用户名: 密码: 验证码:
直观检测环境雌激素的转基因斑马鱼系的建立及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境雌激素(EEs)是指能够模拟体内天然雌激素功能的人工合成或植物提取的化合物。这些物质已被证明能够导致动物和人类的性别混淆和生殖功能受损。此外,它们还能诱导雄性和幼年鱼类表达雌性特异性蛋白,如卵黄蛋白原(VTG)。
     为了能快速、直观、活体检测环境雌激素,我们建立了转基因斑马鱼系。首先,我们用RT-PCR和整体原位杂交的方法显示了雌激素类化合物17α-炔雌醇(EE_2)诱导斑马鱼卵黄蛋白原1(zvtgl)基因在胚胎和幼鱼体内的表达模式。第二,我们克隆了zvtgl基因上游两段调控序列,并使其在MCF-7细胞株中诱导表达下游绿色荧光蛋白基因(gpf),由此体外验证1720bp DNA片段具有启动子活性。第三,融合基因zvtgl:gfpl显微注射1-2细胞期的斑马鱼胚胎中,经EE_2处理后幼鱼肝脏出现绿色荧光。由此从活体验证1720bp DNA片段的启动子活性。第四,为了增强转基因斑马鱼绿色荧光蛋白的表达,我们合成了一段来源于爪蟾卵黄蛋白原A2基因的39bp的DNA片段,该片段含有雌激素反应元件(ere)的序列。这段DNA插入zvtgl启动子的上游,得到融合基因ere-zvtgl:gfp,并显微注射斑马鱼胚胎。然后用10ng/L的EE_2处理6天,用荧光显微镜观察肝脏荧光,进行筛选。出现荧光的幼鱼继续饲养至性成熟,与野生型斑马鱼杂交,其后代也用10ng/L的EE_2处理6天,观察荧光进行筛选。在119条F0代斑马鱼中,发现一条能将荧光传递到F1代。最后只有两条F1代雄鱼存活下来,并和野生型雌鱼杂交得到F2代。F2代的雌鱼和雄鱼互相交配,得到F3代。F3再和野生型杂交,用EE_2筛选出现荧光的F4代。最后,能将荧光100%传递到F4代的F3代被确定为纯合子,从而建立ere-zvtgl:gfp转基因斑马鱼系。
     在这种转基因斑马鱼系中,绿色荧光蛋白(GFP)特异性地在成熟雌鱼肝脏表达。雄性和幼年转基因斑马鱼不表达GFP,但是在EE_2诱导后其肝脏也能出现荧光。胚胎和幼鱼中zvtgl mRNA和绿色荧光出现的时空一致,说明gfp基因是存zvtgl启动子的调控下表达。
     1-2细胞期的转基因斑马鱼分别用100,10,1,0.1 ng/L的EE_2处理,最早观察到荧光的时间分别为53,74,100和131小时。成年雄性转基因斑马鱼分别用100,10,1,0.1 ng/L的EE_2处理,最早观察到荧光的时间分别为2,3,4,和7天。成熟雌性转基因斑马鱼虽然肝脏已经有荧光,但是相对较高浓度(10和100ng/L)的EE_2仍然能够诱导荧光增强。随着暴露时间的延长,肝脏的绿色荧光有增强趋势,而撤去EE_2后一段时间荧光逐渐消失。分别用具有雌激素活性的化合物和没有雌激素活性的甾体类激素测试ere-zvtgl:gfp转基因斑马鱼发射荧光的反应,结果雌激素类物质处理幼鱼13天后,诱导荧光所需的浓度分别为:已烯雌酚50 ng/L,雌二醇0.1μg/L,雌三醇1μg/L,氯化镉10μg/L,玉米赤霉烯酮50μg/L,双酚A 1mg/L。弱雌激素壬基酚浓度达到10mg/L时仍未能诱导绿色荧光出现。其它甾体类激素如孕激素和17-羟固醇即使浓度达到100mg/L和50mg/L,仍不能诱导荧光出现。这种转基因斑马鱼能检测浓度很低的环境雌激素,而且所需的暴露时间很短,因此有望应用于直观,快速,简便地监测环境雌激素。
     利用这种转基因斑马鱼系,研究EE_2诱导zvtgl表达的分子机制,结果提示雌激素受体β是EE_2诱导zvtgl表达所必须的;环境雌激素EE_2浓度达500ng/L时斑马鱼胚胎原始生殖细胞(PGCs)迁移异常,这种效应与雌激素受体无关。PGCs迁移异常对斑马鱼胚胎发育的影响正在研究中。
Environmental estrogens(EEs) are synthetic chemical compounds and plant-derived substance that are capable of imitating the functions of natural in vivo estrogen hormones.It has been known that estrogenic endocrine disrupters,which can cause intersexuality and reproduction decline in animals and human,can also induce synthesis of female-specific proteins such as vitellogenin(VTG) in male and juvenile fish.
