用户名: 密码: 验证码:
高风险岩溶隧道突水灾变演化机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在岩溶地区修建隧道、矿山以及水电站等地下工程时,经常遇到突水、涌泥等大型地质灾害,轻则冲毁器具、贻误工期,重则造成人员伤亡和重大经济损失。随着我国西部大开发战略的实施,大型突水地质灾害逐渐成为制约我国地下空间建设发展的瓶颈问题。本文以湖北沪蓉西高风险岩溶隧道为研究对象,通过物理模型试验、现场试验、非线性突变理论以及数值计算等手段,深入研究岩溶突水的灾变演化过程及其力学机理,分析了突水通道的形成机制及其突变模型,提出了岩溶突水防治技术体系,取得了一系列有意义的研究成果。
     首先,基于大型突水资料的系统收集与分析,从含导水构造能量储存、岩溶水动力扰动和能量释放以及含导水构造系统失稳角度提出了突水的发生条件,将突水影响因素划分为地质因素和工程因素,基于防突结构的破坏模式将突水类型划分为地质缺陷式与非地质缺陷式两类。通过对不同突水模式普遍特征的分析,将岩溶突水过程划分为蓄势与失稳两个显著阶段,并采用多场耦合软件COMSOL计算了开挖条件下突水形成过程的流态演变特征,实现了岩溶水由含水层中的渗流发展为潜在突水通道中的快速流,最后突入隧道内形成自由流的灾变演化过程。
     就非地质缺陷式突水,分别研究了突水通道形成的微观作用机制和突水突变模型的宏观力学判据。采用弹脆性损伤模型推导了渗流对隧道围岩稳定性影响的理论解,给出了围岩失稳突水的判据,并借助Flac3 D fish语言将理论推导程序化,分析了渗流作用下隧道开挖卸荷的损伤机制。同时,采用可考虑渗流-损伤耦合机制的RFPA软件包,分析了强渗流作用下隧道围岩裂隙萌生、扩展、贯通直至突水通道形成的演化过程,从围岩多场信息的演变角度揭示了非地质缺陷式突水通道形成的灾变机制;将防突层概念引入深埋层状灰岩隧道的突水模型中,建立了防突层失稳的尖点突变和双尖点突变模型,分析了不同防突层静力与动力失稳的非线性突变特征,给出了失稳判据与最小安全厚度值的计算公式,并结合有限差分程序,分析了动载峰值、频率以及水压大小对防突层最小安全厚度的影响。最后,结合隧道突水工程实例,验证了最小安全厚度计算公式的有效性,并结合考虑渗流-损伤的数值计算结果,进一步证实了渗流-损伤诱发防突层破断突水的微观作用机制。
     开展防突层失稳突水的相似物理模型试验,进一步研究非地质缺陷式突水的灾变机制。基于三维固流耦合相似理论的分析,研制了新型固流耦合相似材料,采用研制的试验台架和光纤监测系统开展隧道涌水和矿井采区突水的相似模型试验,就应力、位移、渗流以及地球物理信息场的演化特征进行了全方位监测,分析了开挖扰动下防突层持续的渗流-损伤诱发围岩局部涌水与整体失稳突水的灾变演变机制,揭示了岩溶突水多场信息的突跳特征,并验证其宏观力学判据的有效性,试验结果与数值计算结果具有很好的一致性。
     就地质缺陷式突水,基于不同成因地质缺陷体的归类和阻水性能分析,提出地质缺陷诱发突水的两种典型灾变模式,分析了地质缺陷式突水通道的形成过程及其失稳的力学判据。就不同尺度地质缺陷体渗透特性的差异,建立了强渗流作用下充填介质的渗透失稳模型和充填体的滑移失稳突水模型,并将之应用于齐岳山隧道岩溶管道诱发突水的实例分析中,结合数值分析结果,揭示了充填介质渗透失稳形成堵塞体后整体滑移突水的灾变演化过程;对于非导水断层,考虑两区段充填介质的力学属性,引入水致弱函数反映强渗流对断层充填介质的活化作用,建立了断层充填体滑移失稳的燕尾突变模型,并基于灾变演化路径控制参数的分析提出相应的防治措施。基于大量数值计算结果,分析了断层活化诱发破裂通道的灾变机制,给出了断层突水的4种灾变路径,并对断层参数对突水的敏感性进行了分析。最后,基于不同揭露型突水模式的灾变分析,提出复合式突水类型,分析地质缺陷诱发隔水围岩失稳的非揭露型突水的灾变机制,并结合工程实例,进一步揭示了断层活化导通暗河水涌入与隧道存在水力联系的充填型溶腔,并导致隧道拱部完整围岩压裂突水的灾变演化机制。
     最后,基于不同突水类型的通道形成机理与灾变力学模型的研究,依托沪蓉线两座控制性高风险岩溶隧道,建立了岩溶突水防治技术体系,从预防与治理角度首次提出岩溶隧道施工突水灾害综合预报预警关键技术。基于该体系指导原则,对齐岳山隧道和乌池坝隧道进行突水风险等级划分,并在乌池坝隧道开展了综合物探法探水试验与突水灾害预警演练。同时,结合该体系突水治理原则,研制高压大流量注浆设备和新型化学注浆材料,并开展浆材优选试验与原位注浆试验,在齐岳山隧道多处突水治理试验中取得了良好效果。试验结果与应用效益证明该体系具有很高的实用性与高效性。
During the construction of underground engineering in serious karst area, geologica hazard of water inrush and mud outburst often occur in tunnel and other underground engineerings,which ofter lead to equipment destroyed and construction period bungled,even serious casualty and economic loss.With western development,large scale disaster of water inrush has gradually become the bottleneck problem of underground engineering development.In order to know the passage formation modle and instability mechanism,similar model test,field test,nonlinear catastrophe theory and numerical simulation have been done for the mechanism of water inrush and its prevention measures,and the technical system of water inrush prevention and control has been put forward,consequently series of meaningful research achievements has been obtained.
