用户名: 密码: 验证码:
火灾后钢筋混凝土构件的可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受火后钢筋混凝土构件的力学性能复杂,例如,钢筋和混凝土材料强度和弹性模量等力学性能的衰减、钢筋与混凝土粘结强度的退化,导致结构构件截面承载力相应降低,从而使其综合抗力水平降低。因此,在正常使用荷载作用下,结构构件的综合抗力水平低于总体荷载效应,结构构件的可靠性水平就不能满足规范要求。
     某些受火后钢筋混凝土构件经修复加固可以继续使用,在修复加固前要以一定的理论计算为基础。所以对火灾受损钢筋混凝土结构构件进行可靠性分析,能为火灾后钢筋混凝土结构的破损评估、维修加固及寿命预估提供理论基础,从而确定合理的维修加固方案、提高结构构件的综合抗灾能力、降低维修费用等。本文在前人研究的基础上,对目前国内外火灾工程研究概况进行了系统分析和总结,同时还在以下各方面作了一些尝试,主要内容如下:
     1.进一步完善受火后钢筋混凝土构件剩余承载力的计算方法,提高其计算精度。针对受火后构件材料力学性能衰减和截面尺寸减小,分别给出分层法和等效截面缩减法对受火后钢筋混凝土构件剩余承载力计算方法进行了初步的探讨。给出受火后构件抗力折减系数,为构件在一定条件下的可靠性分析提供理论基础。
     2.讨论了火灾后钢筋混凝土构件可靠性的影响因素。一方面考虑火灾过程中钢筋混凝土构件组成材料的钢筋和混凝土的力学性能劣化导致构件抗力的衰减;另一方面考虑将火灾作用过程中的钢筋混凝土构件受力改变等效成一种荷载—等效火灾荷载作用到结构构件上,使组成极限状态方程的荷载作用效应增加。从不同影响因素的角度考虑,建立了不同的受火后钢筋混凝土构件的功能函数,分析了火灾后构件剩余抗力的统计特性。
     3.引入时变可靠性理论,对长期使用后又遭受火灾作用的钢筋混凝土构件的可靠性进行了分析。即考虑了火灾前抗力随时间的衰减,又考虑了火灾后高温作用对结构构件抗力有所折减,同时又考虑了两个过程抗力的相关性,进而推导出火灾前和火灾后抗力相关性的公式。算例分析表明,使用时间和高温作用对结构构件的可靠性都有一定的影响,将火灾前抗力随时间变化的可靠性问题和火灾后抗力随温度折减的可靠性问题结合起来考虑,同时引入两个过程相关性是符合实际的。
     4.建立了四面受火后钢筋混凝土轴心受压柱的抗力模型和极限状态方程。分析了受火时间、钢筋和混凝土强度、配筋率、截面尺寸、长细比等不同影响参数对受火后钢筋混凝土柱可靠性指标的影响。
     5.给出受火后偏心受压柱可靠性分析方法。在综合考虑受火后偏压柱的轴力和弯矩相关性和独立性的情况下,对偏压柱进行了可靠性分析,并将两种情况下的可靠性分析结果进行了全面比较,揭示其差异性。比较结果表明,该方法对受火后钢筋混凝土偏心受压柱进行可靠性分析时比只考虑单一因素(轴力或弯矩)更符合真实情况。
Mechanical performance of reinforcement concreter (RC) member after fire duration is complicated, For example, materials strength and elastic modulus of reinforcement and concrete and bond strength between reinforcement and concrete deteriorate significantly, which result in the decrease of load bearing capacity of member, so the resistance decrease. Under the action of regular service load, the reliability of structural member fails to meet the criterion of current code if the resistance is lower than the total load effect.
