用户名: 密码: 验证码:
胶质瘤干祖细胞分化抑制、自噬活性与转分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分胶质瘤干祖细胞分化抑制的超微结构机制
     【目的】在先前的研究中已经见到,体外培养的胶质瘤干祖细胞(glioma stem progenitor cells, GSPCs)与神经干祖细胞(neural stem/progenitor cells, NSPCs)相比的最大不同点是GSPCs始终处于分化抑制状态,还时有逆向分化发生,为了寻找产生这种区别的原因,本实验比较两者超微结构的异同,旨在亚细胞水平阐明GSPCs分化抑制的机制。
     【方法】GSPCs由我们实验室保存。NSPCs来源于流产的人胚脑,经分离、培养、扩增后,予以鉴定。分别收集GSPCs和NSPCs,培养于经多聚赖氨酸预处理的无菌玻片上,2小时后结束培养,取贴敷有细胞的玻片行扫描电镜检查。同时,收集GSPCs和NSPCs行透射电镜观察,定性或定量比较二者单细胞的细胞膜、细胞器、细胞核以及核内容物的异同,分析细胞球间结构的异同。
     【结果】GSPCs和NSPCs共同点如下:细胞器不发达,少数细胞中可见神经微丝、微管,核质比高,核内常染色质多,异染色质少。二者形成的细胞球内的细胞间均存在特定的细胞连接。不同点有:GSPCs的细胞体积比NSPCs大;GSPCs的微绒毛丰富;GSPCs中核糖体、内质网、高尔基体等与蛋白质合成分泌相关的细胞器较NSPCs发达,GSPCs中线粒体数量较NSPCs多;部分NSPCs中自噬小体多见,而GSPCs罕见自噬小体;GSPCs胞核体积较NSPCs大,但核质比NSPCs小,GSPCs核内异染色质的相对含量比NSPCs多,GSPCs多有两个或以上核仁。NSPCs球的相邻细胞间可见突触样连接、胞膜融合等结构,GSPCs球内相邻细胞间仅可见桥粒样结构。需要特别指出的是GSPCs比NSPCs的自噬小体数量明显少。
     【结论】GSPC和NSPC在超微结构上的异同点,是我们先前见到的GSPCs始终处于分化抑制状态的亚细胞形态结构基础,也有可能是GSPCs产生逆向分化的原因,对进一步研究GSPCs与NSPCs相比之所以具有独特的的肿瘤生物学特征有重要意义,特别是自噬小体数量的变化值得进一步研究。
     第二部分胶质瘤干祖细胞分化抑制与其自噬活性低下相关
     【目的】在第一部分研究中观察到了GSPCs中自噬小体的数量明显少于NSPCs,本研究观察其是否存在自噬活性的变化,以及这种变化与GSPCs分化抑制的关系。
     【方法】利用第一部分中培养所得的GSPCs和NSPCs,分别用单丹(磺)酰戊二胺MDC染色、微管相关蛋白轻链3(microtubule-associated protein light chain-3,LC3, LC3)免疫荧光染色、western-blot法检测LC3-Ⅱ/LC3-Ⅰ等多种方法检测GSPCs与NSPCs中自噬活性的差异。检测GSPCs分化后的自噬活性,在诱导GSPCs分化同时加入自噬抑制剂3-甲基腺嘌呤(methyladenine,3-MA)或Bafilomycin A1(BFA),观察抑制自噬是否可以抑制GSPCs的分化。自噬激活剂雷帕霉素(rapamycin,RPM)被用于检测是否能促进GSPCs的分化。
     【结果】自噬在GSPCs中的活性明显低于其在NSPCs中的活性。当诱导GSPCs分化后,其自噬活性增高;自噬的抑制剂3-MA或BFA作用于GSPCs可以抑制后者贴壁分化,western blot分析提示经上述自噬抑制剂作用后的GSPCs的GFAP以及MAP-2的表达量较未加抑制剂的对照组降低。自噬的活化剂RPM在适当的条件下可以促进GSPCs的贴壁分化。
     【结论】通过自噬抑制剂或活化剂从正反两方面证实GSPCs的自噬活性与其分化抑制相关,为进一步探索发生这种变化的分子机制打下了基础。
     第三部分胶质瘤干祖细胞自噬活性低下与PTEN基因失活相关
     【目的】PTEN是一种与自噬密切相关又常常在神经系统肿瘤中失活的抑癌基因,通过第二部分研究明确了GSPCs分化抑制与其自噬活性低下有关。本部分的研究欲探讨是否GSPCs的自噬活性低下与PTEN基因失活相关。
     【方法】对比GSPCs和NSPCs中PTEN基因序列与genbank中报道的序列的异同,以及翻译后蛋白质多肽链中氨基酸残基序列的差异。通过腺病毒介导将外源的野生型PTEN转导入GSPCs,检测自噬活性的变化。
