天力组及骨疏康组有所升高,但均无显著性差异。
     (2)实验大鼠左侧股骨头骨密度BMD结果:与正常组、假手术组比较,模型空白组骨密度明显降低P<0.01。通过用药12周以后,与模型空白组比较,各用药组中补肾高剂量组、盖天力组可不同程度提高骨密度,其中补肾高剂量组效果最明显P<0.01。
     (3)RT-PCR法及Western法检测结果显示:正常大鼠骨、肾、下丘脑组织中存在BMP6的mRNA和蛋白表达;与正常组、假手术组比较,模空组BMP6 mRNA和蛋白的表达水平在骨、肾组织中明显降低P<0.01,而在下丘脑组织中表达明显升高P<0.01。用药12周后,与模空组比较,补肾高、低剂量组均可显著上调BMP6 mRNA和蛋白在骨、肾组织中的表达水平P<0.01;同时补肾高、低剂量组、补脾组、盖天力组、骨疏康组均可显著下调BMP6 mRNA和蛋白在下丘脑组织中的表达水平P<0.01。
     (4)RT-PCR法及Western法检测结果显示:正常大鼠骨、肾、下丘脑组织中存在BMP7的mRNA和蛋白表达;与正常组、假手术组比较,模空组BMP7 mRNA和蛋白的表达水平在骨、肾组织中明显降低P<0.01,而在下丘脑组织中表达明显升高P<0.01。用药12周后,与模空组比较,补肾高、低剂量组均可显著上调BMP7 mRNA和蛋白在骨、肾组织中的表达水平P<0.01;同时补肾高、低剂量组、补脾组、盖天力组、骨疏康组均可显著下调BMP7 mRNA和蛋白在下丘脑组织中的表达水平P<0.01。
     (5)RT-PCR法及Western法检测结果显示:大鼠骨、肾、下丘脑组织中存在Smurf1的mRNA和蛋白表达;与正常组、假手术组比较,模空组Smurf1 mRNA和蛋白的表达水平在骨、肾组织中明显降低P<0.01,而在下丘脑组织中表达明显升高P<0.01。用药12周后,与模空组比较,补肾高、低剂量组、补脾组均可明显上调Smurf1 mRNA和蛋白在骨、肾组织中的表达水平P<0.01;补肾高、低剂量组、补脾组、盖天力组、骨疏康组均可显著下调Smurf1 mRNA和蛋白在下丘脑组织中的表达水平P<0.01。
     (6)RT-PCR法及Western法检测结果显示:大鼠骨、肾、下丘脑组织中存在Smurf2的mRNA和蛋白表达,与正常组、假手术组比较,模空组Smurf2 mRNA和蛋白的表达水平在骨、肾组织中明显降低P<0.01,而在下丘脑组织中表达明显升高P<0.01。用药12周后,与模空组比较,补肾高、低剂量组可明显上调Smurf2 mRNA和蛋白在骨、肾组织中的表达水平P<0.01;补肾高、低剂量组、补脾组、盖天力组、骨疏康组均可明显下调Smurf2 mRNA和蛋白在下丘脑组织中的表达水平P<0.01。
     结论:
     (1)摘除大鼠双侧卵巢方法可以成功复制肾虚骨质疏松症模型。
     (2)正常大鼠骨、肾、下丘脑组织可以在基因、蛋白水平表达BMP6/BMP7、Smurf1/Smurf2,表明正常骨、肾、下丘脑组织中存在BMP6/BMP7、Smurf1/Smurf2,其在调节骨代谢过程中,起着重要的调控作用。
     (3)骨、肾组织中BMP6/BMP7、Smurf1/Smurf2的基因与蛋白表达下降和下丘脑组织中BMP6/BMP7、Smurf1/Smurf2的基因与蛋白表达升高,可能是肾虚骨质疏松症发生的重要机理之一。
     (4)补肾壮骨益髓方药可以提高骨、肾组织中BMP6/BMP7、Smurf1/Smurf2的基因与蛋白表达,同时可以降低下丘脑组织中BMP6/BMP7、Smurf1/Smurf2的基因与蛋白表达,起到防治肾虚骨质疏松症的作用。
     (5)BMP6/BMP7、Smurf1/Smurf2对骨代谢的调节作用,可能是中医学“肾主骨”调节机制之一。
Purpose : In order to explore the etiological factors and pathologh of the osteoporosis due to kidney deficiency,We study the expression of BMP6/BMP7 and smurf1/smurf2 mRNA and proteins in the femur, kidney, hypothalamus of the rats of osteoporosis due to kidney deficiency by using ovariectomy.To explore the adjustable function of Chinese medicine and its regulating mechanism.
