用户名: 密码: 验证码:
硅胶及其负载茂金属催化剂的乙烯聚合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了聚烯烃催化剂用载体硅胶及含钛硅胶的制备工艺,制备出符合技术要求的聚烯烃催化剂载体硅胶及含钛硅胶;考察了硅胶基茂金属催化剂负载化影响因素,形成了茂金属催化剂负载化技术,所得催化剂聚合性能及聚合物性能达到工业生产技术要求。
     采用溶胶—凝胶法制得载体硅胶,其物化性能达到了聚乙烯催化剂用载体的技术指标要求,对制备过程涉及的各种工艺条件进行了全面筛选与优化。结果表明,母液成核温度为70~80℃,pH值为9.0~9.5,时间为40~50min,母液中SiO_2质量分数为3%~5%;在溶胶粒子增长过程中,控制后加入的SiO_2与母液中SiO_2的摩尔比为7~10,pH值为9.0~9.5,水玻璃加入速度为150~250ml/h(水玻璃密度为1.11g/cm~3),反应温度为80~90℃;水溶胶凝胶化控制pH值为6.0~8.0,温度为60~70℃;水凝胶稳定化的老化时间为5~6h,pH值约为9.0;采用喷雾干燥方式对硅胶进行干燥,干燥前SiO_2含水滤饼的匀化条件为:搅拌转速600r/min,匀化时间40~50min,浆料固含量14%~16%;喷雾干燥机转盘转速12000r/min,干燥机入口温度300~320℃,出口温度90~130℃。
     采用溶胶—凝胶法制得钛质量分数为0.1%~0.3%的含钛硅胶。对钛源与硅源的水解速率等关键工艺条件进行调控。结果表明,采用无机钛源Ti(SO_4)_2及有机钛源Ti(OC_4H_9)_4均可制得合格含钛硅胶,在反应体系中加入一定量的H_2O_2,使钛源水解时产生的大量Ti(OH)_4迅速与其络合并形成动态平衡,以保证钛源和硅源的水解速度相匹配,从而使原料钛得以全部反应进入硅胶骨架;H_2O_2的用量控制在H_2O_2/钛摩尔比大于5,原料中钛的质量分数以小于0.3%为宜。这是因为原料中加入钛越少,进入硅胶骨架的效果越好的缘故,反应温度为30~40℃。
     采用实验制得的载体硅胶和含钛硅胶,对茂金属催化剂进行负载研究。结果显示,在催化剂负载过程中,MAO二段加入的效果优于一次性加入,催化剂干燥前须过滤与洗涤;催化剂负载的最佳参数为:MAO/硅胶(ml/g)10:1,Al质量分数15%~17%,锆质量分数0.3%~0.45%;制得的茂金属负载型催化剂的活性大于6200gPE/g.cat;所得聚乙烯产品的粒径分布、分子量及其分布、熔点均达到现有工业生产技术要求;自制硅胶用于Unipol气相聚乙烯工艺催化剂的负载化及聚合研究,各项性能达到现有工业装置的生产技术要求;含钛硅胶用作茂金属催化剂的载体时,发现有部分碎裂,催化剂活性较低,聚合产物形态也较自制不含钛硅胶的差,含钛硅胶应用于聚烯烃的负载化有待进一步研究。
Process for preparing silica and titanium-containing silica was studied and the support silicas suitable for olefin polymerization catalyst were obtained. The metallocene catalyst was supported on as-prepared silicas and the influencing factor was investigated. Both properties of resultant supported catalyst and polymers could meet the need of industrial technologies.