     Firstly,according to the analysis results of large scale disasters of water inrush,the occurrence conditions has been put forward from the view of energy storage of water bearing structure,dynamic zone of karst water and energy release, and system instability of water bearing structure,and influencing factors of water inrush includes geological factors and engineering factor,the microscopic and macroscopic characteristics has been analyzed,the water inrush can be divided into two types induced by geological defects or not.Based on the common characteristics of different water inrush types,the process of water inrush has been divided into energy storge stage and instability stage,the characteristics of fluid state has been simulated by COMSOL for the process of water inrush induced by excavation,numerical results show that the fluid state process of water inrush can be divided into Darcy in the aquifer firstly,Brinkman in the potential passage of water inrush secondly and N-S in the tunnel lastly.
     For the water inrush induced by instability of key aquifuge,the formation mechanism of water inrush passage and its instability criterion has been studied from microscopic and macroscopic viem.The analytical solution for tunnel stability with the seepage and its instability criterion has beenderived through the elastic-brittle damage model,and damage mechanism induced by seepage and dynamic excavation has been analyzed by the self making language of Flac 3D fish. The catastrophe evolution of water inrush passage has been simulated by RFPA for the crack initiation,propagation,coalescence and passage formation induced by seepage damage,and the catastrophe mechanism of water inrush passage formation for fractured rock mass has been presented from view of the multi-field information evolution;The concept of key aquifuge has been adopted for the water inrush model of deep bueied tunnel of layered limestone,the cusp catastrophe and double-cusp catastrophe model of key aquifuge has been established for static and dynamic instability,and its nonlinear catastrophe characteristics has been futher studied,so the instability criterion and calculation formula for minimum safety thickness of rock mass has been obtained.In addition,numerical simulation has been done in order to know the relationship between safety thickness of rock mass for water inrush preventing and blasting factor,water pressure and so on.Finally, the calculation formula for minimum safety tickness has been proved by the tunnel engineering example of water inrush,and the instability mechanism of key aquifuge induced by sustained coupling effect of seepage and damage evolution combined with the numerical results.