     Materials and Method:By using ovariectomy, we established the rat model of osteoporosis due to Kidney-deficiency. We treated the osteoporosis rat with tonifying kidney Chinese herbs (high dose, small dosage) for 12 weeks. Simultaneously,used GuShuKang granule and GaiTianLi tablets, tonifying spleen Chinese herbs, as positive control groups. And rats in the normal group and model group were not given any treatment. We used dual energy X-ray bone density instrument to detect the bone mineral density of the femur of the rats. We used the RT–PCR and Western Blotting method to investigate the expression of BMP6/BMP7 and smurf1/smurf2 mRNA and proteins in the femur, kidney,hypothalamus of the rats.
     Result:
     (1)The comparation of uterus exponent of the experimental rats: Comparing with the uterus exponent of the normal group and fake operational group , the uterus exponent of the model group is lower evidently. Comparing with the uterus exponent of the model group,the experimental drug groups(high, small dosage),the Gushukang granule group and the Gaitianli tablets group can increase the uterus exponent,and tonifying spleen Chinese herbs can decrease the uterus exponent,but all of them have no significance difference in statistics.
     (2)The comparison of the BMD of the femur of the experimental rats:After 12 weeks,comparing with the normal group and fake operational group, the BMD of the femur has evident tendency to reduce;comparing with the model group,the BMD of femur increased evidently in the experimental drug groups(high dosage) and the Gaitianli tablets group.
     (3)RT-PCR and Western blotting detection: the BMP6 existed in the normal femur, kidney, hypothalamus tissue. Comparing with the normal group and fake operational group,the level of the expression of the gene and protein of BMP6 in the femur and kidney tissue of model group decreased evidently,and the level of the expression of the gene and protein of BMP6 in the hypothalamus tissue of model group increased evidently.After the precaution treatment with the experimental drug groups(high,small dosage)、Gushukang granule、Gaitianli tablets group and tonifying spleen Chinese herbs,the experimental drug groups(high,small dosage) can increase evidently the mRNA and protein expression level of BMP6 in the femur and kidney tissue;and the experimental drug groups(high,small dosage)、Gushukang granule、Gaitianli tablets group and tonifying spleen Chinese herbs can decrease evidently the mRNA and protein expression level of BMP6 in the hypothalamus tissue.
     (4)RT-PCR and Western blotting detection: the BMP7 existed in the normal femur, kidney,hypothalamus tissue. Comparing with the normal group and fake operational group,the level of the expression of the gene and protein of BMP7 in the femur and kidney tissue of model group decreased evidently,and the level of the expression of the gene and protein of BMP7 in the hypothalamus tissue of model group increased evidently.After the precaution treatment with the experimental drug groups(high,small dosage),Gushukang granule , Gaitianli tablets group and tonifying spleen Chinese herbs,the experimental drug groups(high,small dosage) can increase evidently the mRNA and protein expression level of BMP7 in the femur and kidney tissue;and the experimental drug groups(high,small dosage),Gushukang granule , Gaitianli tablets group and tonifying spleen Chinese herbs can decrease evidently the mRNA and protein expression level of BMP7 in the hypothalamus tissue.
     (5)RT-PCR and Western blotting detection: the Smurf1 existed in the normal femur, kidney, hypothalamus tissue. Comparing with the normal group and fake operational group,the level of the expression of the gene and protein of Smurf1 in the femur and kidney tissue of model group decreased evidently,and the level of the expression of the gene and protein of Smurf1 in the hypothalamus tissue of model group increased evidently.After the precaution treatment with the experimental drug groups(high,small dosage),Gushukang granule , Gaitianli tablets group and tonifying spleen Chinese herbs can increase the mRNA and protein expression level of Smurf1 in the femur and kidney tissue in different degrees,and decreased the mRNA and protein expression level of Smurf1 in the hypothalamus tissue in different degrees.
     (6) RT-PCR and Western blotting detection: the Smurf2 existed in the normal femur, kidney, hypothalamus tissue. Comparing with the normal group and fake operational group,the level of the expression of the gene and protein of Smurf2 in the femur and kidney tissue of model group decreased evidently,and the level of the expression of the gene and protein of Smurf2 in the hypothalamus tissue of model group increased evidently.After the precaution treatment with the experimental drug groups(high,small dosage),Gushukang granule , Gaitianli tablets group and tonifying spleen Chinese herbs can increase the mRNA and protein expression level of Smurf2 in the femur and kidney tissue in different degrees,and decreased the mRNA and protein expression level of Smurf2 in the hypothalamus tissue in different degrees.