     Silicas with desired physico-chemical properties for ethylene polymerization catalysts were prepared via sol-gel process, all the operating conditions in the process were selected and optimized. The results showed that temperature for nucleation of mother liquor was 70~80℃,pH value was 9.0~9.5, time was 40~50min, SiO_2 mass concentration in mother liquor was 3%~5%;In the process of sol particle
     growth, the mole ratio of SiO_2 added subsequently to SiO_2 remained in mother liquor was controlled at 7~10, pH at 9.0~9.5, feed flow of water glass at 150~250ml/h(d water glass was 1.11g/cm~3), temperature at 80~90℃; hydrosol gelfication was controlled at pH 6.0~8.0,temperature 60~70℃; aging time for hydrogel stabilization was 5~6h, pH value was 9.0; the silica was dried by spray drying, the homogenization conditions for aqueous silica filter cake before drying were: the stirring speed 600r/min, time 40~50 min, solid mass fraction in slurry 14%~16%; the rotating speed of spray dryer was kept at 12000r/min, the temperature at inlet and outlet at 300~320℃and 90~130℃, respectively.
     Titanium-containing silica with Ti mass fraction of 0.1%~0.3% was prepared via sol-gel process and the hydrolysis rates of Ti and Si sources were controlled .The results indicated that either inorganic Ti(SO_4)_2 or organic Ti(OC_4H_9)_4 was suitable for producing qualified titanium-containing silica. In the reaction system, predetermined amount of H_2O_2 was added to complex quickly with a great deal of Ti(OH)_4 formed during Ti source hydrolysis to establish a dynamic equilibrium with H_2O_2 ,thus ensuring the match between hydrolysis rates of Ti and Si sources and perfect incorporation of Ti from raw material into framework. A mole ratio of H_2O_2/Ti above 5 was sufficient to realize this object. Low Ti contents in raw material (should below mass ratio of 3%) and reaction temperature between 30~40℃were better for incorporation of Ti into the framework.
     The metallocene catalyst was supported on as-prepared silicas. The results indicated that in the supporting process, the addition of methylaluminoxane (MAO) in two-step was better than in one-step. The catalyst should be filtered and washed before drying. Optimized parameters were MAO/silica(ml/g) of 10:1, Al loading mass fraction of 15%~17%, Zr loading mass fraction of 0.13%~0.45%. For ethylene polymerization with the as-supported metallocene catalyst, the polymerization activities were greater than 6200gPE/g.cat, polyethylene (PE) particle size distribution , molecular weight and its distribution ,and melting temperature all met the requirements from existing industrial technology. The as-prepared silica was successfully applied to Unipol gas PE process as well. In addition, titanium-containing silica used as support for metallocene catalysts led to partial breaking and exhibited lower ethylene polymerization activities and more inferior PE morphology compared with that supported by self-made titanium-free silica. The problems remaining need to be solved.
引文
[1]北京华京天众经济咨询中心,2008年中国聚乙烯(PE)市场发展与产品开发形势分析,2007