     Further study has been done by similar model test for water inrush mechanism induced by seepage damage.Based on the analysis on similarity theory of 3D solid-fluid coupling,the new similar material of solid-fluid coupling has been found,and similar model test for water infow of tunnel and water inrush of mining area has been done by self-developed extensible 3D test bench and optical fiber monitoring system,the evolution mechanism of water inflow and water inrush induced by seepage damage has been analyzed by the monitoring results of multi-field information,the simultaneous sudden jump phenomenon of stress, disppacement,seepage pressure and other information has been analyzed,and the macroscopic instability criterion has been proved again,the conclusions have also been proved by numerical results.
     For the water inrush induced by geological defect,two typical catastrophe models has been put forward according to analysis on seepage properties and classification of different geological defect,and the formation mechanism of water inrush passage and its instability criterion has been studied from microscopic and macroscopic viem.Based on the further analysis on seepage properties difference for geological defect of different scale,the instability mechanism of filling medium induced by seepage effect and water outburst model induced by blocking body of karst conduit has been studied,and the water inrush mechanism of Qiyueshan has been interpreted by the model application induced by karst conduit of filing type during the reainfll period combined with the numerical results;For the water inrush induced by water non-conductive fault,the catastrophe model of swallow tail style has been estabilished considering the mechanical effect of two section filling medium and its seepage properties differences,and corresponding countermeasure has been put forward according to the analysis of modle control parameters.In addition,the catastrophe mechanism of rupture passage induced by fault activation has been further studied by a series of numerical results considing the seepage damage,four types of water inrush evolution passage has been put forward and the analysis on influence parameters sensitivity for water inrush induced by fault has been done.Finaly,based on the water inrush mechanism of different type,compound modle of water inrush has been put forward and its disaster mechanism has been done for the water inrush passage composed of activation fault,karst conduit of filling medium and rock mass preventing water.
     Finaly,based on the research results of passage information and instability mechanism for different type of water inrush,the technical system of water inrush prevention and control has been established for engineering practice of two high-rish karst tunnel in Hurong highway,and key technology of comprehensive predition and early-warning for geological hazards during tunnel construction in high-rish karst areas has been put forward firstly.Based on guiding principle of this systm,new grouting equipment of high pressure large volume and chemical grouting material has been developed,and lots of field tests have been done in two karst tunnels,such as rsik grade division in Qiyueshan tunnel and Wuchiba tunnel, karst aquifer detection by comprehensive geophysical method and warning maneuven for water inrush disaster in Wuchiba tunnel,grouting treatment of water inrush in Qiyueshan tunnel.The practicality and high effectiveness has been proved by the lots of filed test results and application benefit.
引文
[1]Tai Tien Wang,Wen Li Wang,Ming Leng Lin.Harnessing the catastrophic inrush of water into new yungchuren Tunnel in Taiwan,Tunnelling and Underground Space Technology 19(2004)418
    [2]Jincai Zhang.Investigations of water inrushes from aquifers under coal seam,International Journal of Rock Mechanics & Mining Sciences 42(2005)350-360.
    [3]Li J.Control of coal mine karst aquifers.Beijing:Coal Industry Publication Press;1990
    [4]Koji Masuda.effects of water on rock strength in a brittle regime[J].Journal of structural geology,2001,23:1653-1657
    [5]姜云,王兰生.深埋长大公路隧道高地应力岩爆和岩溶涌突水问题及对策[J].岩石力学与工程学报,2002,21(9):1319-1323.
    [6]陈绍林,李茂竹,陈忠恕,谢晓东.四川广(安)-渝(重庆)高速公路华蓥山隧道岩溶突水的研究与整治[J].岩石力学与工程学报,2002,21(9):1344-1349.