     Conclusion:
     (1).Using the method of ovariectomy, the rat model of osteoporosis due to Kidney-deficiency successfully can be established.
     (2). In normal rats,the tissue of the femur ,the kidney and the hypothalamus can express the BMP6/BMP7 and smurf1/smurf2 in the gene and protein level. That means normal the tissue of the femur ,the kidney and the hypothalamus exist BMP6/BMP7 and smurf1/smurf2,and it may have a very important contribution on adjusting osteal- metabolism.
     (3). The decreasing lever of BMP6/BMP7 and smurf1/smurf2 mRNA and protein expression in the femur and kidney tissue,and the increasing lever of BMP6/BMP7 and smurf1/smurf2 mRNA and protein expression in the hypothalamus tissue,may be one of the important occurring mechanism of the osteoporosis due to kidney deficiency.
     (4). The experimental Chinese herbs,which have the function of tonifying kidney Qi and strengthening essence ,can increase the level of the expression of the gene and protein of BMP6/BMP7 and smurf1/smurf2 in the femur and kidney tissue,and can decrease the level of the expression of the gene and protein of BMP6/BMP7 and smurf1/smurf2 in the hypothalamus tissue. It would be preventing and treating to the osteoporosis due to kidney deficiency.
     (5). The function of BMP6/BMP7 and smurf1/smurf2 to adjusting osteal metabolism would be one of the aspects of the kidney controlling bone in TCM.
引文
[1]刘忠厚.骨质疏松学[M] .北京:科学出版社,1998:142
    [2]肖建德主编.实用骨质疏松学[M].科学出版社2004年8月第1版:7
    [3]Hanley DA,Josse RG. Prevention and management of osteoporosis: consensus statement from the Scientific Advisory Board of Osteoporosis Society of Canada:1.Introduction.CMAJ,1996,155:921-923
    [4]李恩,薛延,王洪复,等.骨质疏松鉴别诊断与治疗.人民卫生出版社,2005年4月第1版:111
    [5]熊辉,姚共和,祁开泽,等.强肾密骨液电渗对原发性骨质疏松症骨代谢的影响.中国中医骨伤科杂志, 2002, (10) : 17
    [6]廖琳,黎学松,蔡全辉,等.补肾生髓法治疗绝经后骨质疏松症的临床研究.中国中医药信息杂志, 2004, 11 (4) : 287
    [7]陈东煜,沈培芝,徐宇等.补肾、健脾及脾肾双补对地塞米松诱发之骨质疏松大鼠PTH、CT、T、E2及BGP值影响的实验研究.实用骨科杂志, 2002, (2) : 105
    [8]危北海.中医脾胃学说应用研究.北京:北京出版社, 1993:140
    [9]陈可冀,李春生.新编抗衰老中药学.北京:人民卫生出版社, 1998: 235
    [10]金香淑,金英子.滋肾调肝汤对老年雌性大鼠性激素及骨密度的影响.山东中医杂志, 2004 (7) : 431
    [11]赵明拥,金荣杰,陈彤伟等.活血化瘀中药是否加速骨质疏松患者骨量丢失.中国临床康复, 2004, 18: 3613
    [12]张荣华,陈可冀,陆大祥,等.补肾活血液对去势大鼠骨质疏松的影响.中国中西医结合杂志, 1999, 19 (10) : 607
    [13]郭世绂.骨质疏松基础与临床.天津科技出版社, 2001年8月第1版:535
    [14]王文健,沈自尹.全国中西医结合虚证与老年医学第四届学术会议纪要.中国中西医结合杂志,1993 ,13(5) :316
    [15]安胜军,李恩,雌激素受体基因多态性与女性绝经后骨质疏松症中医辨证分型关系的研究.中国中西医结合杂志,2000 , 20(12) :907.
    [16]周修通,“龟鹿二仙汤”治疗骨质疏松症例临床观察.江苏中医,2001,22(6) :28
    [17]方建伟.中西医结合治疗骨质疏松症的临床观察.临床医学,2005,25(9) :92-93
    [18]崔少千,李书琴,刚丕寰,等.补肾方药骨疏康防治原发性骨质疏松机理研究.中国医科大学学报,2001 ,30(5) :351-354.
