用户名: 密码: 验证码:
氯化钠污染条件下镁—铝合金的β相对其大气腐蚀行为的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯镁因为力学性能差而不能被用作结构材料,用于工程结构材料的是添加了合金元素的镁合金。合金元素的加入,在提高镁合金力学性能的同时,往往会形成第二相。镁一铝合金中的第二相β相(Mg_(12)Al_(12))对其腐蚀行为有着重要影响。大气环境是镁合金最为常用的应用环境之一,在大气环境中存在污染微粒的情况下镁.铝合金中β相的腐蚀作用如何,β相体积分数的增加,是会加剧β相与基体α相之间的微电偶作用还是会增加镁-铝合金表面膜的稳定性,是本文关注的主要问题。
     采用普通铸造方法制备了3种不同Al含量的镁合金,Al的添加量均超过Al在Mg中的室温溶解度,因此制备的合金中均有第二相β相(Mg_(17)Al_(12))。随着Al含量的增加,β相的体积分数增多。对具有不同体积分数β相的镁-铝合金进行室内模拟污染微粒(选用NaCl)作用下金属大气腐蚀实验,采用扫描电镜(SEM)对暴露不同周期的腐蚀产物的表面形貌,截面形貌以及去除腐蚀产物后基体的腐蚀形貌进行观察发现,NaCl盐粒作用下的镁-铝合金的大气腐蚀始于盐粒沉积的位置,表明通过沉降方式沉积到镁合金表面的盐粒诱发腐蚀时不存在相的选择性。β相的体积分数不同,腐蚀形貌存在比较大的差异。腐蚀增重结果表明随着合金中β相体积分数的增加,镁合金的腐蚀速率增加。这是因为起到阴极作用的β相,其体积分数的增加相当于增大了微电偶电池的阴极面积,从而加速了镁合金的腐蚀速率。
     金属表面的腐蚀产物膜对于金属基体起到一定程度的保护作用,而腐蚀产物膜的保护能力取决于膜层组成、结构和形态。采用X射线衍射(XRD)、电子探针(EPMA)、扫描电镜(SEM)等技术研究了镁合金中β相体积分数的增加对其大气腐蚀产物膜的组成、结构和性能的影响。镁合金的大气腐蚀产物主要组成为Mg(OH)_2,MgCl_2,MgCl_2·2H_2O,Mg_2(OH)_3Cl·4H_2O等。随着β相的增加,镁合金腐蚀产物中出现富铝相(MgAl_2O_4),然而富铝相的生成没有增加腐蚀产物膜的稳定性,相反增加了腐蚀产物膜组成和元素分布的不均匀性。β相与α相之间的微电偶作用随β相体积分数的增加而加强,导致更多的富铝相及腐蚀脱落的β相进入腐蚀产物并随着腐蚀进行不断发生迁移,从而引起腐蚀产物分布不均匀、结构疏松、多孔,降低了镁合金大气腐蚀产物膜的保护性。交流阻抗能够定性测试镁.铝合金大气腐蚀产物膜的保护性,随着合金中β相的增加,在相同暴露周期内腐蚀产物膜的阻抗值下降,表明膜层保护性降低。
     采用原位电化学阻抗研究了镁.铝合金在NaCl盐粒作用下的初期大气腐蚀行为。原位阻抗谱与腐蚀形貌相结合能很好的反映镁-铝合金初期的大气腐蚀过程。镁-铝合金的高频容抗弧对应为反应信息,低频容抗弧半径逐渐增加,表明腐蚀产物膜的保护性在增强,阻抗谱上的扩散尾对应腐蚀产物的迁移信息。原位阻抗谱揭示了由NaCl诱发的镁合金初期大气腐蚀,在早期的10h内β相体积分数较高的镁合金的电荷转移电阻相对较大,这与β相的相对耐蚀有关。一旦突破β相的阻碍作用,Mg-21Al合金仍表现为较快的腐蚀速度。随着暴露时间的延长,Mg-3Al合金腐蚀产物膜的保护性明显更好。原位阻抗谱的测试结果与增重结果基本吻合,表明电化学阻抗技术用于研究非连续水膜作用下镁合金的初期大气腐蚀具有可行性。
     β相的电化学性质是决定其与基体α相的电偶行为以及整个表面腐蚀的关键。根据β相的成分特点制备了β相的模型合金,在不同浓度的Cl~-溶液环境中研究其表面膜的组成、结构以及电子特性。Cl~-浓度增加会降低β相的自腐蚀电位和点蚀击破电位,加速β相表面膜的形成和溶解,明显影响了β相表面膜的半导体特性。这是由于Cl~-浓度的增加,Cl~-过多掺杂了β相表面膜的组成,使表面膜性质发生改变。β相在溶液中的电化学行为可以揭示大气环境中镁-铝合金微区上β相的腐蚀作用。高浓度的Cl~-降低了β相表面膜的稳定性是NaCl污染因素作用下镁-铝合金中β相体积分数增加没有增加合金表面的稳定性反而使微电偶作用突出的原因所在。
Pure magnesium is seldom used as structural material due to its poor mechanical properties,and that used as industrial structural material are magnesium alloys which were alloyed with certain elements.The addition of alloy elements not only improves the mechanical properties of magnesium alloys,but also induces the formation of second phase.The second phaseβ-Mg_(17)Al_(12) plays an important role in corrosion performance of magnesium-aluminum alloy.It is known that magnesium alloys are frequently used in various atmospheric environments.The main subject concerned in the present paper is how the atmospheric corrosion behavior of magnesium alloys when the atmospheres were contaminated with certain salt particles,which frequently were as deposits on the alloy surface.What the article particularly concerns how the variation of the volume fraction ofβphase affects the micro galvanic effect,and the influence ofβphase on the surface films.