     【结果】与genbank报道的序列相比较,GSPCs中PTEN存在多数碱基的点突变,而NSPCs中PTEN基因则完全与genbank中报道的序列相吻合;翻译成为多肽链后,可见GSPCs的PTEN蛋白质在N端存在连续多个氨基酸残基(第8-14个氨基酸)变异,同时,第238和398两个位点上的氨基酸也发生突变。转导野生型的PTEN后,GSPCs的自噬活性显著增强。
     【结论】GSPCs内PTEN基因失活是其自噬活性低下的原因之一,对进一步研究与自噬性相关的靶分子具有重要价值。
     第四部分胶质瘤干祖细胞分化抑制后向血管内皮细胞转分化研究
     【目的】GSPCs分化抑制是胶质瘤的一种恶性表现。在第一至第三部分研究中,已从细胞、亚细胞和分子水平上证明了GSPCs的分化抑制与其自噬活性低下、PTEN基因失活相关;同时,胶质瘤内丰富的血供、活跃的血管形成也同样是胶质瘤恶性表现,但是否与GSPCs相关尚不清楚。所以,在第四部分我们旨在研究GSPCs是否可以通过向血管内皮细胞转分化进而参与胶质瘤的血管形成。
     【方法】将GSPCs培养于转分化培养基内(含多种生长因子),并以培养在普通条件下(仅含10%小牛血清)的GSPCs作为对照,10天后观察细胞的形态学变化。将GSPCs培养于Matrigel上,动态观察GSPCs的形态、结构的变化,10天后终止培养,免疫组织化学法检测CD31的表达;并取少许含有细胞的Matrigel行透射电镜检测,观察胶中细胞的超微形态学特征。同时,将GSPCs培养于缺氧或缺氧合并缺糖的条件下4小时,然后通过RT-PCR法、实时定量PCR以及免疫细胞化学荧光染色法检测CD31,CD34,KDR和vWF等血管内皮细胞标志物在转录以及翻译水平的变化。
     【结果】培养于分化培养基内的GSPCs在10天后呈典型的“铺路石”样的表型,而对照组则仅贴壁分化呈星形或梭形细胞;培养在Matrigel上的GSPCs随着时间的延长呈现一系列的变化,从单细胞逐渐变成管状结构;后者为CD31阳性,在透射电镜下呈中空的管腔,管腔周围的细胞具有血管内皮细胞样的超微结构特点。当GSPCs培养于缺氧或缺氧合并缺糖的条件下时,其多种血管内皮细胞的标志分子在转录和翻译水平显著上调。
     【结论】GSPCs在摸拟体内常见的缺血后引起缺氧条件下培养,可以向血管内皮细胞方向发生转分化。为进一步在动物体内原位接种GSPCs研究胶质瘤细胞自主产生新生血管找到了依据,对阐明肿瘤血管发生机理研究具有重要意义。
PartⅠUltrastructural Mechanism of Differential Inhibition in Glioma Stem/Progenitor Cells
     Objective: In previous study, it has been demonstrated that the most significant difference of glioma stem/ progenitor cells (GSPCs) cultivated in vitro is consecutive differential inhibition comparing with neural stem/ progenitor cells (NSPCs), even occasional retrodifferentiation. In order to explore the underlying mechanism at subcellsular levels, we study the similarity and difference of ultrastructures between GSPCs and NSPCs.
     Methods: GSPCs were kept by our laboratory. NSPCs were isolated from human fetal brain tissue, and were cultivated, amplificated in vitro under the same conditions as that of GSPCs. After being identified, NSPCs, as well as GSPCs, were collected and prepared for the ultrastructural detections under scanning electron microscope (SEM) and transmission electron microscope (TEM), and their ultrastructures were compared qualitatively or quantitively.