    [19]卢心宇.辨证治疗老年性骨质疏松症.福建中医学院学报,1994 , (1) :25-26
    [20]张玉辉,吕银娟,陈久毅.健脾四补方对老龄雄性骨质疏松大鼠骨代谢指标的影响.湖北中医杂志,2006 ,28(6) :728
    [21]魏肖莹.骨折女病人骨密度分析.刘忠厚.骨质疏松症研究与防治.北京:化学工业出版社, 1994,86
    [22]吴其夏.体液因素和血液循环病理生理学.北京医科大学,中国协和医科大学联合出版社,1991年
    [23]刘清行,金惠铭.一氧化氮和内皮素的相互作用及其在心血管病中的意义.微循环学杂志,1997,7(1):42
    [24]睦承志,周军,刘志坤.绝经后骨质疏松症血瘀病机的客观初步论证.中医研究,2005,18(1):30-33
    [25]睦承志,刘志坤,陈少玫,等.绝经后骨质疏松症血瘀病机的微观分子生物学论证.中医研究,2005 ,18(4):19-23
    [26]眭承志,王彦伟,刘志坤,等.血瘀证在绝经后骨质疏松症中的量化研究.中医药通报,2005,4(2) :32-34
    [27]于佳音,郑洪新,林庶茹,等.补肾对去势大鼠神经内分泌调节作用的实验研究.中国骨质疏松杂志,2001,7(4):285-288
    [28]安胜军,李恩,赵京山.补肾方药对地塞米松所致实验性骨质疏松大鼠卵巢功能的影响.中国中西医结合杂志,2000,20(1):46-49
    [29]刘和娣,李恩,崔灵光,等.补肾方药对不同年龄女性多指标及骨密度的影响.中国中西医结合杂志,1997,17(11):671—672
    [30]梁克玉,魏玉玲,郭邦富,等.中药增骨I、Ⅱ、Ⅲ号序贯疗法治疗绝经后骨质疏松症-附12O例临床观察.中医正骨,1999,11(1):9
    [31]金慰芳,朱文蓄,王洪复,等.补肾组织药Hu-Ecs对培养成骨细胞增殖、分化及矿化功能的影响.中国骨质疏松杂志,2001,7(8):9
    [32]杜靖远,胡光亮,夏志道,等。补肾密骨液对体外培养新生大鼠颅骨成骨细胞增殖的影响.中华实验外科杂志,1998,15(5):465
    [33]杜靖远,沈霖,杨家玉,等.补肾密骨液对大鼠卵巢切除诱导的实验性骨质疏松症的影响.中华骨科杂志,1996.16(7):462-464
    [34]詹红生,赵咏芳,等.用含药血清方法观察补肾益精方对破骨细胞功能的影响.中国骨伤,2001,14(3):145
    [35]沈霖,杜靖远,赵海波.补肾法对IL-1诱导的破骨细胞性骨吸收及破骨细胞MMP-9的影响.中医正骨,1999,11(7):3
    [36]毛平,陆光伟,周志锦,等.六味地黄丸对“阴虚”动物模型各个脏器组织元素含量的影响.中国中药杂志,1993,18(11):690—692
    [37]黄宏兴,王炳南,刘庆思,等.骨康对骨质疏松性大鼠骨中微量元素的影响.中国骨质疏松杂志,2003;9(2):102
    [38]黄宏兴,王炳南,刘庆思,等.骨康对去势大鼠脑、肝组织中微量元素的影响.中医正骨,2003;15(3):3
    [39]洪加源,康两期,郭林新,等.复元散对激素性股骨头坏死骨内微量元素影响的实验研究.中医正骨,2002;14(1):5
    [40]刘和娣,李恩,佟晓旭,等.补肾中药对骨质疏松大鼠CaBP—D9K基因及表达的影响.中国骨质疏松杂志,1996,2(3):62-64
    [41]李恩,等.补肾方药对骨质疏松防治的实验研究.中国骨质疏松杂志,2002,5(8):166
    [42]肖建德.实用骨质疏松学.科学出版社,2004年8月第一版:3
    [43]王滨燕,牛天华,倪桂桐,等.骨质疏松症的生态遗传学.中国骨质疏松症杂志,2000年,(63):79-83
    [44]张秀珍.骨质疏松症基础与临床研究.上海科技教育出版社,2003年12月第一版:41
    [45] Peterson JA.Osteoporosis overview.Geriatr Nurs,2001,22(1):17-23
    [46] Davidson M,Desimone E.Osteoporosis update.Clin Rev,2002,l2(4):75-82.
    [47]Guidelines for Preclinical and Clinical Evalution of Agents Used in the Prevention and Treatment of Postmenopausal Osteoporpsis.Division of Metabolism and Endocrine Drug Products:Food and Drug Administration,USA,1994
    [48]Hodgkinson A ,Aaron J E , Horsman A ,et al . Effect of oopho-rectomy and calcium deprivation on bone mass in t he rat .Clin Sci Mol Med ,1978 ,54 :439-446
    [49]Pederson L , Kremer M. Evidence of a correlation of est rogen receptor level and avian osteoclast est rogen responsiveness,J Bone Miner Res ,1997 ,12 :7422752.