     Some RC members post- fire can continue to serve after they are repaired and strengthened, all which are based on some theoretic calculations. So reliability analysis can supply some theory basis to damaged assessment, maintenance-strengthening and life forecast of RC member after fire exposure, and the reasonable maintenance-strengthening method can be determined, the synthesized ability of disaster resistance is increased, the maintenance costs are decreased. Based on the previous research results, besides systematic analysis and conclusions are made other studies in this thesis are included as the following:
     1. The calculation method of residual bearing capacity of RC member post-fire was perfected in order to improve calculate precision. Against to degeneration on mechanical performance of materials and reduction on section dimension of RC member post-fire, primarily discussion was carried out on the calculation method of residual bearing capacity, such as stratification and equivalent cross-section economization. Resistance reduced coefficient of member was given. All which provide theory basis for reliability analysis of RC member post-fire under some condition.
     2. Influence factors of reliability of RC member post-fire were discussed .On the one hand, degeneration of member resistance was considered, which was caused by degeneration of mechanical performance of reinforcement and concrete materials. On the other hand, equivalent fire-load was considered, which is caused due to change of stress under fire duration and is equivalent as fire load, so the load effect made up to limit state equation increase. Performance function of RC member post-fire was established and digital character of member resistance was analyzed.
     3. Time-dependent reliability was introduced, the reliability of RC member subject to fire after long-time serve was analyzed. Degeneration of resistance with active time was considered before fire; Degeneration of resistance under high temperature was also considered after fire. Correlation of resistance between the two procedure was considered simultaneously, and formula of the resistance correlation was deduced. The numerical example indicated that it is more suitable for engineering case to consider the change of resistance fore-fire with active time and the change of resistance post-fire with temperature were considered generally, simultaneously introduce the correlation of resistance between the two course.
     4. The resistance model and limit state equation of axial compression columns subjected to four-side fire are established .The influences on reliability of RC member after fire exposure are analyzed , which is caused by different parameters such as fire duration, strength of reinforcement and concrete, ratio of reinforcement, section dimension and slenderness ratio and so on.
     5. Reliability analysis method of eccentric compression column after fire exposure was given. Under the situation that correlation and independence between axis and moment were considered comprehensively, reliability of the eccentric compression column after fire exposure was analyzed, analysis results of the two conditions were compared comprehensively and the difference was disclosed. Results indicate that the method of reliability analysis on eccentric compression column after fire exposure is more coincident with real case than only the single factor of axis or moment is considered.