     Three magnesium-aluminum alloys with different aluminum contents were prepared by ordinary casting methods,all of which contain the secondβphase (Mg_(17)Al_(12)) because the content of additive aluminum exceeds the solubility of aluminum in magnesium at ambient temperature.The volume fraction ofβphase increases with the increase of the aluminum content.The atmospheric corrosion tests with the presence of contaminant particles in laboratory simulation was conducted to the three magnesium alloys with different volume fraction ofβphase, the surface morphologies and cross sectional morphologies of corrosion products, and the matrix after the remove of corrosion products were observed by SEM.It was found that the atmospheric corrosion of magnesium-aluminum alloys initiated directly where beneath NaCl particles deposits,that is to say,the corrosion could take place at any phase as long as it is the position where NaCl particles was deposited.The corrosion behavior varied because of the different volume fraction ofβphase in the magnesium alloys.It was indicated from the results of corrosion mass gain that the corrosion rate of magnesium alloys increased as increasing the volume fraction ofβphase,resulting in the serious corrosion of the magnesium alloy substrate.Because the increase ofβphase enlarged the cathodal area of micro galvanic cells,consequently increasing the corrosion rate of magnesium alloys,which indicated that in dual phase magnesium-aluminum alloys,the effect of micro couple betweenβphase and a phase enhanced with the increase ofβphase.
     The formed corrosion product fills showed protectiveness to some extent, depending on the structure and state of the corrosion product films.The influence of the increased volume fraction ofβphase in magnesium-aluminum alloys on the composition,structure and performance of atmosphere corrosion products were investigated by XRD,EPMA and SEM.There were Mg(OH)_2,MgCl_2, MgCl_2·2H_2O,Mg_2(OH)_3Cl·4H_2O in the corrosion products of the three magnesium alloys,and as theβphase in magnesium alloys increased,the Al-enriched phase(MgAl_2O_4) emerged.However,the formation of Al-enriched phase didn't improve the stability of corrosion product fill,in contrast,the higher the volume fraction ofβphase,the more defects and pores existing in the corrosion products.The reason is that the micro galvanic effect betweenβphase andαphase in the substrate aggravates corrosion,leading to the inhomogeneous distribution,loose structure and pores of the corrosion products,which decreased the protective function of corrosion products of magnesium in atmosphere.The protective ability of corrosion product films of the three magnesium alloys could be qualitatively determined by Electrochemical Impedance Spectral,and the results showed that with the increase ofβphase,the impedance values of corrosion product films decreased when exposed for the same periods,indicating the decline of protective effect.
     The in-situ Electrochemical Impedance Spectra measurements were conducted to investigate the earlier stage of atmospheric corrosion behavior of the three magnesium alloys with NaCl particles using Solartron 1260 impedance/gain phase analyzer and 1296 dielectric interface.The in-situ impedance spectra combined with corrosion morphology could preferably reflect the process of atmospheric corrosion of the three magnesium alloys.The high frequency capacitive impedance arc of the three magnesium alloys stabilize gradually with the increase of exposure time.The gradually increased low frequency capacitive impedance arc reflected the slowdown of the substrate corrosion and the enhancement of the protectiveness of corrosion product films.The diffusion tale on the impedance spectra corresponds to the migrating information of corrosion products,rather than the diffusion controlled by non-oxygen factors.The in-situ impedance spectra revealed the better corrosion resistance of magnesium alloy with high volume fractionβphase during the earlier atmospheric corrosion induced by NaCl particles centralized in the earlier ten hours,and faster corrosion occurred for Mg-21Al alloy after ten hours becauseβphase is corroded.As the exposure time prolonged,the protective function of corrosion product films in Mg-3A1 alloy is significantly superior to the other two alloys.The results of in-situ impedance spectra were well consistent with those of the above results,showing the feasibility of the impedance spectra analysis technology to investigate the earlier stage of atmospheric corrosion induced by NaCl particles for magnesium alloys.
     The surface performance ofβphase is the key determining the galvanic couple behavior betweenβphase and a matrix phase,as well as the whole surface corrosion.A model alloy of consisted of nearlyβphase was smelt according to the composition features ofβphase,and the composition,structure and electron characteristics of the formed passive films on which were studied in solutions conditions containing different Cl~- concentration.The increase of Cl~- concentration may decrease the corrosion potential and the pitting breakdown potential ofβphase,accelerate the formation and dissolution of films on the surface ofβphase, and affect semiconductor characteristics of surface films obviously.This is because there is excess Cl~- doping the formation ofβphase surface film,resulting in the change of the properties of surface film as the Cl~- concentration increases.It is indicated from the electrochemical behavior ofβphase in the solution that theβ phase in the micro-region of magnesium-aluminum alloy plays a role of corrosion in atmosphere condition.The high concentration of Cl~- decreases the stability ofβphase surface film,attributing from the fact that the increase of volume fraction ofβphase in magnesium-aluminum alloy doesn't increase the stability of surface, conversely,emphasizes the function of micro galvanic couple.