    [50]章晓霜,高顺生,屈菊兰,等.不同强度运动与雌激素联合作用对去卵巢大鼠腰椎超微结构影响的扫描电镜观察.中国运动医学杂志,2003 ,22 (2) :156-158
    [51]杨茂伟,王占友,屠冠军,等.骨质疏松大鼠椎间盘的超微结构研究.中国医科大学学报,2004 ,33 (2):107-109
    [52]陈守平,周正炎,陆卫青.去势法兔骨质疏松症模型的建立,口腔颌面外科杂志,2001 ,11 (3):221-224
    [53]谢林.中医药防治骨质疏松症研究中动物模型的选择和思考.中国中医骨伤科杂志,1997,5 (4):50-51
    [54]李良,吴文起,陈槐卿,等.去势雌山羊骨组织形态学变化的动态观察.华西医大学报, 1997,28 (4) :398-400
    [55] Mustumi M. Age2related changes in bone mass in t he Senes-cence-accelerated mouse (SAM).AJ P ,1986 ,125 (2) :276-283
    [56]Weinstein R S , Jilka R L ,Parffit A M , et al . Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids . J Clin Invest ,1998 ,102 :274-282
    [57]Parfitt A M ,Villanueva A R , Foldes J , et al . Relations between histologic indices of bone formation :implications for the Pat hogenesis of spina osteoporosis. J Bone Miner Res, 1995,10 :466-473
    [58]Uker B P , Raisz L G. Glucocorticoid2induced osteoporosis:pat hogenesis and management. Ann Intern Med,1990,112 :352
    [59]许鹏,郭雄,姚建锋,等.维甲酸诱导雌性大鼠骨质疏松的效果及机理分析.中国矫形外科杂志,2001,8(10):995-8
    [60]Price PA.Vitamin K-dependent formation of bone Gla Protein (osteocalcin) and its function.Vitam Horm,1985,42:65-108
    [61]Binkley NC,Suttie JW.Vitamin K nutrition and osteoporosis.J Nutr,1995,125:1812-1821
    [62]Anderson C,EK-Rylander B.The tartrate-resistant purple acid phosphatase of bone osteocastas a protein phosphatase with multivalent substrate specificity and regulation.Acta Orthop Scand,1995,66(suppl 266):189-194
    [63]姜春华.肾的研究.上海科学技术出版社,第二版,上海,1983:46-50
    [64]Hasselgren PO,Fischer JE. Muscle cachexia: current concepts of intracellularmechanism and molecular regulation.Annals of Surgery,2001,233(1):9-17
    [65] Robinson PA, Ardley HC. Ubiquitin-protein ligases. J Cell Sci, 2004, 117: 5191-5194
    [66]Zhu H et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation.Nature. 1999,400(6745):687-693.
    [67]Rotin D. WW (WWP) domains: from structure to function.Curr Top Microbiol Immunol. 1998,228:115-133.
    [68] Wrana JL , Attisano L. Cytokine Growth Factor Rev ,2000 ;11 (1-2) :5
    [69]Lin X ,Liang M, Feng X. Smurf2 is an ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem, 2000, 275(47):36818-36822
    [70]Zhang Y ,Chang C, Gehling D J,et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA, 2001,98(3):974-979
    [71]Zhu H,Kavsak P,Abdollah S,et a1.A SMAD ubiquitin ligase targets the BMP pathway and afects embryonic pattern formation.Nature,1999,400(6745):687-693.
    [72]Jagoe RT,Goldberg AL.What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care,2001,4(3):183-90
    [73] Smalle J , Vierstra RD. The ubiquitin 26S proteasome prote-olytic pathway. Annu Rev Plant Biol, 2004, 55 : 555-590
    [74]Aaron C, Schwartz AL.Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology, 2002, 35(1):3-6
    [75]Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700
    [76]Urist MR. Bone:formation by autoinduction. Science. 1965, 150(698):893-899
    [77]Ebisawa T et al.Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation.J Cell Sci,1999,112:3519-3527
    [78]Celeste AJ et al.Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone.Proc Natl Acad Sci U S A. 1990,87(24):9843-9847
    [79]Boden SD et al . Glucocorticoid-induced differentiation of fetal rat calvarial osteoblasts is mediated by bone morphogenetic protein-6.Endocrinology. 1997,138(7):2820-2828.
    [80]Grimsrud CD et al . BMP-6 is an autocrine stimulator of chondrocyte differentiation.J Bone Miner Res, 1999,14(4):475-482.