引文
[1]闵明保等.建筑物火灾后诊断与处理.江苏科技出版社,1994:12-29页
    [2]韩玉来,王振清,王永军,白丽丽.火灾场下钢筋混凝土简支梁抗弯性能分析.海军工程大学学报.2007,19(1):76-80页
    [3]李固华,凤凌云,郑盛娥.高温后混凝土及其组成材料性能研究.四川建筑科学研究.1991(2):1-5页
    [4]李国强等著.钢结构抗火计算与设计.中国建筑工业出版社,1999:23-58页
    [5]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造处理.中国建筑工业出版社,1991:46-70页
    [6]吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估.大连理工大学博士学位论文.2002:53-68页
    [7]谢获敏,钱在兹.高温(明火)作用后混凝土强度与变形试验研究.工程力学(增刊).1996:54-58页
    [8]沈蓉,凤凌云,戎凯.高温(火灾)后钢筋力学性能的评估.四川建筑科学研究.1991(2):39-42页
    [9]马忠诚.火灾后钢筋混凝土结构损伤评估与抗震修复.哈尔滨工业大学博士学位论文.1997:42-73页
    [10]陈鸣,金贤玉,胡文清.钢筋混凝土梁火烧后残余抗剪强度的研究.浙江大学学报.1995,29(1):17-22页
    [11]霍静思.火灾作用后钢管混凝土柱—钢梁节点力学性能研究.大连理工大学博士学位论文.2005:53-82页
    [12]徐泽晶.火灾后钢筋混凝土结构的材料特性、寿命预估和加固研究.大连理工大学博士学位论文.2005:52-89页
    [13]Harmethy T Z,Allen L W.Thermal Properties of Selected Masonry Unit Concretes.ACI Journal.1973,70(2):132-142P
    [14]孔祥谦.有限单元法在热传学中的应用.科学出版社,1998:21-43页
    [15]Abrams M.S.Behavior of Inorganic Materials in Fire.Journal of the PCA Research and Development Lab.1976(1):1001-1016P
    [16]Poon,Chi-Sun,Azhar,Salman,Anson,,Mike,Wong,Yuk-Lung.Strength and durability recovery of fire-damaged concrete after post-fire-curing.Cement and ConcreteResearch.2001,31(9):1307-1318P
    [17]A.S.Usmani,J.M.Rotter,S.Lamont,A.M.Sanad,M.Gillie.Fundamental principles of structural behaviour under thermal effects.Fire Safety Journal.2001(36):721-744P
    [18]Gross G J.Developments in the application of the performance concept in building.Thirteen Meeting of the UJNR Panel on Fire Research and Safety,Gaithersburg,1996(1):1-11P
    [19]Cox G.Fire research in the 21~(st) century.Fire Safety Journal,1999(32):203-219P
    [20]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发.大连理工大学博士学位论文.2002:45-60页
    [21]袁杰.火灾后高强混凝土结构的剩余抗力研究.哈尔滨工业大学博士学位论文.2001:60-82页
    [22]苏娟,王振清,白丽丽.四面受火钢筋混凝土柱抗火性能分析.哈尔滨工程大学学报。2007,28(12):1326-1331页
    [23]王振清,韩玉来,王永军,苏娟.火灾场冲击波荷载作用下简支钢梁动力响应.振动与冲击.2007,26(4):69-72页
    [24]屈立军.火灾时钢筋混凝土受弯构件承载力计算.建筑技术.1996,23(12):828-830页
    [25]Mehmet Sait Culfik,Turan Ozturan.Effect of elevated temperatures on the residual mechanical properties of high-performance mortar.Cement and Concrete Research.2002(32):809-816P
    [26]高金盛,陈舜田.火害后钢筋混凝土梁强度与劲度之衰减.中国土木水利工程学刊.1996,8(3):371-386页
    [27]林英俊,陈舜田,林庆荣.火害后钢筋混凝土梁之剪力强度.NSC77-0410-E011-13.台北,国科会专题研究计划报告,1997
    [28]陈舜田,何象镛.钢筋混凝土梁火害后力学行为研究.NSC77-0410-E011-09.台北,国科会专题研究计划报告,1989
    [29]林英俊,陈舜田.高强钢筋混凝土梁火害后挠曲行为之研究.NSC77-0410-E011-09.台北,国科会专题研究计划报告,1992
    [30]胡海涛.高温时高强混凝土压弯构件的试验研究及理论分析.西安建筑科技大学博士论文.2002:46-72页
    [31]Rotter J M,Sanad A.M.Structural Performance of Redundant Structures under Local Fires.Proceedings of 99th International Fire Science and EngineeringConference,Edinburgh,1999:1069-1080P
    [32]R.Royles and P.D.Morley.Futher response of the bond in reinforced concrete to high temperatures.Concrete Research.1983,35(123):157-163P
    [33]过镇海,时旭东.钢筋混凝土的高温性能及其计算.清华大学出版社.2003:7-65页