     Results: Their common characteristics were undeveloped organelles, neurofilaments and microtubules in minority of cells, high nuclear-cytoplasmic ratio, and more euchromatin and less heterochromatin; some certain kinds of cell junctions could be seen between adjacent cells in both kinds of cellular spheres with lucent and dark cells according to electron densities. Differentia: a GSPC, which was bigger than a NSPC, had more microvilli, more developed ribosomes, endoplasmic reticulums, Golgi apparatus and mitochondrias, all of which were closely related to protein synthesis and secretion. Autophagosomes could be seen in some NSPCs but hardly in GSPCs. A GSPC frequently had two or more chromatospherites in a bigger nucleus than that of a NSPC. And the relative quantity of heterochromatin in a GSPC was higher than that in a NSPC. Synapsis-like structures and cellular membrane fusion could be found in neural spheres, but not in the spheres of GSPCs, where existed desmosome-like structures.
     Conclusions: Between GSPCs and NSPCs there were extensive similarities, as well as a lot of difference, which were the structural bases for the differential inhibition of GSPCs, and were also probably the mechanisms of retrodifferentiation of GSPCs, especially the different quantities of autophagosomes was worth of further study.
     PartⅡDifferential Inhibition of Glioma Stem/Progenitor Cells Were Related to Autophagy Depletion
     Objective: In PartⅠ, we found that there were much less autophagosomes in GSPCs than in NSPCs. In this part, we studied whether the autophagic activities between GSPCs and NSPCs were also different, as well, whether the difference was related to differential inhibition of GSPCs.
     Methods: MDC staining, immunofluorescence staining against microtubule-associated protein light chain-3 (LC3) and the expression of LC3 measured by western-blot were used to detect the autophagic activities of both GSPCs and NSPCs. The autophagic activities of GSPCs induced to differentiate were also detected. As well, autophagy inhibitors including 3- methyladenine (3-MA) and Bafilomycin A1 (BFA) were exerted to inhibit the autophagy of GSPCs when being induced to differentiate to study the effect of inhibition of autophagy on GSPCs’differentiation. Rapamycin (RPM), an autophagy promoter, was used to study its effects on the differentiation of GSPCs.
     Results: By comparative studies, we found that the autophagic activities of GSPCs were significantly lower than that of NSPCs. However, the autophagic activities increased markedly after GSPCs were induced to differentiate, and autophagy inhibitors, 3-MA or BFA, could inhibit the adherence and differentiation of GSPCs, and western-blot showed that the expressions of GFAP and MAP-2 were much lower than that of control group without autophagy inhibitors. What’s more, under special condition, RPM could promote the differentiation of GSPCs.
     Conclusion: The autophagic activity in NSPCs was much higher than that in GSPCs, which probably leads to the differential inhibition of GSPCs.
     PartⅢDeactivation of PTEN in GSPCs is related to Autophagy Depletion
     Objective: PTEN, an anti-oncogene, has a close relationship with autophagy, and often deactivated in tumors of nervous system. In partⅡ, we demonstrated the correlativity of differential inhibition of GSPCs and autophagy depletion. In this part, we want to explore the autophagy depletion in GSPCs was related to the deactivation of PTEN.
     Methods: The genetic sequences of PTEN, as well as the sequence of PTEN protein, in both GSPCs and NSPCs were compared with that reported by genbank. The wild-type PTEN was introduced into GSPCs by adenovirus, and then the autophagic activities of GSPCs were detected.
     Results: There were a lot of base mutations of PTEN in GSPCs comparing with the sequence of PTEN reported by genbank, but no base mutations in NSPCss. As well, for the pten protein sequences in GSPC, there were several mutations of amino-acid residues (8th-14th) locating at the N-end, the 238th and the 398th amino-acid residue. After the wild-type PTEN were introduced into GSPCs, the autophagic activities increased significantly.
     Conclusion: The mutation of PTEN in GSPCs is one of the mechanisms of low atuophagic activities in GSPCs, which is valuable for the further studies on target molecules related to autophagy.
     PartⅣEndothelial Cell Transdifferentiation of Glioma Stem/ Progenitor Cells In vitro
     Objective: Differential inhibition of GSPCs is a malignant characteristic of glioma. And in PartⅠtoⅢ, we have demonstrated, from cellular, subcellular, and molecular levels, that cellular autophagy depletion of GSPCs was involved in differential inhibition. Meanwhile, affluent blood supply and active angiogenesis are also malignant characteristics of glioma. In this part, we aimed to investigate whether glioma stem/ progenitor cells (GSPCs) have the capabilities to participate in angiogenesis by trans-differentiating into vascular endothelial cell-like cells.