    [2]袁睛棠.聚烯烃技术发展趋势[J].当代石油石化,2004,12(5):3~7
    [3]官小文,苗春兰,杨宝柱等.Unipol气相法流化床聚乙烯工艺冷凝技术最新进展[J].齐鲁石油化工,2002,30(2):146~149
    [4]晓铭.聚乙烯生产技术新进展概述[J].中国化工信息,2005,13:A14
    [5]安京燕,陈伟,纪卫民.超临界烯烃聚合技术的新进展[J].石油化工,2004,33(10):992~995
    [6]陆玲芳.北星双峰聚乙烯工艺及产品[J].金山油化纤,2004,23(3):34~36
    [7]袁晴棠.聚烯烃技术发展趋势[J]当代石油石化.2004,12(5):3~7
    [8]彭琳,张雪珍.聚烯烃催化剂的开发研究.国内外石油化工快报,2004(6):7~11
    [9]魏京华.聚乙烯催化剂国产化进展.中国化工信息,2004(42):A14
    [10]童建颖,王伟倩.茂金属聚烯烃的进展.化工生产与技术,2004.11(3):29~31
    [11]朱昭峥,赵密福.新一代低碳烯烃聚合催化剂.精细化工中间体,2004,34(5):1~9
    [12]高克京,吕新平,安京燕气相法聚乙烯催化剂的研究现状及进展.石油化工,2003,32(增刊):497~499
    [13]乔映宾.气相聚乙烯催化剂进展石油化工.2003,32(增):491~493
    [14]美国埃克森美孚化学公司生产具有双峰分子量分布的聚乙烯树脂的双金属催化剂,它的制备和用途.CNl478108
    [15]浙江大学.制各具有双峰和/或宽峰分子量分布的聚乙烯的催化剂.CN1470538
    [16]朱洪法.催化剂载体.化学工业出版社
    [17]李柏平《化学反应工程与工艺》第13卷第3期1997年9月P233
    [18] A.R.Rescorla.et al.,Anal.Chem.,3(20),198(1948)
    [19] Hampet.Z.,Anorg.chem.,223,297(1935)
    [20] F.E.Bartell and Y.Fu.,J.Phys.chem.,33,1758(1929)
    [21] J.Svedberg,“Colloid Chemistry”.P.179(1928)
    [22] S.Brunaner.JACS,59,324(1937)
    [23] E.P.Barrett,L.C.Joyner,P.P.halerda, JACS,73,373(1951)
    [24] John Boor J.,Ziegler-Natta Catalysts and polymerization.New York:Academic press Inc.1979
    [25] Soga K, Kaminaka M. Macromol Rapid Commun,1994,15:593
    [26] Nishida H,Vozumi T,Arai T,Soga K.Macromol Rapid Commun,1995,16:821
    [27] Fischir D,Makromol. Chem. Macromol. Symp,1993,66:191
    [28] Kaminsky W.,Macromol. Symp.1995,80:203
    [29] Sacchi MC,et al.,Marcromol. Rapid. Commun.,1995,16:581
    [30] Soga K, Kaminaka M. Macromol Chem Phys,1993,194:1754
    [31] Jin J,Vozumi T,Soga K.Macromol Rapid Commun ,1995,16:317
    [32] Sarma S S,Sivaram S. Macromol Chem Phys,1997,198:495
    [33] Hlatky G G, Upton D J. Macromolecules, 1996,29:8019
    [34]肖士镜,合成树脂及塑料,1999,16(2):7
    [35] Marks T,J.Acc. Chem. Res.,1992,25:57
    [36] Buys I E.et al.,J.Mol.Catal.,1994,86:309
    [37] Collins S,et al.,Macromolecules,1992,25:1780231~233
    [38]封麟先,葛从辛,王立,分子催化,1998,12(3),
    [39]于广谦,张德济,黄葆同,茂金属催化聚合及聚合反应工程研讨会(预印集)P27,1998,杭州。
    [40] R. Jullien and R. Botet, Aggregation and Fractal Aggregates, Singapore: World Scientific Publishing,1987
    [41] W. Zhang, T. R. Pauly, T. J. Pinnavaia. Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral (S0I0) Assembly Pathway[J]. Chem. Mater. 1997. 9:2491~2498
    [42] C. G. Wu, T. Bein. Microwave Synthesis of Molecular Sieve MCM-41 [J]. J. Chem. Soc. Chcm. C:ommun., 1996: 925~926
    [43] W. Lin, J. Chen, Y. Sun, et al. Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-containing Silicate gel[J]. J. Chem Soc. Chem Commun,1995: 2367~2368
    [44] Q. huo, D. I. Margolcse, G.. D. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Matcrials[J],Chem. Mater.1996, 8(5):1147~1160
    [45] J. Y. Ying, C. P. Mechnert, M. S. Wong. Synthesis and applications of supramolecular-templated mesoporous materials. Angew Chem Int Ed, 1999, 38:56~77
    [46] J. S. Beck, J. C. Variuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olsen, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834
    [47]《齐格勒-纳塔催化剂和聚合》[美]小约翰·布尔著孙伯庆译P383,化学工业出版社1986年12月出版.