    [7]刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩士力学,2006,27(2):228-236.
    [8]顾义磊,李晓红,赵瑜,任松.通渝隧道涌突泥成因分析[J].岩土力学,2006,26(6):920-923.
    [9]刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].北京:中国地质大学(北京)博士学位论文.2004.
    [10]李术才,李树忱,张庆松,薛翊国,丁万涛,钟世航,何发亮,林玉山.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217-225.
    [11]李术才,薛翊国,张庆松,李树忱,李利平,孙克国,葛颜慧,苏茂鑫,钟世航,李貅.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307.
    [12]张民庆,黄鸿健,张生学,吴军,李谢怀.宜万铁路马鹿箐隧道1-21突水突泥抢险治理技术[J].铁道工程学报,2008,(11):49-56.
    [13]邓谊明.宜万线别岩槽出口DK406+422特大突水分析[J].铁道工程学报,2008,(1):62-65.
    [14]浦海.保水采煤的隔水关键层模型及力学分析[D].徐州:中国矿业)博士学位论文.2007.
    [15]王续承.俄布矿保水采煤方法的采动岩体渗流力学分析与实践[D].徐州:中国矿业)博士学位论文.2007.
    [16]杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [17]Wolkersdorfer C,Bowell R.Contemporary reviews of mine water studies in Europe[J],Mine Water and the Environment,2004,23:161.
    [18]Salis M,Duckstein L.Mining under a limestone aquifer in southern Sardinia:a multiobjective approach[J].Geotechnical and Geological Engineering,1983,1(4):357-374.
    [19]Kuzentsov S V,Troflmov V A.Hydrodynamic effect of coal seam compression[J].Journal of Mining Science,2002,39(3):205-212.
    [20]薛禹群,朱学愚.地下水动力学[M].北京:地质出版社,1980.
    [21]肖楠森.新构造分析及其在地下水勘察中的应用[M].北京:地质出版社,1980.
    [22]宋晓晨,徐卫亚,邵建富.使用离散的气-水界面模拟裂隙网络非饱和渗流[J].岩石力学与工程学报,2004,23(19):3252-3257.
    [23]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院学报(自然科学版),1999,18(4):11-18.
    [24]王作宇,刘鸿泉,王培彝,于树春.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):42-48.
    [25]刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,1995,20(1):1-5.
    [26]钱鸣高,缪协兴,许家林,茅献彪.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [27]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程学报,2004,23(6):964-968.
    [28]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997.
    [29]陈卫忠,杨建平,杨家岭.邱徉波,曹催晨.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用[J].岩石力学与工程学报,2006,25(12):2384-2391.
    [30]唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析[J].岩土力学,2004,25(8):1320-1322.
    [31]詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析解理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181.
    [32]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [33]王成,邓安福.岩体节理内压致裂解析研究[J].岩石力学与工程学报,2002,21(5):640-643.
    [34]李宗利,张宏朝,任青文,王亚红.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学,2005,26(8):1216-1220.
    [35]Papanastasiou P.An efficient algorithm for propagating fluid-driven fractures[J].Coputational Mechanics,1999,24(4):258-267.
    [36]Volko P,Economides M J.Progagation of hydraulically induced fractures-A contimuum damage mechanics approach[J].International Journal of Rock Mechanics and Min Science & Geomechanics Abstracts,1994,31(4):21-229.
    [37]Dunat X,Vinches M,Henry J P,et al.Modeling of hydro-mechanical coupling in rock joints[J].Mechanics of Jointed and Faulted Rock[C],Rossmanich:Balkeman:1998.
    [38]Axel K L Ng,John C Small.A case study of hydraulic fracturing using finite element methods[J].Canada Geotechnique Jouranl,1998,36:861-875.
    [39]盛金昌,赵坚,速宝玉.高水头作用下水工压力隧洞的水力劈裂分析[J].岩石力学与工程学报,2005,24(7):1226-1230.