    [34] C. S. Poon, Z. H. Shui, L. Lam. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cement and Concrete Research. 2004, 34 (12): 2215-2222
    [35] Chih-Huang Chiang, Cho-LiangTsai. Time-temperatures analysis of bond strength of a rebar after fire exposure. Cement and Concrete Research.2003 (33): 1651-1654P
    [36] C. GBailey , T. Lennon and D. B. Moore. The behavior of full-scale steel-frame building subjected to compartment. The Structural Engineer. 1999 , 77 (8): 15-21P
    [37] M. L. Gambhlr and Jaspal Singh. Behavior of axially-loaded RC columns during fire. The Indian Concrete Journal. 1995 (5): 241-246P
    [38] L. Kristensen and T. C. Hansen. Cracks in concrete core due to fire or thermal heating shock. ACI Materials Journal. 1994 (9-10): 453-458P
    [39] R. Royles and P. D. Morley.Futher response of the bond in reinforced concrete to high temperatutres. Concrete Research. 1983, 35 (123):157-163P
    
    [40] A. E. Ahmed, A. H.Al-Shailch and T. I. Arafat. Residual compressive and bond strengths of limestone aggregate concrete subjected to elevated temperatures. Concrete Research. 1992, 44 (159): 117-125P
    [41] W. T. Edwards and W. L. Gamble. Strength of grade 60 reinforcing bars after exposure to fire temperatures. Concrete International. 1986 (10):17-19P
    
    [42] G. T. G Mohamedbhai. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete. Concrete Research. 1986,38 (136) : 151-158P
    [43] G. T. G.Mohamedbhai. The residual strength of concrete subjected to elevated temperatures. Concrete. 1983 (11): 22-27P
    [44] G. A. Khoury. Compressive strength of concrete at high temperatures Concrete Research. 1992, 44(136): 291-309P
    
    [45] L. Sarvaranta and E. Mikkola. Fiber mortar composites under fire conditions effect of ageing and moisture content of specimens. Materials and Structures. 1994 (27): 532-538P
    [46] M. R. Khan and R. Royles. Post heat exposure behavior of reinforced concrete beams. Concrete Research. 1986, 38 (135): 59-67P
    [47] U. Schneider. Repairability of fire damaged structures. CIB W 14 Report,Fire Safety Journal. 1990, 15 (4): 251-338P
    [48] J. C. Dotreppe, J. M. Frandden, A. Bruls, R.Baus, P . Vandevelde, R Minne,D.van Nieuwinburg and H.Lambotte.Experimental research on the determination of the main parameters affecting the behavior of reinforced concrete columns under fire conditions,Concrete Research.1996,4(179)117-127P
    [49]河南省建筑科学研究院.火灾后建筑物损伤评估及加固技术研究报告,1996
    [50]混凝土结构设计规范(GBJ50010-2002).中华人民共和国国家标准,2002
    [51]中华人民共和国国家标准.建筑结构可靠度设计统一标准(G1350068-2001).中国建筑工业出版社.2001
    [52]赵国藩,金伟良,贡金鑫著.结构可靠度理论.中国建筑工业出社,2002:34-63页
    [53]赵国藩,曹居易,张宽权.工程结构可靠度.水利电力出版社,1984:34-58页
    [54]赵国藩.工程结构可靠性理论与应用.大连理工大学出版社,1996:52-73页
    [55]贡金鑫,赵国藩.腐蚀环境下钢筋混凝土结构疲劳可靠度的分析方法.土木工程学报.2000,33(6):50-56页
    [56]唐昌辉,易伟建,沈蒲生.混凝土轴心受压柱的可靠性研究.湖南大学学报.2003,30(1):97-100页
    [57]马宏旺,赵国藩.钢筋混凝土梁抗震可靠度校核以及强剪弱弯设计可靠性分析.建筑结构.2000.30(10):3-8页
    [58]赵尚传.钢筋混凝土结构基于可靠度的耐久评估与实验研究.大连理工大学博士学位论文.2002:56-76页
    [59]程昌熟,吴方伯.外包高强混凝土轴心加固柱正截面承载力分析.湖南大学学报.1996,30(3):123-126页
    [60]赵彤,谢剑.碳纤维布补强加固混凝土结构.天津大学出版社,2001:32-62页
    [61]贡金鑫,赵国藩,柳林.钢筋混凝土轴心受压构件加固后的可靠度分析建筑结构.2000,30(3):29-33页
    [62]张宇,李思明.粘钢加固钢筋混凝土梁可靠性分析.湖南大学学报.2005,32(6):11-14页
    [63]DBJ08-219-96,火灾后混凝土构件评定标准[S].