引文
[1]宋光铃.镁合金腐蚀与防护[M].第一版.北京:化学工业出版社,2006:198-100页162页184页29页
    [2]Raymond F.Decker.The renaissance in magnesium[J].Advanced Materials and Processes.1998,154(3):31-33P
    [3]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇.Mg合金的最新发展及应用前景[J].金属学报.2001,37(7):673-685页
    [4]B.L.Mordike,T.Ebert.Magnesium properties-applications-potential[J].Materials Science & Engineering A.2001,302:37-45P
    [5]F.H.Froes,D.Eliezer E.Aghion.The science technology and application of magnesium[J].Journal of Minerals Metals and Material Society.1998,5(9):30-34P
    [6]张永君,严川伟,王福会,曹楚南.镁的应用及其腐蚀与防护[J].材料保护.2002,35(4):4-6
    [7]高敬.镁合金在运输系统中的应用[J].稀有金属快报.2002,11:9-13页
    [8]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修.2002,4:41-42页
    [9]陈振华等.镁合金[M].第一版.北京:化学工业出版社,材料科学与工程出版中心.2004:2-5页
    [10]任学佑.有色金属在轿车工业中应用前景[J].有色金属.1998,50:114-119
    [11]张治民.镁及镁合金产业的现状及发展趋势[J].太原科技,2005,1:8-10
    [12]Frank Witte,Jens Fischer.In vitro and in vivo corrosion measurements of magnesium alloys[J].Biomaterials.2006,27(7):1013-1018P
    [13]F.Witte,V.Kaese,H.Haferkamp,E.Switzer,A.Meyer-Lindenberg,C.J.Wirth,H.Windhagen.In vivo corrosion of four magnesium alloys and the associated bone response[J].Biomaterials.2005,26(17):3557-3563P
    [14]张津等.镁合金及应用[M].第一版.北京:化学工业出版社,2004:213页
    [15]G.L.Song,Atrens A.Understanding magnesium corrosion[J].Advanced Engineering Materials.2003,5(12):837-858P
    [16]张涛.在含Cl~-溶液中镁合金腐蚀机理的研究[D].中科院金属研究所博士论文.2005:2
    [17]陈鸿海等.金属腐蚀学[M].第一版.北京:北京理工大学出版社,1995:176页
    [18]王益志.杂质对高纯镁合金耐蚀性的影响[J].铸造,2001,50(2):61-66页
    [19]J.H.Nordlin,K.Nisancioglu,S.Ono and N.Masuko.Morphology and structure of oxide formed on Mg-Al alloy exposure to air and water[J].Journal of the Electrochemical Society.1996(143):2564P
    [20]O.Lunder,K.Nisanccioglu,R.S.Hansen.Corrosion of diecast magnesium aluminium alloys.Detroit.MI.1993P
    [21]吴振宁,李培杰,刘树勋,曾大本.镁合金腐蚀问题研究现状[J].铸造.2001,50(10):583-586页
    [22]E.Aghion,B.Bronfin,D.Eliezer.The role of the magnesium industry in protecting the environment[J].Journal of Materials Processing Technology.2001,117:381-385P
    [23]G.L.Song,A.Atrens,M.Dargusch.Influence of microstructure on the corrosion of diecast AZ91D[J].Corrosion Science.1999,41:249-273P
    [24]G.L.Song,A.Atrens,X.L.Wu,B.Zhang.Corrosion behaviour of AZ21,AZ501 and AZ91 in Sodium Chloride.Corrosion Science.1998,40(10):1769-1791P
    [25]R.Ambat,N.N.Aung,W.Zhou.Evaluation of microstructure effects on corrosion behaviour of AZ91D magnesium alloy[J].Corrosion Science.2000,42:1433-1455P
    [26]S.Mathieu,C.Rapin,J.Hazan,P.Steimetz.Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys[J].Corrosion Science.2002,44:2737-2756.
    [27]O.Lunder,T.K.R.Aune,K.Nisancioglu.Effect of Mn additions on the corrosion behaviour of mould-cast magnesium ASTM AZ91[J-].Corrosion.1987,43(5):291-295P
    [28]M.Sakamoto,S.Aldyama.In processing of the 4th Asian foundary congress[C].Boardbeach.Austrilia,1996
    [29]黄亮,黄元伟,王晨,卫中领.含稀土元素的Mg-Al合金在NaCl溶液中腐蚀产物膜的研究[J].中国腐蚀与防护学报.2002,22(3):167-171页
    [30]段汉桥,王立世,蔡启舟,张诗昌,魏伯康.稀土对AZ91镁合金耐腐蚀性能的影响[J].中国机械工程.2003,14(20):1789-1793页
    [31]周学华,卫中领,陈秋荣,陈开生,黄元伟.含稀土耐蚀Mg-9Al铸造镁合金腐蚀行为研究[J].腐蚀与防护.2006,27(10):487-491页
    [32]周学华,钮洁欣,卫中领,陈秋荣.添加RE和Mn元素对Mg-9Al合金耐蚀性的影响[J].轻合金的加工技术.2006,34(10):49-54页
    [33]王喜峰,齐公台,蔡启舟,魏伯康.混合稀土对AZ91镁合金在NaCl溶液中的腐蚀行为影响[J].材料开发与应用,2002,5(17):34-36页
    [34]张汉茹,郝远,徐卫军,梁永正.NaCl溶液中AZ91D的腐蚀性能—RE与Sb及Si对AZ91D合金在NaCl溶液中腐蚀速率的影响[J].铸造设备研究.2004,1:28-30页
    [35]I.Nakatsugawa,S.Kamado,Y.Kojima,R.Ninomiya,K.Kubota.Corrosion behaviour of magnesium alloys containing havery rare earth elements[C].In:G.W.Lorimer ed.Prof.Of 3rd Inter.Mag.Conf.1996,Manchester:687-698P
    [36]O.Lunder,J.F.Lein,T.Kr.Aune,K.Nisancioglu.The role of the Mg_(17)Al_(12)phase in the corrosion of Mg alloy AZ91[J].Corrosion.1989,45(9):741-748P
    [37]N.Pebere,C.Rriea,F.Dabosi.Investigation of magnesium corrosion in aerated sodium sulfate solution by Electrochemical Impendence Spectroscopy[J].Electrochimica Acta.1990,35:555
    [38]S.K.Das,L.A.Davies.High performance aerospace alloys via rapid solidication processing[J].Materials ScienceEngineering.1998,10:98
    [39]G.L.Song,A.Atrens.Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials.1999,1(1):11-31P