    [40]黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573-576.
    [41]谢兴华,速宝玉,高延法,段祥宝.矿井底板突水的水力劈裂研究[J].岩石力学与工程学报,2005,24(6):987-993.
    [42]肖正学,张志呈,郭学彬.断裂控制爆破裂纹发展规律的研究[J].岩石力学与工程学报,2002,21(4):546-549.
    [43]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116.
    [44]李清,杨仁树,李均雷,乔传印,赵艳苹,马英丽.爆炸荷载作用下动态裂纹扩展试验研究[J].岩石力学与工程学报,2005,24(16):2912-2916.
    [45]李晓昭,罗国煜,陈忠胜.地下工程突水的断裂变形活化导水机制[J].岩土工程学报,2002,24(6):695-700.
    [46]胡耀青,严国超,石秀伟.承压水采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-15.
    [47]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,2007,32(6):561-564.
    [48]Oda M.An equivalent continuum model for coupled stress and fluid analysis in jointed rock masses[J].Water Resoures Research,1986,22(13):1845-1856.
    [49]Erichson Von C.Gekoppelte spannumgs-sick ectromung-sberechnungcn von bauwerken in kluftigem fels unter berucksichtigung des nichtlinearen spannungsverchiebung-sverhaltens von trennflachen,Aachen,1987.
    [50]张金才,王建学.岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报,2006,25(10):1981-1989.
    [51]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩士力学,1997,18(4):59-62.
    [52]Paterson S.Expermient deformation of rocks:the britle field[M].Berlin:Spriner,1978.
    [53]Schulze,O.,Popp,T.,and Kern,H.Development of damage and permeability in deforming rock salt[J].Engineering Geology,2001,22(13):1845-1856.
    [54]李树刚,徐精彩.软煤样渗透特性的电液伺服试验研究[J].岩士工程学报,2001,23(1):68-70.
    [55]姜振泉,季梁军.岩石全应力应变过程渗透特性试验研究[J].岩土工程学报,2001,23(2):153-156.
    [56]韩宝平,冯启言.全应力应变过程中碳酸盐岩渗透特性研究[J].工程地质学报,2000,8(2):127-128.
    [57]WANG J A,PARK H D.Fluid permeability of sedimentary rocks in a complete stress-strain process[J].Engineering Geology,2002,63(2):291-300.
    [58]CHARLLEZ P A.Rock mechanics(Ⅱ:petroleum applications)[M].Paris:Technical Publisher,1991.
    [59]NOGHABAI K.Discrete versus smeared versus element-embedded crack models on ring problem[J].Journal of Engineering Mechanics,1999,152(6):307-314.
    [60]VALKO P,ECONOMIDES M J.Propagation of hydraulically induced fractures-a contnuum damage mechanics approach[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(3):221-229.
    [61]朱珍德,胡定.裂隙水压对岩体强度的影响[J].岩土力学,2000,21(1):64-67.
    [62]孙秀堂,常成,王成勇.岩石临界CTOD的确定及失稳断裂过程区的研究[J].岩石力学与工程学报,1995,14(4):312-319.
    [63]尹尚先,武强,王尚旭.北方岩溶陷落柱的充水特征及水文地质模型[J].岩石力学与工程学报,2005,24(1):77-82.
    [64]郑少河,朱维申,王书法.承压水采煤的固流耦合问题研究[J].岩石力学与工程学报,2000,19(7):421-424.
    [65]杨延毅,周维桓.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报,1991,(5):19-27.
    [66]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析[J].水文地质工程地质,1999,26(2):35-42.
    [67]郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156-159.
    [68]Henley S.Catastrophe theory model in geology.Math.Geo.,1976;8
    [69]Saunders P.T.凌复华译.突变理论入门[M].上海:上海科技文献出版社,1983.