    [64]王广军.震损建筑修复加固的设计与施工.地震出版社,1994:48-63页
    [65]徐蕾.方钢管混凝土柱耐火性能及抗火设计方法研究.哈尔滨工业大学 博士学位论文.2002:3-8页
    [66]陆洲导,王李果,李刚.采用不同材料加固火灾后预应力混凝土框架的试验研究.土木工程学报.2004,37(4):99-103页
    [67]朱伯龙,陆洲导,吴虎南.房屋结构灾害检测与加固.同济大学出版社,1995:32-69页
    [68]篮宗建,梁书亭,孟少平.混凝土结构设计原理.东南大学出版社,2002:135-164页
    [69]夏宁茂.新编概率论与数理统计.高等教育出版社,2006:53-72页
    [70]贡金鑫.工程结构可靠度计算方法.大连理工大学出版社,2003:46-59页
    [71]中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-92).中国建筑工业出版社,1992
    [72]徐仲济.蒙特卡罗方法.上海科学出版社,1985:68-83页
    [73]Abrams M.S.Compressive Strength of Concrete at Temperatures to1600F.Temperature and Concrete.1971(14):33-58P
    [74]吴波.火灾后钢筋混凝土结构的力学性能.科学出版社,2003:32-56页
    [75]李卫,过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报.1993,14(1):8-16页
    [76]路春森,屈立军,薛武平等。建筑结构耐火设计.中国建材工业出版社,1995:43-62页
    [77]江见鲸,徐志胜.防灾减灾工程学.机械工业出版社,2005:26-58页
    [78]钱在兹,金贤玉.钢筋混凝土受明火作用的综合研究.工程力学增刊.1994(10):108-113页
    [79]王学谦.建筑防火.中国建筑工业出版社,2000:35-60页
    [80]Lie T T.A Procedure to Calculate Fire Resistance of Structural Members.International Seminar on Three Decades of Structural Fire,England,1983:139-153P
    [81]朱伯芳,王同生,丁宝瑛,郭之章.水工混凝土结构抗热设计规程YS12-79(试行).冶金工业出版社,1979:22-56页
    [82]胡忠日.火灾模化方程的数值解法.消防技术与产品信息.1998,5(6):9-12页
    [83]Yang Y.K.and Zheng S.E.The Application of the Parallel Model to Analyze the Stress-Strain Relationship of RC Column after fire.2nd International Conference on Highrise Buildings,Nanjing,China,1992:1042-1049P
    [84]Moetaz M E,Ahmed M R,Ahmed A E.Effect of fire on flexural behaviour of RC beams.Construction and Building Materials.1996,10(2):147-150P
    [85]R.Folic,V.Radonjanin,M.Malesev.The assessment of the structure of Novi Sad Open Universitydamaged in a fire.Construction and Building Materials.2002(16):427-440P
    [86]K.H.Tan and Y.Yao.Fire Resistance of Reinforced Concrete Columns Subjected to 1-2-and 3-Face Heating.Structural Engineering.2000(11):1820-1828P
    [87]王振清,韩玉来,苏娟,乔牧.钢筋混凝土梁火灾承载力及等效楼面荷载分析.武汉理工大学学报.2007,29(6):65-68页
    [88]龙驿球,包世华主编.结构力学教程.高等教育出版社,2001:62-89页
    [89]Steven E.Boyd,John J.Lesko,Scott W.Case.Compression creep rupture behavior of a glass/vinyl ester composite laminate subject to fire loading conditions.Composites science and technology.2007(67):3187-3195P
    [90]Ayman Mosallam,Frank Abdi,Zhongyang Qian.Fire resistance simulation of loaded deck sandwich paneland deck-bulkhead assembly structures.Composites.Part B 2008(39):191-195P
    [91]李国强.工程结构荷载与可靠度设计原理.中国建筑工业出版社,2005:126-133页
    [92]Bing Chen,JuanyuLiu.Residual strength of hybrid- fiber-reinforced highstrength concrete after exposure to high temperatures.Cement and Concrete Research.2004(34):1065-1069P
    [93]杨建平,时旭东,过镇海.两种升温-加载途径下钢筋混凝土压弯构受力性能的试验及分析研究.工程力学.2001,18(3):81-91页
    [94]余江滔.火灾后混凝土构件损伤评估的试验及理论研究.同济大学博士学位论文.2007:42-63页
    [95]R.Folic,V.Radonjanin,M.Malesev.The assessment of the structure of NoviSad Open University damaged in a fire.Construction and Building Materials.2002(16):427-440P
    [96]Zhan-Fei Huang,Kang-Hai Tan,Wee-Siang Toh,Guan-Hwee Phng.Fire resistance of composite columns with embedded I-section steel—Effects of section size and load level.Journal of Constructional steel Research.2004(4):214-235P
    [97]ISO2394.General principles on reliability for structures.[S]1998.