     Methods: we cultivated GSPCs in endothelial differentiation medium for 10 days and to observe the changes of appearance. We also cultivated GSPCs on Matrigel for 10 days, and the process of morphological changes was observed. Ten days later, part of the Matrigel containing cells was detected for the expression of CD31 by immunohistochemistry, and part of them were used for the ultrastructural study. GSPCs were also cultivated under hypoxia or oxygen-glucose deprivation (OGD) for 4 hours, and the transcriptions and expressions of numerous types of molecular markers of vascular endothelial cell (VEC), including CD31, CD34, KDR and vWF were detected respectively with RT-PCR and immuocytochemistry.
     Results: Ten days after GSPCs were cultivated in endothelial differenetiation medium they present to be the typical "flagstone" appearance of VEC; when cultured on Matrigel, GSPCs gradually formed tubular-like structures in vitro, and cells, which formed the tubular-like structures, were positive to CD31 (a marker of VEC), and had similar ultrastructural characteristics of VEC under a transmission electron microscope. What’s more, when cultured in hypoxia or OGD for 4hours, the transcriptions and expressions of these VEC markers increased a lot.
     Conclusion: GSPC could transdifferentiate into VEC-like cells in vitro, which enlightened the further studies on the independent formation of new vessels by GSPCs in orthotopic implantation tumors, and was significant for the illumination of angiogenesis mechanism in tumors.
引文
1. Park CH, Bergsagel DE, Mcculloch E.A Mouse myeloma tumor stem cells aprimary cell culture assay. Journal of the National Cancer Institute, 1971(46):411-422.
    2. Osawa M, Hanada K, Hamada H., et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell.. Science, 1996, 73 (5272): 242-245.
    3. Zhang T, Otevrel T, Gao Z, et al. Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 2001, 61(24):8664-8667.
    4. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367 (6464): 645-648.
    5. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 1997, 3(7):730-737.
    6. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. National Academy of Sciences of the United States of America, 2003, 100 (7):3983-3988.
    7. Perez-Losada J, Balmain A, Stem-cell hierarchy in skin cancer. Nature Reviews. Cancer. 2003, 3(6):434-443.
    8. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Research. 2003, 63(18):5821-5828.
    9. Passegue E, Jamieson CH, Ailles LE, et al. Normaland leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proceedings of the National Academy of Sciences of the United States of America. 2003,100 (Suppl 1):11842-1849.
    10. Dontu G., Al-Hajj M., Abdallah WM., et al. Stem cells in normal breast development and breast cancer. Cell Proliferation, 2003, 36(Suppl 1):59-72.
    11. Houman DH, Ichiro N, Jorge AL, et a1. Cancerous stem cell can arise from pediatric brain tumor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25):15178-15183.
    12. Kondo T, Setoguchi T, Taga T, et a1. Persistence of a small subpe pulation of cancer stem-like cells in the C6 glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (3): 781-786.
    13. Holland EC. Glioma genesis: genetic alterations and mouse models.Nature Reviews Genetics. 2001, 2(2):l20-129.
    14. Recht L, Jang T, Savarese T, et a1. Neural stem cells and neuro-oncology: quo vadis? J Cell Biochem,2003, 88(1): 11-19.
    15. Zhang QB,Ji XY,Huang Q,Dong J,Zhu YD,Lan Q. Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res 2006;16:909-915.
    16. Ignatova TN., Kukekov VG., Laywell ED., et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 2002, 39(3):193-206.
    17. Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, Zhu YD, Diao Y, Wang AD, Lan Q. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer 2008; 8: 304.
    18.黄强,董军,朱玉德,张全斌,季晓燕,王爱东,兰青.人脑胶质瘤组织中分离与培养肿瘤干细胞.中华肿瘤杂志, 2006, 28:331-333.
    19.王飞,黄强,王爱东,等.人小龄胚胎神经干细胞的分离培养、扩增及鉴定.中国微侵袭神经外科杂志(CMINS),2003,8(4):173-175.
    20. Wang Y, Han R, Liang ZQ, et al. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid.Autophagy, 2008, 4(2):214-226
    21.杭振镳.人体肿瘤超微结构图谱.上海:上海科学技术出版社,1984.图8-5~图8-10.