    [81]Carcy DE,Liu X. Expression of bone morphogenetic protein-6 messenger RNA in bovine growth plate chondrocytes of different size.J Bone Miner Res, 1995, 10(3):401-405.
    [82]Boskey AL et al . BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures.J Cell Biochem. 2002,84(3):509-519.
    [83]Gitelman SE et al . Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo.J Cell Biol. 1994,126(6):1595-1609.
    [84]Haai jman A , D’Souza RN , Bronckers AL , et al . BMP-7(BMP-7) affect s mRNAexpression of type I ,Ⅱ, X colla2gen , and mat rix Gla protein in ossifying long bones in vitro [J] . J B one Miner Res , 1997 , 12 (11) :1815.
    [85]陈雅娟,张彦定.骨形态发生蛋白的骨诱导活性及其应用研究现状.中国药物与临床,2003,3(4):277
    [86]Cook SD , Wolfe MW, Salkeld SL , et al . Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primate [J] . J Bone J oint Surg A m ,1995 , 77(5):734
    [87] Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGF-beta family signals. Cell, 1996, 87:173
    [88]Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smad1 is Phosphorylated directly and activated functionally by the BMP receptor kinase.Genes Dev, 1997, 11(8): 984-995
    [89]Heldin C H, Miyazono K. TGF-beta signaling from cell membrane to nucleus through Smad proteins. Nature ,1997,390: 465-471
    [90] Hata A ,Lagna G, Massague J , et al. Smad 6 inhibits BMP/Smad1 signaling by specifically competing with the Smad 4 tumor suppressor. Genes Dev,1998,12:186-197
    [91]Nakao A , Afralhte M, Moren A, et al. Identification of Smad7, a TGF-beta inducible antagonist of TGF-beta signaling. Nature, 1997,388:631-635
    [92]Moustakas A et al. Smad regulation in TGF-beta signal transduction.J Cell Sci,2001,114(Pt24):4359-4369.
    [93]Zhang Y et al . Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.Proc Natl Acad Sci USA. 2001,98(3):974-979.
    [94]Lo RS,Massague J.Ubiquitin-dependent degradation of TGF-β-acti-vated SMAD2.Nat Cell Biol,1999,1(8):472-476
    [95] Bonni S,Wang HR,Causing CG,et a1.TGF-βinduces assembly of a Smad2一Smurf2 ubiquitin ligase complex that targets SnoN for deggra-dation.Nat Cell Biol,2001,3(6):587-595
    [96]Fukuchi M et al . Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.Mol Biol Cell ,2001,12(5):1431-1443
    [97]Moren A,Imamura T,Miyazono K,et a1.Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.J Biol Chem,2005,280(23):22115-22123
    [98]Saha D,Datta PK,Beauchamp RD.Oncogenie ras represses transforming growth factor—beta/Smad signaling by degrading tumor suppressor Smad4.J Biol Chem,2001,276(31):29531-29537
    [99]Moren A,Hellman U,Inada Y,et a1.Diferential ubiquitination de-fines the functional status of the tumor suppressor Smad4.J Biol Chem,2003,278(35):33571-33582
    [100]Ebisawa T et al . Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation.J Biol Chem. 2001,276(16):12477-12480.
    [101]Gronroos E et al . Control of Smad7 stability by competition between acetylation and ubiquitination.Mol Cell. 2002,10(3):483-493.
    [102]Kavsak P et al . Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targetsthe TGF beta receptor for degradation.Mol Cell. 2000,6(6):1365-1375.
    [103]Stroschein SL et al . Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.Science. 1999,286(5440):771-774.
    [104]Bonni S et al . TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation.Nat Cell Biol. 2001,3(6):587-595.
    [105]Stroschein SL et al . Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN.Genes Dev. 2001,15(21):2822-2836.
    [106]Mizuide M et al . Two short segments of Smad3 are important for specific interaction of Smad3 with c-Ski and SnoN.J Biol Chem. 2003,278(1):531-536.
    [107]Johnsen SA et al . Modulation of transforming growth factor beta (TGFbeta)/Smad transcriptional responses through targeted degradation of TGFbeta-inducible early gene-1 by human seven in absentia homologue.J Biol Chem. 2002 ,277(34):30754-30759.
    [108]Liu X et al . A novel ability of Smad3 to regulate proteasomal degradation of a Cas family member HEF1.EMBO J. 2000,19(24):6759-6769.