    [40]R.Ambat,N.N.Aung,W.Zhou.Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J].Corrosion Science.2000,42:1433-1455
    [41]Young-Jin Ko,Chang Kong Yim.Effect of Mg_(17)Al_(12) precipitate on corrosion behaviour of AZ91D magnesium alloy[C].Materials Foroum.2003:851-856P
    [42]C.D.Yim,E.Ko,K.Shin.Effect of heat treatment on corrosion behaviour of an AZ91HP magnesium alloy[C].Proc.12th Asia Pacific Corrosion Control Conference 2001.2001,Seul,(2):1306P
    [43]霍宏伟,李瑛,王福会.热处理对AZ91D和AM50合金组织和腐蚀行为的影响[J].材料热处理学报.2003,24(4):8-11页
    [44]T.Beldjoudi,C.Fiaud,L.Robbiola.Influence of homogenization and artificial aging heat treatments on corrosion behavior of Mg-Al alloys[J].Corrosion.1993,49(9):738-745
    [45]Z.M.Shi,G L.Song,A.Atrens.Influence of the β phase on the corrosion performance of anodized coatings on magnesium-aluminum alloys[J].Corrosion Science.2005,47(11):2760-2777P
    [46]R.K.Singh Raman.The role of microstructure in localized corrosion of magnesium alloys[J].Metallurical and materials transactions A.2004,35A:2525-2531P
    [47]Edward Ghali,Wolfgang Dietzel,and Karl-Ulrich Kainer.General and localized corrosion of magnesium alloys:a critical review.Journal of Materials Engineering and Performance,2004,13(1):7-23
    [48]G.L.Song,A,Atrens,D.Stjohn,J.Naim and Y.Li.The electrochemical corrosion of pure magnesium in 1N NaCl[J].Corrosion Science.1997,39(5):855-875P
    [49]X.Hallopeau,T.Beldjoudi and C.Fiaud.Electrochemical behaviour and surface characterisation of Mg and AZ91E alloy in aqueous electrolyte solutions containing XO_y~(n-) inhibiting ions[C].In:G.W.Lorimer.Prof.of 3rd Inter.Mag.Conf.Manchester,1996:713-725P
    [50]G.L.Song,A.Atrens,D.St John,X.Wu and J.Nairn.The anodic dissolution of magnesium in chloride[J].Corrosion Science.1997,39(10-11):1981-2004
    [51]G.Baril,N.Pebere.The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions[J].Corrosion Science.2001,43(30):417-484P
    [52]李瑛,张涛,王福会.AZ91D镁合金手汗腐蚀机理研究Ⅰ.手汗模拟液中AZ91D镁合金腐蚀的动力学规律[J].中国腐蚀与防护学报.2004,24(5)276-279页
    [53]李瑛,张涛,王福会.AZ91D镁合金手汗腐蚀机理研究—Ⅱ尿素对AZ91D腐蚀的缓蚀机制.[J].中国腐蚀与防护学报.2004,24(6):334-338页
    [54]张涛,李瑛,王福会.AZ91D镁合金手汗腐蚀机理研究—Ⅲ乳酸对AZ91D镁合金的腐蚀机制[J].中国腐蚀与防护学报.2004,24(6):339-344页
    [55]G.L.Song,D.St John.Corrosion behaviour of magnesium in ethylene glycol[J].Corrosion Science.2004,46:1381-1399P
    [56]王光雍,王海江,李兴濂,等.自然环境的腐蚀与防护(大气·海水·土壤)[M].第一版.北京:化学工业出版社,1997
    [57]M.Stralmarm,H.Streeckel.On the atmospheric corrosion of metals which a covered with thin electrolyte layers[J].Corrosion Science.1990,(30):681-696P
    [58]R.Lindstrom,L.G.Johansson,G.E.Thompson,P.Skeldon,J.E.Svensson.Corrosion of magnesium in humid air[J].Corrosion Science.2004,46:1441-1158P
    [59]R.Lindstrom,L.G.Johansson,J.E.Svensson.The influence of NaCl and CO_2 on the atmospheric corrosion of magnesium alloys[J].Materials and Corrosion.2003,54:587P
    [60]R.Lindstrom,J.E.Svensson,L.G.Johansson.The influence of carbon dioxide on the atmospheric corrosion of some magnesium alloys in the presence of NaCl[J].Materials and Corrosion.2003,54:587P
    [61]C.Lin,X.G.Li.Role of CO_2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl[J].Rare Metals.2006,25(2):190-196P
    [62]M.Jonsson,D.Persson,D.Thierry.Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D[J]. Corrosion Science.2007,49(3):1540-1558P
    [63]郑弃非,曹莉亚.镁合金的大气腐蚀试验研究[J].稀有金属.2004,28(1):101页
    [64]林翠,李晓刚.NaCl沉积和SO_2污染对镁合金初期大气腐蚀行为的影响[J].北京科技大学学报.2004,26(5):524页
    [65]万晔,严川伟.几种盐沉积和微量SO_2对AZ91D镁合金大气腐蚀的协同作用[J].中国有色金属学报.2006,16(1):176-182页
    [66]肖葵,董超芳,李晓刚,赵耀斌.在污染大气环境中NaCl对镁合金的协同作用[J].装备环境工程.2006,3(6):26-29页
    [67]S.Feliu,M.Morcillo and S.Feliu Jr.The prediction of atmospheric corrosion from meteorological and pollution parameters-Ⅰ.Annual corrosion[J].Corrosion Science.1993,34(3):403-414P
    [68]D.Bengtsson Blucher,R Lindstrom,J.-E.Svensson,L.-G.Johnansson.The effect of CO_2 on the NaCl-induced atmospheric corrosion[J].Journal of The Electrochemical Society.2001,148(4):B127-B131P
    [69]R.Lindstrom,J.-E.Svensson,L.-G.Johnansson.The influence of salt deposits on the atmospheric corrosion of Zinc—The important role of the sodium ion[J].Journal of the Electrochemical Society.2002,149(2):B57-B64P
    [70]Q.Qu,C.W.Yan,Y.Wan,C.Cao.Effects of NaC1 and SO_2 on the initial atmospheric corrosion of zinc[J].Corrosion Science.2002,44(12):2789-2803P