    [48] P.Cossee.Tetrahedron Lett. 17,12(1960)
    [49] P.Cossee.J.Catal.3,80(1964);Rec.Trav.chim.Pays-Bas85, No.9~10,1152(1966)
    [50] T.Mole and E.A.Jeffery,Elsevier,New York,1972
    [51] K.F.Liou,P.H.Yand and Y.T.Lin,J.Organomet,Chem.1986,307:276
    [52] Hallwachs,W,.et.al.Liebigs Ann. Chem.1859,109:209
    [53]李福兴.催化剂载体硅胶的扩孔研究.华东化工学院学报,1989,15(3):15
    [54]邱发礼.催化剂载体的研究.石油化工,1979,8(5):329
    [55]孔素华。王纲。王永林.不同扩孔方法对氧化铝载体物化性能的影响.工业催化,2001,1(9):63
    [56]沈钟.胶体与表面化学.北京:化学工业出版社。1990
    [57] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359:710~712
    [58] S. S. Kim, W. Z. Zhang, T. J. Pinnavaia, Ultrastable mesostructured silica vesicles. Science, 1998,282(5392):1302~1305
    [59]严楠.硅胶负载硫酸锆催化合成苯乙醛缩乙二醇,精细石油化工, 2008,25(4):47~49
    [60]张福莲。硅胶固载硫酸镓催化合成乳酸丁酯,化工中间体,2008,10:57~59
    [61]王晓玲。硅胶固载钛酸酯的制备及其对酯化反应的催化研究,西安石油大学学报:自然科学版,2008,23(4):70~73
    [62]施介华。硅胶负载磷钨酸铯盐催化合成2-乙酰噻吩的研究,高等化学工程学报,2008,22(1):128~133
    [64] J·南德,G·曼金,硅溶胶制备和应用,无机硅化合物,2007,139(2):30~39
    [65]段涛,彭同江,马国华,二氧化硅微球的制备与形成机理,辽宁化工,2007,36(4):7~10
    [66]杨靖,陈杰瑢,刘春晓,二氧化硅溶胶的制备及性能影响研究,辽宁化工,2007,36(4):217~220
    [67]刘羽,张建民,法二氧化硅溶胶的制备及性能影响研究,过滤与分离,2008,18(3):21~23
    [68]郑文芝,陈砺。疏水性二氧化硅气凝胶的合成及表征,硅酸盐通报,2008,27(6):1151~1155
    [69]何奕锋,徐文彬,纳米二氧化硅粉体的制备研究进展,2008,23(5):81~84
    [70]孙道兴,硅溶胶制备纳米二氧化硅的工艺研究,青岛科技大学学报,2008,29(4):291~293,301
    [71]李曦,刘连利,王莉丽,石文凤,凝胶网格沉淀法制备纳米二氧化硅,硅酸盐通报,2007,26(3):486~489,493
    [72]杜令忠,张伟刚,二氧化硅喷雾造粒的热处理,2008,143(2):55~57
    [73]刘鹏,张克铮。溶胶一凝胶法制备二氧化硅无机膜工艺研究,玻璃与搪瓷,2008,36(6):8
    [74]郑婧,陈晓晖,超细二氧化硅的制备和表征,硅酸盐通报,2008,27(6):1109~1113
    [75]颜培力,郭爽,孙大航.超声水解法制备单分散二氧化硅微球[J].无机盐工业,2007,39(8):l6—18.
    [76] Vinu A,Dedeeek J,Murugesan V,et a1.Synthesis an characterization of CoSBA一1 cubic mesoporous moleculasieves[J].Chem.Mater.,2002,14(6):2433—2435.
    [77]岳春晓,姚兰芳,鲁风琴,钛掺杂介孔二氧化硅薄膜的制备与表征,稀有金属材料与工程,2008,37(A02):217~220
    [78] Ying J Y,Mehnen C P,Wang M S.synthesis and applications of supramolecular templated mesoporous materials[J].Chem.Int.Ed.Eng.,1999,38(1/2):56—77.
    [79]沈晓莉,闫卫东,穆彬,王佰全,双异桥茂金属催化剂催化乙烯与α-烯烃共聚合,石油化工,2005Z1:515~516
    [80]姜丽巍,刘德深,茂锆金属催化剂催化乙烯聚合研究,弹性体,2007,17(5):45~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700