    [70]李顺才,陈占清,缪协兴,茅献彪.破碎岩体中气体渗流的非线性动力学研究[J].岩石力学与工程学报,2007,26(7):1372-1380.
    [71]王连国,宋扬,缪协兴.基于尖点突变模型的煤层底板突水预测研究[J].岩石力学与工程学报,2003,22(4):573-577.
    [72]邵爱军,彭建萍,刘唐生.矿坑底板突变模型研究[J].岩土工程学报,2001,23(1):38-41.
    [73]中国生,江文武,徐国元.底板突水的突变理论预测[J].辽宁工程技术大学学报,2007,26(2):216-218.
    [74]王凯,位爱竹,陈彦飞,俞启香.煤层底板突水的突变理论预测方法及其应用[J].中国安全科学学报, 2004,14(1):11-14.
    [75]周辉,翟德元,王泳嘉.薄隔水层井筒底板突水的突变模型[J].中国安全科学学报,1999,9(3):44-48.
    [76]钱家忠,朱学愚,吴剑锋,潘国营.矿井涌水量的灰色马尔可夫预报模型[J].煤炭学报,2000,25(1):71-75.
    [77]姜谙男,梁冰.基于最小二乘法支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):613-617.
    [78]王延福,蕲德武,曾艳京,王晓明.岩溶煤矿矿井煤层底板突水非线性预测方法研究[J].中国岩溶,1998,17(1):57-66.
    [79]武强,庞炜,戴迎春,俞佳.煤层底板突水脆弱性评价的GIS与ANN耦合基础[J].煤炭学报,2006,3l(3):314-319.
    [80]缪协兴,陈占清,茅献彪,陈荣华.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660-667.
    [81]孙亚军 杨国勇,郑琳.基于GIS的矿井突水水源判别系统研究[J].煤田地质与勘探,2007,35(2):34-37.
    [82]武强.华北型煤田矿井防治水决策系统[M].北京:煤炭工业出版社,1995.
    [83]HOUSE L.Locating micro-earthquakes induced by hydraulic fracturing in crystalline rock[J].Geophysics Res.Lett.1987,14:919-921.
    [84]BLOCKL V,CHENG C H,FEHLER M C,et al.Seismic imaging using micro-earthquakes induced by hydraulic fracturing[J].Geophysics,1994,59:101-112.
    [85]陆菜平,窦林名,吴兴荣,王慧明,秦玉红.岩体微震监测的频谱分析与型号识别[J].岩土工程学报,2005,27(7):772-775.
    [86]李庶林,尹贤刚,郑文达.凡口铅锌矿多通道微震监测系统及应用研究[J].岩土工程学报,2005,24(12):2048-2053.
    [87]BUTTONE,BRETTEREBNER H,SCHWAB P.The application of TRT-true reflection tomography at the Unterwald tunnel in Felsbau[J].Geophysics,2002,20(2):51-56.
    [88]CHRISTIAN D.Klose fuzzy rule-based expert system fro short-range seismic prediction[J].Coputers and Geosciences,2002,28(3):337-386.
    [89]INAZAKi T,ISAHAI H.Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face[J].The Leading Edge,1999,18(12):1429-1431.
    [90]SHIMIZU N,KATO T.Development and application of seismic reflection survey in a tunnel using hydraulic inpactor or vibrator[C]//The 7th SEGJ International Symposium on Imaging Technology.Sendai,Japan:[s.n.],2004:236-246.
    [91]李大心.探地雷达方法与应用[M].北京:地质工业出版社,1994.
    [92]钟世航.陆地声纳法的原理及其在铁路地质勘测和隧道施工中的应用[J].中国铁路科学,1995,16(4):48-55.
    [93]刘志刚,刘秀峰.TSP在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402.
    [94]陈伟海,张之淦.峰林平原区岩溶含水层特征与调蓄功能[J].中国岩溶,1999,18(1):19-27.