    [109] ZhuH,Kavsak P,Abdollah S,et al.SMAD ubiquitin ligase targets the BMP pathwayand affects embryonic pattern formation.Nature,1999,40O(6745):687-693
    [110] Lin X,Liang M,Feng X.Smurf2 is an ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling.J Biol Chem ,2000,275(47):36818-36822
    [111] Horiki M, Imamura T, Okamoto M, et al. Smad6/Smurfl overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia.J Cell Biol, 2004,165(3):433-445
    [112] Suzuki C,Murakami G,Fukuchi M,et al.Smurfl regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane.J Biol Chem,2002,277(42):39919-39925
    [113] Tajima Y,Goto K,Yoshida M,et al.Chromosomal region of maintenance l(CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor l(Smurf1) is essential for negative regulation of transforming growthfactor-beta signaling by Smad7.J Biol Chem,2003,278(12):10716- 10721
    [114] Lo R S, Massague J. Ubiquitin-dependent degradation of TGF-beta-activated Smad2.Nat Cell Biol,1999,1(8):472-478
    [115] Kavsak P,Rasmussen R K,Causing C G,et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF—B receptor for degradation.Mol Cell,2000,6(6):1365-1375
    [116] Zhao M,Qiao M,Oyajobi B,et al.E3 ubiquitin ligase Smurfl mediates core-binding factorαl/Runx2 degradation and plays a specific role in osteoblast diferentiation.J Biol Chem ,2003,278(3O):27939-27944
    [117] Booni S,WangH,Causing C G,et al.TGF-βinduces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation.Nat Cell Biol,2001,3(6):587-595
    [1]刘忠厚主编.骨质疏松学[M].北京:科学出版社,1998:142
    [2]Hanley DA,Josse RG. Prevention and management of osteoporosis: consensus statement from the Scientific Advisory Board of Osteoporosis Society of Canada:1.Introduction.CMAJ,1996,155:921-923
    [3]刘忠厚.骨矿与临床[M],北京:中国科学技术出版社,2006:240
    [4]丁桂枝,李榕.从骨矿含量变化规律看肾主骨理论的科学性.湖北中医杂节志,1991,13(2):27-29
    [5]赵玉堂,刘凯军,李金花,等.骨矿含量与肾虚、肾主骨关系的研究.中国骨质疏松杂志,1996,(23):19-22
    [6]安胜军,李恩.雌激素受体基因多态性与女性绝经后骨质疏松症中医辨证分型关系的研究.中国中西医结合杂志,2000,20(12):907
    [7]周修通.“龟鹿二仙汤”治疗骨质疏松症例临床观察.江苏中医,2001,22(6) :28
    [8]方建伟.中西医结合治疗骨质疏松症的临床观察.临床医学,2005,25(9) :92-93
    [9]崔少千,李书琴,刚丕寰,等.补肾方药骨疏康防治原发性骨质疏松机理研究.中国医科大学学报,2001 ,30(5) :351-354.
    [10]胡冰,张胜,邱幸凡,等.骨质疏松症中医病因病机探讨.湖北中医杂志,2002 ,24 (12):8 - 9.
    [11]卢心宇.辨证治疗老年性骨质疏松症.福建中医学院学报,1994,(1):25-26
    [12]张玉辉,吕银娟,陈久毅.健脾四补方对老龄雄性骨质疏松大鼠骨代谢指标的影响.湖北中医杂志,2006 ,28(6):728
    [13]杨召,杨华,姚振强,等.补肾中药对去卵巢大鼠骨组织ER、OPG表达的促进作用.中医正骨,2004 ,16 (3):131 - 133
    [14]李昂,萧劲夫,薛延,等.骨质疏松与一氧化氮.中国病理生理杂志,2001,17 (2):174 - 179
    [15]吴其夏.体液因素和血液循环病理生理学.北京医科大学,中国协和医科大学联合出版社,1991年
    [16]刘清行,金惠铭.一氧化氮和内皮素的相互作用及其在心血管病中的意义.微循环学杂志,1997,7(1):42
    [17]王鸿.肾虚患者甲皱微循环改变的观察与探讨.中医杂志,1980,4(2):10
    [18]Updated following publication of the update to the Royal Col2 lege of Physicians guide line on osteoporosis[ J ]. Osteoporosis, 2000 (11): 98
    [19]张莹,朱广瑾,段岩平.雌激素对血液凝固与纤维蛋白溶解的影响及对心血管的保护作用.中国动脉硬化杂志,1999, 7 (1):57
    [20]睦承志,周军,刘志坤.绝经后骨质疏松症血瘀病机的客观初步论证.中医研究,2005,18(1):30-33
    [21]睦承志,刘志坤,陈少玫,等.绝经后骨质疏松症血瘀病机的微观分子生物学论证.中医研究,2005 ,18(4):19-23
    [22]眭承志,王彦伟,刘志坤,等.血瘀证在绝经后骨质疏松症中的量化研究.中医药通报,2005 ,4(2) :32-34
    [23]魏肖莹.骨折女病人骨密度分析.刘忠厚主编,骨质疏松症研究与防治[M].北京:化学工业出版社,1994 :86
    [24]李建伟.中医肝脏“三证”有了诊治规范.世界华人消化杂志,1999 ,7 (12):1035 - 1037
    [1]Hasselgren PO,Fischer JE. Muscle cachexia: current concepts of intracellular mechanism and molecular regulation.Annals of Surgery,2001,233(1):9-17
    [2] Robinson PA, Ardley HC. Ubiquitin-protein ligases. J Cell Sci, 2004, 117: 5191-5194
    [3] Wang G el a1.Functional domains of the Rsp5 ubiquitin-protein ligase.Mol Cell Biol. 1999 Jan;19(1):342-52.