    [71]X.Cao.C.C.Xu.Effect of chloride on the atmospheric corrosion of simulated artifact iron in NO_3~- bearing pollutant environment[J].Acta Metallurgica Sinica(English Letters).2006,19(1):34-42P
    [72]D.Bengtsson Blucher,J.-E.Svensson,L.-G.Johnansson.The influence of CO_2,AlCl_3·6H_2O,MgCl_2·6H_2O,Na_2SO_4 and NaCl on the atmospheric corrosion of aluminum[J].Corrosion Science.2006,48:1848-1866P
    [73]Q.Qu,C.W.Yan,L.Li,L.Zhang,G.H.Liu,C.N.Cao.Initial atmospheric corrosion of zinc in the presence of NH_4Cl[J].Acta Metallurgica Sinica (English Letters.).2004,17(2):161-165P
    [74]Tomas Prosek,Dominique Thierry,Claes Taxen,Jaroslav Maixner.Effect of cations on corrosion of zinc and carbon steel covered with.chloride deposits under atmospheric conditions[J].Corrosion Science.2007,49(6):2676-2693P
    [75]屈庆,严川伟,张蕾,万晔,曹楚南.NaCl和SO_2在A3钢初期大气腐蚀中的协同效应[J].金属学报.2002,38(10):1062-1066页
    [76]J.E.Svensson,L.G.Johnansson.The synergistic effect of hydrogen sulfide and nitrogen dioxide on the atmospheric corrosion of zinc[J].Journal of The Electrochemical Society.1996,143(1):51-58P
    [77]N.LeBozec,M.Jonsson,D.Thierry.Atmospheric corrosion of magnesium alloys:Influence of temperature,relative humidity,and chloride deposition [J].Corrosion.2004,60(4):356-361P
    [78]G.L.Song,S.Hapugoda,D.St John.Degradation of the surface appearance of magnesium and its alloys in simulated atmospheric environments[J].Corrosion Science.2007,49:1245-1265P
    [79]万晔.污染因素对金属大气腐蚀的影响机理研究[D].中国科学院金属研究所博士学位论文.2005:80-86页
    [80]徐卫军,马颖,吕维玲,陈体军,李元东,郝远.触变成型镁合金AZ91D在兰州城市大气中的腐蚀行为研究[J].腐蚀科学与防护技术.2007,19(1):31-34页
    [81]肖葵,董超芳,李晓刚,魏丹.AZ91D镁合金在大气环境中初期腐蚀行为的研究[J].稀有金属.2006,30(5):595-599页
    [82]杨晓芳,郑文龙.暴露2年的碳钢与耐候钢表面锈层分析[J].腐蚀与防护.2002,23(3):97-99页
    [83]T.Kamimura,S.Hara,H.Miyuki,et al.Composition and protective ability of rust layer formed on weathering steel exposed to various environments [J].Corrosion Science.2006,48:2799-2812P
    [84]Shigeru Suzuki,Eiichiro Matsubara,Takuya Komatsu,Yoshinori Okamoto,Kigoshi Kanie,Atsushi Muramatsu,Horoyuki Konishi,Junichiro Mizuki, Yoshio Waseda.Ex-situ and in-situ X-ray diffractions of corrosion products freshly formed on the surface of an iron-silicon alloy[J].Corrosion Science.2007,49(3):1081-1096P
    [85]J.H.Wang.The corrosion mechanism of carbon steel and weathering steel in SO_2 polluted atmospheres[J].Masterials Chemistry and Physics.1997,47
    [86]K.E.Garcia,A.L.Morales,C.A.Barrero,J.M.Greneche.On the rest products formed on weathering and carbon steels exposed to chloride in dry-wet cyclical processes[J].Hyperfine Interactions.2005,161(1-4):127-137 P
    [87]万晔,严川伟,史志明,屈庆,曹楚南.预污染处理碳钢腐蚀产物的研究[J].金属学报.2002,10:1057-1061页
    [88]M.Yamashita,H.Miyuki,Y.Matsuda,H.Nagano,T.Misawa.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J].Corrosion Science.1994,36(2):283-299P
    [89]T.Misawa,K.Asami,K.Hashlmoto,S.Shimodaira.The mechanism of atmospheric rusting and the protective amorphous rest on low alloy steel[J].Corrosion Science.1974,14(4):279-289P
    [90]林翠,王凤平,李晓刚.大气腐蚀研究方法进展[J].中国腐蚀与防护学报.2004,24(4):249-255页
    [91]王凤平,张学元,杜元龙.大气腐蚀研究动态与进展[J].腐蚀科学与防护技术.2000,12(2):104-108页
    [92]I.Odnell.Atmospheric corrosion of field exposure of steels in china[J].Corrosion.1999,55(1):65-73P
    [93]孙志华,李金桂,李牧铮.金属材料大气腐蚀加速试验研究的发展趋势[J].材料工程.1995,(12):41-42页
    [94]金蕾,唐其环,彭长灏,牟献良.大气腐蚀的模拟加速试验方法研究(摘要)[J].腐蚀科学与防护技术.1995,7(3):214-215页
    [95]C.Leygraf,T.Graedel著.大气腐蚀[M].韩恩厚等译.第一版.北京:化学工业出版社.2005:37页
    [96]何积铨,王湛.模拟大气环境中加速镁合金电偶腐蚀的研究[J].腐蚀科学与防护技术.2004,16(3):141-143页
    [97]R.Lobing,J.D.Sinclair,M.Unger.Mechanism of atmospheric corrosion of copper in the presence of ammonium sulfate particles effect of surface particle concentration[J].Journal of the Electrochemical Society.2003,150(6):A835-A849 P
    [98]J.Toh,T.Sasaki,T.Ohtsuka.The influence of oxide layers on initial corrosion behavior of copper in air containing water vapor and sulfur dioxide[J].Corrosion Science.2000,42(9):1539-1551P
    [99]F.Mansfeld,J.V.Kenkel.Electrochemical Monitoring of Atmospheric Corrosion Phenomenon[J].Corrosion Science.1976,16(3):111-122P
    [100]F.Mansfeld,S.Tsai.Laboratory Studies of Atmospheric Corrosion-1.Weight Loss and Electrochemical Measurements[J].Corrosion Science.1980,20:853-872P