    22.卞修武.脑的超微病理.见:史景泉,陈意生,卞修武,主编.超微病理学.北京:化学工业出版社,2005. 406-413.
    23.陈骅,黄强.胶质瘤干细胞研究的新观点.中国神经肿瘤杂志, 2008, 6(1): 1-4.
    24.储亮,黄强,翟德忠,等. ABCG2在胶质瘤组织中的表达及意义.癌症, 2007, 26(10): 1090-1094.
    25.肖宏,黄强,张天一,等. ABCG2与VEGF、VEGFR和CD34在胶质瘤组织蕊片中的共表达.中华神经外科杂志, 2008, 24(3): 196-199.
    26. Shintani T, Klionky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306: 990- 995.
    27. Lockshin RA, Zakeri Z. Apoptosis, autophagy, and more. International Journal of Biochemistry & Cell Biology, 2004, 36(12):2405-2419.
    28. Duval N., Gomes D., Calaora V., et al. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. Journal of Cell Science, 2002,115 (16):3241-3251.
    29.许汉鹏,卢春蓉,苟琳,等.体外神经干细胞克隆球的超微结构-透射电镜观察.细胞生物学杂志, 2002(24): 251-255.
    30. Trosko JE. From Adult Stem Cells to Cancer Stem Cells: Oct-4 Gene, Cell–Cell Communication, and Hormones during Tumor Promotion. Annals of the New York Academy of Sciences, 2006(1089): 36–58.
    31. Delshad A. Al-Tiraihi T. Ultrastructure of apoptotic oligodendrocytes in the spinal cord of adult rat with long-standing axotomised sciatic nerve. Folia Neuropathologica, 2001, 39(3): 125-128.
    32. Camougrand N, Grelaud-Coq A, Marza E, et al. The product of the UTH1 gene, required for Bax-induced cell death in yeast, is involved in the response to rapamycin. Molecular Microbiology, 2003, 47(2): 495-506.
    33. Kinch G, Hoffman KL, Rodrigues EM, et al. Steroid-triggered programmed cell death of a motoneuron is autophagic and involves structural changes in mitochondria. The Journal of Comparative Neurology, 2003, 457(4): 384-403.
    1. NellBoyce,陶然.肿瘤干细胞:恶性肿瘤的种子.世界科学, 2003,15(12): 29.
    2. Zhang QB, Ji XY, Huang Q, et al. Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res, 2006, 16(12): 909-915
    3. Gam R, Binda E, Orfaneli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursor from human glioblastoma. Cancer Res, 2004, 64: 701l-7021.
    4.张全斌,黄强,兰青.脑肿瘤干细胞的热点问题及研究进展.中华医学杂志, 2005, 85(26): 868-1870.
    5. Shintani T, Klionky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306: 990- 995.
    6. Asanuma K, Tanida I, Shirato I, et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J, 2003, 17(9):1165-1167
    7. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 2004, 6(4): 463-477.
    8. Zeng M, Zhou JN. Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal, 2008, 20(4): 659-665
    9. Kanzawa T, Germano IM, Komata T, et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004, 11:448-57.
    10. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000, 19:5720-5728.
    11. Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 2001, 152: 657-668.
    12. Munafo DB, Colombo MI. A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci, 2001, 114: 3619-3629.
    13.张丽,秦正红. NF-B信号传导通路和自噬在神经干细胞分化中的作用.苏州大学2008级博士学位论文. p41.
    14. Yang YP, Liang ZQ, Gu ZL, et al. Molecular mechanism and regulation of autophagy. Acta Pharmacologica Sinica, 2005, 26: 1421-1434.
    15. Blommaart EF, Krause U, Schellens JP, et al. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem, 1997, 243: 240-246.
    16. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 23: 2891-2906
    17.陆鹏,徐达.雷帕霉素抗肿瘤作用及其作用机制的研究.上海医药, 2005(9): 406-408.
    18. Geoerger B, Kerr K, Tang CB, Fung KM, Powell B, Sutton LN, Phillips PC, Janss AJ. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res, 2001, 61(4):1527-1532.
    19. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F, Xu J, Kondo Y, Bekele BN, Colman H, Lang FF, Fueyo J. Examination of the Therapeutic Potential of Delta-24-RGD in Brain Tumor Stem Cells: Role of Autophagic Cell Death. Journal of the National Cancer Institute, 2007, 99(18): 1410-1414.