    [95]CREMER F,JOUN de W,SCHUTTE K.Fusion of polarimetric infrared features and GPR features for landmine detection[C]//The 2nd International Workshop on Advanced Ground Penetrating Radar(IWAGPR).Delft,Netherlands:[s.n.],2003:1-6.
    [96]CASASA,LAZARO R,VILAS M,et al.Detecting karstie cavities with ground penetrating radar at different geological environments in Spain[C]//Proceeding of the 6th International Conference on Ground Pentrating radar.Sendai,Japan:[s.n.],1996:455-460.
    [97]FOESSEL A,APOSTOLOPOULOSD,WHITTAKER W L.Radar sensor for an autonomous Antarctic explorer[C]//Proc.Spie,Mobile Robots ⅩⅢ and Intelligent Transportation Systems.[S.I.]:[s.n.],1999:117-124.
    [98]BROOKS J W.Application of GPR technology to humanitarian demising operations in Cambodia.[R].[S.I.]:Brooks Enterprises International,Inc,1996:1-9.
    [99]王鹰,陈强,魏有仪,王华.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(5):855-857.
    [100]刘高,杨重存,谌文武,梁收运,韩文峰,宋畅.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报,2002,8(3):160-164.
    [101]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [102]高延法,施龙清,娄华君,牛学良.底板突水规律与突水优势面[M].徐州:中国矿业大学出版社,1999.
    [103]杨天鸿,陈仕阔,朱万成,孟召平,高延法.矿井岩体破坏突水机制及非线性渗流模型初探[J].岩石力学与工程学报,2008,27(7):1411-1416.
    [104]徐涛,唐春安,宋力,杨天鸿,梁正召.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报,2005,24(10):1667-1673.
    [105]李忠华,潘一山.有渗流作用的油井井壁稳定性解析分析[J].工程力学,2002,19(3):105-108.
    [106]荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741-744.
    [107]杨茀康,李家宝.结构力学(下册)[M].北京:高等教育出版社,1958.
    [108]龙辉,沈茂山,魏德敏.弹性拱振动失稳的突变模型[J].应用数学和力学,1990,11(12):1099-1102
    [109]沈茂山,秦四清,万志清.降雨触发滑坡的尖点突变模型[J].岩石力学与工程学报,2002,21(4):502-508.
    [110]魏德敏,王德禹.突变理论在结构动屈曲分析中的若干应用[J].工程力学(增),1998:138-142.
    [111]闫长斌,徐国元.动荷载诱发上下交叠硐室间顶柱失稳的突变理论分析[J].工程力学,2007,24(4):46-51
    [112]Sauders P T著.突变理论入门[M].凌复华译.上海:上海科学技术和文献出版社,1983.
    [113]左宇军,李夕兵,赵国彦.受静载荷作用的岩石动态断裂的突变模型[J].煤炭学报,2004,29(6):654-658.
    [114]胡耀青 赵阳升,杨栋.三维固流耦合相似模拟理论与方法[J].辽宁工程技术大学学报,2007,26(2):204-206.
    [115]潘一山,章梦涛,王来贵,李国臻.地下硐室岩爆的相似材料模拟试验研究[J].岩土工程学报,1997,19(4):49-56.
    [116]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23(18):3157-3161.
    [117]赖道平.地质缺陷对混凝土坝结构性态演变和转异的影响研究[D].南京:河海大学博士学位论文.2005.
    [118]陈金刚,张景飞.充填物的力学响应对裂隙渗流的影响[J].岩土力学,2006,27(4):577-580.
    [119]柴军瑞,仵彦卿,袁继国.岩体中裂隙水流对裂隙壁的双重力学效应[J].岩土力学,2003,24(4):514-517.
    [120]殷有泉,杜静.地震过程的燕尾突变模型[J].地震学报,1994,16(4):416-421.
    [121]刘文方,隋严春,周菊芳,李红梅.含软弱夹层岩体边坡的突变模式分析[J].岩石力学与工程学报,2006,25(S1):2663-2669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700