    [4] Zhu H et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation.Nature. 1999,400(6745):687-693.
    [5] Rotin D. WW (WWP) domains: from structure to function.Curr Top Microbiol Immunol. 1998,228:115-133.
    [6] Wrana JL , Attisano L. Cytokine Growth Factor Rev ,2000 ;11 (1-2) :5
    [7]Lin X ,Liang M, Feng X. Smurf2 is an ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem, 2000, 275(47):36818-36822
    [8]Zhang Y ,Chang C, Gehling D J,et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA, 2001,98(3):974-979
    [9]Zhu H,Kavsak P,Abdollah S,et a1.A SMAD ubiquitin ligase targets the BMP pathway and afects embryonic pattern formation.Nature,1999,400(6745):687-693.
    [10]Jagoe RT,Goldberg AL.What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care,2001,4(3):183-90
    [11] Smalle J , Vierstra RD. The ubiquitin 26S proteasome prote-olytic pathway. Annu Rev Plant Biol, 2004, 55 : 555-590
    [12]Aaron C, Schwartz AL.Ubiquitin-mediated degradation of cellular proteins in health and disease. Hepatology, 2002, 35(1):3-6
    [13]Sun Z,Andersson R.NF-kappab activation and inhibition.Shock,2002,18:99-106
    [14] Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGF-beta family signals. Cell, 1996, 87:173
    [15]Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smad1 is Phosphorylated directly and activated functionally by the BMP receptor kinase.Genes Dev, 1997, 11(8): 984-995
    [16]Heldin C H, Miyazono K. TGF-beta signaling from cell membrane to nucleus through Smad proteins. Nature ,1997,390: 465-471
    [17] Hata A ,Lagna G, Massague J , et al. Smad 6 inhibits BMP/Smad1 signaling by specifically competing with the Smad 4 tumor suppressor. Genes Dev,1998,12:186-197
    [18]Nakao A , Afralhte M, Moren A, et al. Identification of Smad7, a TGF-beta inducible antagonist of TGF-beta signaling. Nature, 1997,388:631-635
    [19] Moustakas A et al. Smad regulation in TGF-beta signal transduction.J Cell Sci,2001,114(Pt24):4359-4369.
    [20] Zhang Y et al . Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase.Proc Natl Acad Sci USA. 2001,98(3):974-979.
    [21]Lo RS,Massague J.Ubiquitin-dependent degradation of TGF-β-acti- vated SMAD2.Nat Cell Biol,1999,1(8):472-476
    [22] Bonni S,Wang HR,Causing CG,et a1.TGF-βinduces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for deggra-dation.Nat Cell Biol,2001,3(6):587-595
    [23] Fukuchi M et al . Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins.Mol Biol Cell ,2001,12(5):1431-1443
    [24]Moren A,Imamura T,Miyazono K,et a1.Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases.J Biol Chem,2005,280(23):22115-22123
    [25]Saha D,Datta PK,Beauchamp RD.Oncogenie ras represses transforming growth factor—beta/Smad signaling by degrading tumor suppressor Smad4.J Biol Chem,2001,276(31):29531-29537
    [26]Moren A,Hellman U,Inada Y,et a1.Diferential ubiquitination de-fines the functional status of the tumor suppressor Smad4.J Biol Chem,2003,278(35):33571-33582
    [27] Ebisawa T et al . Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation.J Biol Chem. 2001,276(16):12477-12480.
    [28] Gronroos E et al . Control of Smad7 stability by competition between acetylation and ubiquitination.Mol Cell. 2002,10(3):483-493.
    [29] Kavsak P et al . Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation.Mol Cell. 2000,6(6):1365-1375.
    [30] Daizo K,Masahiko A,Akioshi K,et a1.Arkadia amplifies TGF—βsupefamily signalling throush degradation of Smad7[J].EMBO J,2003,22(24):6458-6470.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700