    [101]徐俊丽,李牧铮.大气腐蚀电化学监测的研究[J].中国腐蚀与防护学报.1987,7(1):60-65页
    [102]G.W.Walter.Laboratory simulation of atmospheric electrochemical techniques example results[J].Corrosion Science.1991,32(12):1331-1352P
    [103]H.N.McMurray.Localized corrosion behavior in aluminum-zinc alloy coatings investigated using the scanning reference electrode technique[J].Corrosion.2001,57(4):313-322P
    [104]M.Stratmann.The investigation of the corrosion properties of metals covered with absorbed electrolyte layers:a new experimental technique[J].Corrosion Science.1987,27:869P
    [105]孙志华,刘明辉,李家柱,张晓云,陆峰,王佳.大气腐蚀电化学测定研究[J].航空材料学报.2000,20(3):120-123页
    [106]王佳,水流彻.使用Kelvin探头参比电极技术进行薄液层下电化学测量[J].中国腐蚀与防护学报.1995,15(3):173-179页
    [107]A.Conde,J.Dmaboeme.Electrochemical modeling of exfoliation corrosion behavior of 8090 alloy[J].Electrochim Acta.1998,43(8):849-860P
    [108]D.Li,Y.Hu,B.L.Guo.Study on the evaluation of localized corrosion of 2024T3 aluminum alloy with EIS[J].Materials Science Engineering A.2000,280:173-176P
    [109]A.Nashikata,Y.Yamashita,H.Katayama,T.Tsuru,A.Usami,K.Tanabe,H.Mabuchi.An electrochemical impendence study on atmospheric corrosion of steels in a cycle wet-dry condition[J].Corrosion Science.37(12),1995:2059-2069P
    [110]A.Nashikata,Y.Ichihara,T.Tsuru.An application of electrochemical impendence spectroscopy to atmospheric corrosion study[J].Corrosion Science.1995,37(6):897-911P
    [111]R.P.Vera Crue,A.Nashikata,T.Tsuru.AC impendence monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment[J].Corrosion Science.1996,38:1397-1406P
    [112]A.Nashikata,Y.Ichihara,T.Tsuru.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J].Electrimical Acta.1996,41:1057-1062P
    [113]A.P.Yadav,F.Suzuki,A.Nishikata,T.Tsuru.Investigation of atmospheric corrosion of Zn using ac impendence and different pressure meter[J].Electrochimica Acta.2004,49:2725-2729P
    [114]A.P.Yadav,A.Nishikata,T.Tsuru.Electrochemical impendence stydy on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness[J].Corrosion Science.2004,46:169-181P
    [115]Gamal A.EI-Mahdy,A.Nishikata,T.Tsuru.AC impendence study on corrosion of 55%A1-Zn alloy-coated steel under thin electrolyte layers[J].Corrosion Science.2000,42:1509-1521P
    [116]Gamal A.EI-Mahdy.Atmospheric corrosion of copper under wet/dry cyclic conditions[J].Corrosion Science.2005,47:1370-1383P
    [117]丁文江等著.镁合金科学与技术[M].第一版.北京:科学出版社,2007:23页
    [118]崔晓鹏,修长军,王金山,王顺忠,刘喜明.镁合金半固态触变注射成形技术[J].汽车工艺与材料.2003,1:33-35页
    [119]崔晓鹏,刘勇兵,刘喜明,修长军,王金山,王顺忠,梁伟.半固态触变成型镁合金的组织与性能分析[J].汽车工艺与材料.2003,2:22-25页
    [120]P.S.Frederick,N.L.Bradley and S.C.Erickson.Injection molding magnesium alloys[J].Advanced Materials and Processes.1988,134(4):53-58
    [121]徐萍,刘生发,黄尚宇,郭洪河,王凯峰.AZ91镁合金显微组织对腐蚀性能的影响[J].中国铸造装备与技术.2004,4:9-13页
    [122]张静,潘复生.金属型铸造ZA73镁合金凝固特征和组织研究[J].材料热处理学报.2006,27(3):68-70页
    [123]屠怡范,陈晶益,张波萍,刘彭喜,铃木洋夫.AZ31铸造镁合金的物相和显微组织[J].铸造.2006,55(5):509-512页
    [124]许光明,包卫平,郑佳伟,左玉波,崔建忠.磁场作用下合金元素在AZ31镁合金中的分布[J].稀有金属.2004,28(1):97-100页
    [125]徐锦锋,翟秋亚.快速凝固AZ91D镁合金的相结构及位错[J].稀有金属材料与工程.2004,33(8):835-838页
    [126]常国威,王建中.金属凝固过程中的晶体生长与控制[M].第一版.北京:冶金工业出版社,2002:3-10P
    [127]胡德林.金属学及热处理[M].第一版.西安:西北工业大学出版社,1994
    [128]梁连科等.冶金热力学及动力学[M].第一版.沈阳:东北工学院出版社,1990:1-50P
    [129]S.K.Das,L.A.Davies.High performance aerospace alloys via rapid solicitation processing[J].Materials Science and Engineering.1988,98:1-12P
    [130]M.Stralmarnn,H.Streeckel.On the atmospheric corrosion of metals which are covered with thin electrolyte layers[J].Corrosion Science.1990,30:681-696P
    [131]S.Zakipour,C.Leygraf.Quartz crystal microbalance applied to studies atmospheric corrosion of metals[J].British Corrosion Journal.1992,27(4): 295-298P
    [132]A.K.Neufeld,I.S.Cole,A.M.Bond,S.A.Furman.The initiation mechanism of corrosion of zinc by sodium chloride particle deposition [J].Corrosion Science.2002,44:555-572P
    [133]H.克舍著(西德).金属腐蚀[M].吴阴顺译.第二版.北京:化学工业出版社,1990:316-323页
    [134]Gaia Ballerini,Ugo Bardi,Roberto Bignucolo and Giuseppe Ceraolo.About some corrosion mechanisms of AZ91D magnesium alloy[J].Corrosion Science.2005,47:2173-2184P
    [135]H.Hoche,C.Blawert,E.Broszeit,C.Berger.Galvanic corrosion properties of differently PVD-treated magnesium die cast alloy AZ91[J].Surface and Coatings Technology[J].2005,193:223-229P