    [98]Hiroyuki Kameda,Yakeshi Koike.Reliability theory of deterioration structures,structuraldivision.1975,101(1):1009-1015P
    [99]Geidl V,Saunders S.Calculation of reliability for time-varying loads and resistances.Structural safety.1987,4(4):1023-1032P
    [100]王光远.结构服役期间的动态可靠度及其维修理论初探.哈尔滨建筑工程学院学报.1990,23(2):1-9页
    [101]牛荻涛.混凝土结构耐久性与寿命预测.科学出版社,2002:46-83页
    [102]Y.Mori,B.R.Ellingwood.Maintaining reliability of concrete strctures.Ⅰ:Role of inspection/repair.Structural Engineering.1993,120(3):146-158P
    [103]钱久永.既有钢筋土梁的评估与诊断.西南交通大学学报.1992:32-56页
    [104]Emilio Bastidas-Arteaga,Mauricio Sa'nchez-Silva Alaa Chateauneu,Moema Ribas Silva.Coupled reliability model of biodeterioration,chloride ingress and cracking for reinforced concrete structures.Structural Safety.2006,9(001):1016-1036P
    [105]Fre'de'ric Duprat.Reliability of RC beams under chloride- ingress.Construction and Building Materials.2007(21):1605-1616P
    [106]安伟光,赵维涛.随机结构系统综合考虑静强度、刚度和疲劳的多失效模式的可靠性分析.中国科学G辑.2007,34(4):516-526页
    [107]安伟光.结构系统可靠性和基于可靠性的优化设计.国防工业出版社,1997:63-82页
    [108]李田,刘西拉.混凝土结构的耐久性设计.土木工程学报.1994,27(2):47-55页
    [109]Feng Y S.A Method for Computing Structural System.Reliability with high Accuracy.Computers and Structures.1989,33(1):1-5P
    [110]Chien-Hung Lin,Shun-Tyan Chen,and Chen-An Yang.Repair of Fire-Damaged reinforcement concrete columns.ACI structural Journal.1995(7—8):406-411P
    [111]K.H.Tan,Y.Yao.Fire Resistance of Four-Face Heated Reinforced Concrete Colunms.structural engineering.2003,129(9):132-145P
    [112]David M.Milner.New light on performance of short and slender reinforced concrete columns under random loads.Engineering Sturctures,23(2001):147-157R
    [113]Dan M.Frangopol,Yutaka Ide,Enrico Spacone,Ichiro Iwaki.A new look at reliability of reinforced concrete columns.Structural Safety.1996,18(2/3):123-150P
    [114]张大庆,吕志涛.火灾过程中混凝土构件内的温度分布.南京建筑工程学院学报.1997,40(1):32-37页
    [115]R.M.Lawson.Fire engineering design of steel and composite buildings.Construct SteelResearch.2001,57(5):1233-1247P
    [116]J.DingY.C.Wang.Experimental study of structural fire behaviour of steel beam to concrete filled tubular column assemblies with differen type of joints.Engineering Structures.2007(29):3485-3502 P
    [117]Gabriel A,Khoury,Brian N,Graigert and Patrick J E Sullivan.Strain of Concrete during First Cooling from 6000C under Load.Concrete Research.1986,38(134):195-215P
    [118]YAO Yao.Fire reeietance of reinforcement concrete columns.[dissertation]Singapore:Nanyan Technological University,2002:65-82P
    [119]金伟良.结构可靠度数值模拟的新方法.建筑结构学报.1996,17(3):63-72页
    [120]卢少微,谢怀勤.Monte Carlo法模拟CFRP加固梁的抗弯可靠度.武汉理工大学学报.2005,27(12):45-48页
    [121]李劲峰等,不同温度工况下钢筋混凝土偏压构件受力性能的对比试验研究.建筑结构学报.2001,22(4):84-89页
    [122]Wen-Chen Jau,Kuo-Li Huang.A study of reinforced concrete comer columns after fire.Cement and Concrete Composites.2007,27(5):236-249P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700