    20. Zhao YD, Huang Q, Zhang TY, et al. Ultrastructural Studies of Glioma Stem Cells Progenitor Cells. Ultrastructural Pathology, 2008, 32:241-45.
    1.赵耀东,黄强,董军,兰青.自噬及其在肿瘤中的作用研究.中国医药生物技术, 2007, 2(4):291-294.
    2. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncegene, 2004, 23:2891-2906.
    3. Shintani T, Klionky DJ. Autophagy in health and disease: a double-edged sword. Science, 2004, 306: 990- 995.
    4. Marino S, Krimpenfort P, Leung C, et al. PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development 2002, 129: 3513-3522.
    5. Arico S, Petiot A, Bauvy C, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem, 2001, 276, 35243-35246.
    6. Weng LP, Smith WM, Dahia PL, et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res. 1999, 59(22):5808-5814.
    7. Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta. 2003, 1603(2):113-128.-131.
    8. Huang Q, Zhang QB, Dong J, et al. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer, 2008, 8:304.
    9. Wang S, Garcia AJ, Wu M, et al. Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proc Natl Acad Sci USA. 2006, 103(5):1480-1485.
    10. Kimura T, Suzuki A, Fujita Y, et al. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development, 2003, 130: 1691-1700.
    11. Yilmaz OH, Valdez R, Theisen BK, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006, 441(7092):475-482.
    12.张海峰,章春花,盛伟华,等.腺病毒介导的PTEN对A549肺癌细胞体内外生长的影响.中国肿瘤生物治疗杂志, 2007, 14: 173-178.
    13. Maehama T, Dixon JE. The tumor suppressor, PTEN/ MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem, 1998, 273:13375-13378.
    14. Campbell RB, Liu F, Ross AH. Allosteric activation of PTEN phosphatase byphosphatidylinositol 4, 5-bisphosphate. J Biol Chem, 2003, 278:33617-33620.
    15. Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell, 1999, 99:323-334.
    16. Wang X, Shi Y, Wang J, Huang G, Jiang X. The Crucial Role of the Carboxyl Terminus of PTEN in Antagonizing NEDD4-1-Mediated PTEN Ubiquitination and Degradation. Biochem. J, 2008, 414:221–229.
    17. Odriozola L, Singh G, Hoang T, Chan AM. Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J Biol Chem, 2007, 282:23306-23315.
    18. Inoki K,Li Y ,Zhu T ,et a1.TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol, 2002, 4(9):648-657.
    19. Tee AR,Fingar DC,M anning BD ,et a1.Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR) -mediated downstream signaling. Proc Nat1 Acad Sci USA, 2002, 99(21):13571-13576.
    1. Slack JM and Tosh D. Transdifferentiation and metaplasia– switching cell types. Curr Opin Genet Dev 2001;11:581-586.
    2. Tosh D and Slack JM. How cells change their phenotype. Nat Rev Mol Cell Biol 2002;3:187-194.
    3. Eguchi G and Kodama R. Transdifferentiation. Curr Opin Cell Biol 1993;5:1023-1028.
    4. Shen CN,Burke ZD and Tosh D. Transdifferentiation,Metaplasia and Tissue Regeneration. Organogenesis 2004;1:36-44.
    5. Blau HM,Brazelton TR,Weimann JM. The Evolving Concept of a Stem Cell: Entity or Function? Cell 2001;105:829-841.
    6. Selman K,Kafatos FC. Transdifferentiation in the labial gland of silk moths: Is DNA required for cellular metamorphosis? Cell Differ 1974;3:81-94.
    7. Joshi CV,Enver T. Plasticity revisited. Curr Opin Cell Biol 2002;14:749-755.
    8. Krause DS,Theise ND,Collector MI,et al. Multi-organ,multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369-377.
    9. Poulsom R,Forbes SJ,Hodivala-Dilke K,et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 2001;195:229-235.
    10. Zuk PA,Zhu M,Ashjian P,et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-4295.
    11. Clarke DL,Johansson CB,Wilbertz J,et al. Generalized Potential of Adult Neural Stem Cells. Science 2000;288:1660-1663.
    12. Oishi K,Kobayashi A,Fujii K,Kanehira D,Ito Y,Uchida MK. Angiogenesis in vitro: vascular tube formation from the differentiation of neural stem cells. J Pharmacol Sci 2004;96:208-218.