    [136]屈庆,严川伟,白玮,张蕾,万晔,曹楚南.NaCl在A3钢大气腐蚀中的作用[J].中国腐蚀与防护学报.2003,23(3):160-163页
    [137]谭军,谢天生.AZ91D镁合金大气腐蚀初期产物的结构分析[J].电子显微学报.2005,24(4):310页
    [138]Z.Y.Chen,D.Persson,C.Leygraf.Initial NaCl-particle induced atmospheric corrosion of Zinc-Effect of CO_2 and SO_2[J].Corrosion Science.2008,50(1):111-123P
    [139]Z.Y.Chen,D.Persson,A.Nazarov,S.Zakipour,D.Thierry,C.Leygraf.In-situ studies of the effect CO_2 on the initial NaCl induced atmospheric corrosion of copper[J].Journal of the Electrochemical Society.2005,152(9):B342-B351P
    [140]E.E.Abd El Aal.Effect of Cl~- anions on zinc passivity in borate solution[J].Corrosion Science.2000,42:1P
    [141]S.M.Abd El Haleem.Dissolution current and pitting potential of zinc in KOH solution in rehation to the concentration of aggressive ions[J].British Corrosion Journal.1976,11:215P
    [142]S.S.Abd El Rehim,S.M.Abd E1 Wahab,E.E.Fouad and H.H.Hassan.Passivity and passivity breakdown of zinc anode in alkaline medium[J]. Materials and Corrosion.1995,46:633P
    [143]S.Menezes,R.Haak,G.Hagen and M.Kendig.Photoelectrochemical characterization of corrosion inhibiting oxide films on aluminum and its alloys[J].Journal of the Electrochemical Society.1989,136:1884P
    [144]M.Jonsson,D.Thierry,N.LeBozec.The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J].Corrosion Science.2006,48(5):1193-1208P
    [145]M.I.Manning.Atmospheric corrosion issues today[J].Industrial Corrosion.1989,7(8):5-9P
    [146]E.Mattsson.Corrosion:an Electrochemical Problem[J].Chemical Technology.1985,4:234-243
    [147]F.Mansfeld,J.V.Kenkel.Galvanic corrosion of Al alloys-Ⅲ,the effect of area ratio[J].Corrosion.Science.1975,15:239-250P
    [148]梁成浩主编.金属腐蚀学导论[M].第一版.北京:机械工业出版社.1999,5:100-103页
    [149]P.Uzan,D.Eliezer,E.Aghion.The effect of the β phase and heat treatment on the corrosion behaviour of magnesium AZ91 alloy[J].Synthesis of Lightweight Metals.1999,Ⅲ:171-176P
    [150]J.L.Crolet,N.Thevenot,S.Nesic.The role of conductive corrosion products in the protectiveness of corrosion layers[J].Corrosion.1998,54(3):194-203P
    [151]余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮.Mg合金的腐蚀与防护[J].中国有色金属学报.2002,12(6):1087-1098P
    [152]Y.Y.Chen,H.J.Ttengb,L.I.Wei.Mechanical properties and corrosion resistant of low-alloy steels in atmospheric conditions containing cholide[J].Materials Science and Engineering A.2005,398(1-2):47-5P
    [153]T.Kamimura,S.Hara,H.Miyuki,M.Yamashita,H.Vchida.Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J].Corrosion Science.2006,(48):2799-2812P
    [154]C.A.Palacios,J.R.Shadley.CO_2 corrosion of N-80 steel at 71℃ in a two-phase flow system.Corrosion.1993,49(8):686-693 P
    [155]C.A.Palacios,J.R.Shadley.Characteristics of corrosion scales on steels in a CO_2 saturated NaCl brine[J].Corrosion.1991,47(2):122P
    [156]Y.Y.Chen,S.C.Chung,H.C.Shih.Studies onthe initial stages of zinc atmospheric corrosion in the presence of chloride[J].Corrosion Science.2006,48:3553P
    [157]S.C.Chung,A.S.Lin,J.R.Chang,H.C.Shih.EXAFS study of atmospheric corrosion products on zinc at the initial stage[J].Corrosion Science.2000,42:1599-1610P
    [158]曹楚南,张鉴清.电化学阻抗谱导论[M].第一版.北京:科学出版社,2002:45页12页54页
    [159]Beldjoudi T,Fiaud C,Robbiola L.Influence ofhomogenisation and artificial ageing treatments on corrosion behaviour of Mg-Al alloys[J].Corrosion.1993,49(9):738-745P
    [160]T.Zhang,Y.Li,F.H.Wang.Roles of β phase in the corrosion process of AZ91D magnesium alloy[J].Corrosion Science.2006,48:1249-1264P
    [161]J.H.Nordlien,K.Nisancioglu.Morphology and structure of oxide film formed on MgAl alloys by exposure to air and water[J].Journal of the Electrochemical Society.1996,143:2568 P
    [162]X.Ca,C.C.Xu.Effect of chloride on the atmospheric corrosion of simulated artifact iron in NO_3~- bearing pollutant environment[J].Acta metallurgica sinica(Engglish letters).2006,19(1):34-42P
    [163]汪俊,韩薇,李洪锡,王振尧.大气腐蚀电化学研究方法现状[J].腐蚀科学与防护技术.2002,14(6):334-336页
    [164]K.Darowicki.Corrosion rate measurements by non-linear electrochemical impedance spectroscopy[J].Corrosion Science.1995,37(6):913-925P
    [165]K.Darowicki,S.Krakowiak,P.Slepski.Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy[J].Electrimica Acta.2004,49:2909P
    [166]S.Krakowiak,K.arowicld,P.Slepski.Impendance of metastable pitting corrosion[j].Journal of Electronalytical Chemistry.2005,33:575-560P
    [167]K.Darowicki,S.Krakowiak,P.Slepski.The time dependence of pit creation impedance spectra[J].Elecrochemistry communications.2004,6:860-866P
    [168]J.F.Li,Z.Zhang,Y.L.Cheng,F.H.Cao,J.M.Wang,J.Q.Zhang,C.N.Cao.Electrochemical features of the corrosion of an aluminum-lithium alloy in 3.0%NaCl solution[J].Acta Metallurgica Sinica.2002,38(7):760-764P
    [169]U.R.Evens.金属的腐蚀与氧化[M].华保定译.第一版.北京:机械工业出版社,1976:401-430页
    [170]J.Wang,T.Tsuru.Potential distribution and micro-droplets formation on the metal with salt particle deposition.The 204~(th) Meeting of the electrochemical society[C].The Electrochemical Society International Conference.Orlando,2003,D2:472P
    [171]T.Tsuru,K.I.Tamiya and A.Nishikata.Formation and growth of micro-droplets during the initial stage of atmospheric corrosion[J].Electrochimica Acta.2004,49:2709-2715P
    [172]李谋成,曾潮流,林海潮.参比电极体系内阻对电化学阻抗谱的影响[J].腐蚀科学与防护技术.2001,13(3):125-127页
    [173]F.D.Wall,M.A.Martinez,N.A.Martinez,N.A.Missert,R.G.Copeland,A.C.Kilgo.Characterizing corrosion behavior under atmospheric conditions using electrochemical techniques[J].Corrosion Science.2005,47:17-32P
    [174]Y.L.Cheng,Z.Zhang,F.H.Cao,J.F.Li,J.Q.Zhang,J.M.Wang,C.C.Nan.A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J].Corrosion Science.2004,46:1649-1667P
    [175]D.Daloz,P.Steinmetz,G Michot.Corrosion behavior of rapidly solidified magnesium-aluminum-zinc alloys[J].Corrosion.1997,53:944-954P
    [176]张波.微晶化对纯铝电化学腐蚀行为的影响[D].中科院金属研究所博士论文.2007,4
    [177]T.Zhang,Y.W.Shao,G.Z.Meng,Y.Li,F.H.Wang.Effects of hydrogen on the corrosion of pure magnesium[J].Electrochimica Acta.2006,52:1323-1328P
    [178]E.E.Abd El Aal.Effect of Cl~- anions on zinc passivity in borate solution [J].Corrosion Science.2000,42:1页
    [179]Z.Szldarska-Smialowska.Pitting corrosion of aluminum[J].Corrosion Science.1999,41:1743P
    [180]F.φvari,L.Tomcsanyi,T.Turmezey.Electrochemmical study of the pitting corrosion of aluminum and its alloys—Ⅰ.determination of critical pitting and protection potentials[J].Electrochimica Acta.1988,33:323P
    [181]Z.Szklarska-Smialowska.Pitting corrosion of aluminum[J].Corrosion Science.2002,41:1143 P
    [182]E.McCafferty.Sequence of steps in the pitting of aluminum by chloride ions[J].Corrosion Science.2003,45:1421 P
    [183]E.Sikora,D.Macdonald.Nature of the passive film on Nickel [J].Electrochimica Acta.2002,48:69-77P
    [184]李劲风,张昭,程英亮,曹发和,王建明,张鉴清,曹楚南.NaCl溶液中Al-Li合金腐蚀过程的电化学特征[J].金属学报.2002,38(7):760-764页
    [185]S.R.莫里森著.半导体与金属氧化膜的电化学[M].吴辉煌译.第一版.北京:科学出版社,1988.
    [186]N.B.Hakiki,S.Boudin,B.Rondot,M.Da Cunha Belo.The electronic structure of passive films formed on stainless steel[J].Corrosion Science.1995,37(11):1809-1822P
    [187]张云莲,史美伦,陈志源.钢筋钝化半导体性能的Mott-Schottky研究[J].机械工程材料.2006,30(7):7-10页
    [188]李金波,郑茂盛,朱杰武.304L不锈钢半导体性能研究[J].腐蚀科学与防护技术.2006,18(5):348-352页
    [189]S.J.Ahn,H.S.Kwon.Effects of solution temperature on electronic properties of passive film formed on Fe in pH 8.5 borate buffer solution[J].Electrochimica Acta.2004,49:3347-3353P
    [190]林玉华,杜荣归,胡荣刚,林昌健.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报.2005,21(7):740-745P
    [191]J.Liu,D.D.Macdonald.The passivity of iron in the presence of ethylendiaminetetraacetic acid,Ⅱ The defect and electronic structures of the barrier layer[J].Journal of the Electrochemical Society.2001,148(11):B425-B430P
    [192]D.D.Macdonald.The point defect model for the passive state[J].Journal of the Electrochemical Society.1992,139(12):3434-3449P
    [193]P.C.Pistorius.G.T.Burstein.Aspects of the effects of electrolyte composition on the occurrence of metastable pitting on stainless steel[J].Corrosion Science.1994,36:525-538P
    [194]Z.S.Smialowska.Mechanism of pit nucleation by electrical breakdown of the passive film[J].Corrosion Science.2004,44:1143-1149P
    [195]S.Mathieu,C.Rapin,J.Steimetz,P.Steimetz.A corrosion study of the main constituent phase of AZ91 magnesium alloys[J].Corrosion Science.2003,45:2741-2755P
    [196]曹楚南.腐蚀电化学原理.第二版.北京:化学工业出版社,2004:105-106页
    [197]J.C.斯库里(英).腐蚀原理[M].李启中译.第二版.北京:水利电力出版社,1984,11:56-124页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700