    13. Reya T,Morrison SJ,Clarcke MF,Weissman IL. Stem cells,cancer,and cancer stem cells. Nature 2001;414:105-111.
    14. Enver T,Greaves M. Loops,lineage,and leukemia. Cell 1998,94:9-12.
    15. Gadban H,Talmon Y,Samet A,Cohen I. Malignant teratocarcinosarcoma of the nose and paranasal sinuses. Harefuah 2002;141:430-432,499.
    16. Lapidot T,Sirard C,Vormoor J,et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645-648.
    17. Al-Hajj M,Wicha MS,Benito-Hernandez A,Morrison SJ,Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-3988.
    18. Singh SK,Hawkins C,Clarke ID,et al. Identification of human brain tumor initiating cells. Nature 2004;432:396-401.
    19. Patrawala L,Calhoun T,Schneider-Broussard R,et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oneogene 2006;25:1696-1708.
    20. Suetsugu A,Nagaki M,Aoki H,Motohashi T,Kunisada T,Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006;351:820-824.
    21. Zhang QB,Ji XY,Huang Q,Dong J,Zhu YD,Lan Q. Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res 2006;16:909-915.
    22. Huang Q, Zhang QB, Dong J, Wu YY, Shen YT, Zhao YD, Zhu YD, Diao Y, Wang AD, Lan Q. Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro. BMC Cancer 2008; 8: 304.
    23.黄强,董军,朱玉德,张全斌,季晓燕,王爱东,兰青.人脑胶质瘤组织中分离与培养肿瘤干细胞.中华肿瘤杂志, 2006, 28:331-333.
    24. Singh SK,Clarke ID,Terasaki M,et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003;63:5821-5828.
    25.孙丽新,汤家铭,成国祥.转分化研究进展.中国生物工程杂志, 2004, 24(1): 27-31
    26. Carmeliet P,Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249-257.
    27.肖宏,黄强,张天一,等。ABCG2与VEGF、VEGFR和CD34在胶质瘤组织蕊片中的共表达。中华神经外科杂志, 2008,24(3):196-199.
    28.吴自成,黄强,邵义祥,等.人脑胶质瘤干细胞移植于表达绿色荧光蛋白裸小鼠的研究.中华医学杂志,2008,88(33):2317-2320.
    29. Fang D,Nguyen TK,Leishear K,et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005;65:9328-9337.
    30. Zahnow CA,Younes P,Laucirica R,Rosen JM. Overexpression of C/EBPbeta-LIP,a naturally occurring,dominant-negative transcription factor,in human breast cancer. J Natl Cancer Inst 1997;89:1887-1891..
    31. Sieweke MH,Graf T. A transcription factor party during blood cell differentiation. Curr Opin Genet Dev 1998;8:545-551.
    32. Rosen JM,Zahnow C,Kazansky A,Raught B. Composite response elements mediate hormonal and developmental regulation of milk protein gene expression. Biochem Soc Symp 1998;63:101-113.
    33. Jackson KA,Mi T,Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999;96:14482-14486.
    34. Hida K,Hida Y,Amin DN,et al. Tumorassociated endothelial cells with cytogenetic abnormalities. Cancer Res 2004;64:8249-8255.
    [1] Shintani T, Klionky DJ. Autophagy in health and disease: a double-edged sword [J]. Science, 2004, 306(5698): 990- 995.
    [2] Klionsky DJ. The molecular machinery of autophagy: unanswered questions [J]. Cell Sci, 2005, 118: 7-18.
    [3] Majeski AE, Dice J F. Mechanisms of chaperone-mediated autophagy [J]. Int J Biochem Cell Biol, 2004, 36 (12):2435-2444.
    [4] Yoshimori T. Autophagy: a regulated bulk degradation process inside cells [J]. Biochem Biophys Res Commun. 2004, 313(2):453-8.
    [5] Qin ZH , GU ZL. Huntingtin processing in pathogenesis of Huntington disease [J]. Acta Pharmacol Sin, 2004, 25(10): 1243-1249.
    [6] Hiroshi A, Shinji K, Hiroaki S, et al. Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart fairlure[J]. J Biological Chemistry, 2004, 279 (39):41095-41103.
    [7] Vojo Deretic.Autophagy in innate and adaptive immunity [J]. Trends in Immunology, 2005, 26(10):523-528.
    [8] Devrim Gozuacik1 and Adi Kimchi. Autophagy as a cell death and tumor suppressor mechanism [J]. Oncogene, 2004, 23(16): 2891–2906.
    [9] Bauvy C, Gane P, Arico S, et a1. Autophagy delays sulindac sulfide-induced apoptosis in the lmutan intestinal colon cancer cell line TH-29[J]. Exp Cell Res, 2001, 268(2): 139-49.
    [10] Martinet W, De Meyer GR , Andries L, et al. In Situ Detection of Starvation-induced Autophagy [J]. Journal of Histochemistry & Cytochemistry, 2006, 54(1):85-96.
    [11] Noboru M. Methods for monitoring autophagy [J]. The International Journal of Biochemistry & Cell Biology, 2004, 36(12): 2491–2502.
    [12] Yu. WH, Kumar A, Peterhoff C, et al. Autophagic vacuoles are enriched in amyloid precursorprotein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer’s disease [J]. International Journal of Biochemistry & Cell Biology, 2004, 36(12): 2531–2540.
    [13] Yan CH, Liang ZQ, Gu ZL, Et al. Contributions of autophagic and apoptotic mechanisms to CrTX-induced death of K562 cells [J]. Toxicon, 2006, 47(5): 521–530.
    [14] Kanzawa T, Zhang L, Xiao LC, et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3[J]. Oncogene, 2005, 24(6): 980–991.
    [15] Toth S, Nagy K, Palfia Z, et al. Cellular autophagic capacity changes during azaserine-induced tumour progression in the rat pancreas. Up-regulation in all premalignant stages and down-regulation with loss of cycloheximide sensitivity of segregation along with malignant transformation [J]. Cell & Tissue Research, 2002, 309 (3): 409-16.
    [16] Kanzawa T, Kondo Y, Ito H, et al. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide [J]. Cancer Res, 2003, 63 (9): 2103-8.
    [17] Opipari AW Jr, Tan L, Boitano AE, et al. Resveratrol-induced autophagocytosis in ovarian cancer cells[J]. Cancer Res, 2004, 64(2):696-703.
    [18] Mijatovic S, Maksimovic-Ivanic D, Radovic J, et al. Anti-glioma action of aloe emodin: the role of ERK inhibition[J]. Cellular and Molecular Life Sciences, 2005, 62(5): 589-98.
    [19] Ito H. Aoki H. Kuhnel F, et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus [J]. Journal of the National Cancer Institute. 2006, 98(9):625-36.
    [20] Shao Yf, Gao ZH, Marks PA, et al. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors[J]. PNAS, 2004, 101(52):18030–18035.
    [21] Ellington AA, Berhow M, Singletary KW. Induction of macroautophagy in human colon cancer cells by soybean B-group triterpenoid saponins [J]. Carcinogenesis, 2005,26(1):159-167.
    [22] Yue ZY, Jin SK, Yang CW, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25):15077-82.
    [23] Liang C, Feng P, Ku B, et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG [J]. Nature Cell Biology. 2006, 8(7):688-99.
    [24] Yanagisawa H, Miyashita T, Nakano Y, et al. Hspinl, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death [J]. Cell Death Differ, 2003, 10(7):798-807.
    [25] Komata T, Kanzawa T, Takeuchi H, et a1. Antitumour effect of cyclin-dependent kinase inhibitors (p16INK4A, p18INK4C, p19INK4D, p21WAFI/CIPI and p27KIPI) on malignant glioma cells [J]. British Journal of Cancer, 2003, 88(8):1277-80.
    [26] Arai K., Ohkuma S., Matsukawa T., et al. A simple estimation of peroxisomal degradation with green fluorescent protein - an application for cell cycle analysis [J]. FEBS Letters. 2001,507(2): 181-6.
    [27] Chau YP, Lin SY, Chen JH, et al. Endostatin induces autophagic cell death in EAhy926 human endothelial cells[J]. Histology & Histopathology, 2003, 18(3):715–726.
    [28] Wen S, Stolarov J, Myers MP, et al. PTEN controls tumor-induced angiogenesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8):4622–4627.
    [29] Kanazawa T, Germano IM, Komata T, et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells [J]. Cell Death Differ, 2004, 11(4):448-57.
    [30] Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles [J]. Cancer Research. 2001, 61 (2): 439–444.
    [31] Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy [J]. Dev. Cell. 2004,6(4): 463–477.
    [32] Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis [J]. Cancer cell. 2006, 10(1): 51-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700