     To establish a novel in vivo test system for rapidly and visibly detection of environmental estrogens,a transgenic zebrafish line was developed.First,the expression pattern of zvtg1 was demonstrated by RT-PCR and whole mount in situ hybridization in developing zebrafish exposed to synthetic estrogen 17αethinylestradiol(EE_2).Second,two DNA fragments upstream zvtg1 gene was cloned and the 1720bp fragment was identified as effective promoter in vitro by driving reporter green fluorescent protein(gfp) gene expression in MCF-7 cell line.Third,the zvtg1:gfp fusion DNA was microinjected into 1~2-cell stage embryos and faint green fluorescence in the liver was observed in larvae exposed to EE_2.Thus the promoter activity of 1720bp DNA fragment was identified in vivo.Fourth,in order to increasing GFP expression in transgenic zebrafish,a 39 base pairs DNA sequences contained the consensus estrogen response element(ere,GGTCAnnnTGACC) was synthesized according to the 5'end region of Xenopus vitellogenin A_2 gene,and was added upstream of the zvtg1 promoter.Then the fusion gene ere-zvtg1:gfp was microinjected into 1-2 cell stage embryos.Injected embryos were treated with 10ng/L EE_2 for 6 days and screened by examining fluorescence in the liver by using a fluorescence microscope.Founders were raised till sexually mature and individually mated with wild-type fish,and the offspring were examined fluorescence after being treated with 10ng/L EE_2 for 6 days.Of the 119 founders one germline-transmitted transgenic fish was identified.F1 fish fry obtained from the positive founder were screened by observing fluorescence and the positive F1 fish were raised.Two positive male F1 fish were survived and mated with wide type females to generate F2 fish.F2 males were mated with F2 females to breed F3 generation which was intercrossed with wide type zebrafish to generate F4 fish.Finally,the ere-zvtg1:gfp transgenic line was confirmed by 100%fluorescence induction in the F4 generation.
     In this transgenic line,GFP was exclusively expressed in the liver of the mature adult female.Male and larval transgenic fish did not express GFP but could be induced to express GFP in the liver after exposure to 17α-ethynylestradiol(EE_2). Concurrent of zvtg1 and gfp expression in embryos and larvae after EE_2 exposure was observed,which indicated that the expression of gfp transgene was driven by the zvtg1 promoter.Green fluorescence was first observed in the liver at 53,74,100 or 131 hours post fertilization(hpf) after exposure to 100,10,1 or 0.1 ng/L EE_2 respectively from 1-2 cell stage.As for mature male transgenic zebrafish,green fluorescence was observed after exposure to 100,10,1 or 0.1 ng/L EE_2 for 2,3,4 or 7 days respectively; as for mature female,fluorescence enhanced after exposure to relatively high concentrations of EE_2(10 and 100 ng/L).Green fluorescence in the liver was increased with prolonging of exposure time and was repeatedly induced after removal and re-addition of EE_2.We also demonstrated that GFP expression could be induced by other estrogenic compounds,includingβ-estradiol(E_2,0.1μg/L),Cadmium chloride(CdCl_2,10μg/L),zearalenone(50μg/L),estriol(E_3,1μg/L ), diethylstilbesterol(DES,50 ng/L) bisphenol A(BPA,1 mg/L)but not by week estrogenic compounds such as nonylphenol(NP,up to 10 mg/L),or non-estrogenic steroid hormone such as progesterone(up to 100 mg/L) and 17hydroxysteroid(up to 50 mg/L).These data suggest the transgenic zebrafish is sensitive and specific for detection of estrogenic compounds.Because the observed-effective concentrations are as low as those of environment and the observed-effective exposure times are very short,this transgenic fish is hopeful for monitoring environmental estrogens directly. rapidly and easily.
     Using this transgenic line,we investigated the molecular mechanism involved in EE_2 caused feminination and abnormal gonads in zebrafish.The results suggested estrogen receptorβwas needed for EE_2 induced zvtg1 expression in larval zebrafish. We also demonstrated high concentration of EE_2(500ng/L) disturbed the primordial germ cells(PGCs) migration in embryonic zebrafish,and this effect seemed having no relationship with estrogen receptors.
引文
[1] Aerni HR, Kobler B, Rutishauser BV, Wettstein FE, Fischer R, Giger W, Hungerbuhler A, Marazuela MD, Peter A, Schonenberger R, Vogeli C, Suter MF, Eggen RIL. 2004. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents. Anal Bioanal Chem. 378, 688-696.
    
    [2] Alberti M, Kausch U, Haindl S, Seifert M. 2005. Gene expression analysis for exposure to estrogenic substances. Acta Hydrochim Hydrobiol. 33, 38- 44.
    
    [3] Angele Tingaud-Sequeira, Michele Andre, Jean Forgue, Christophe Barthe, Patrick J. Babin. 2004. Expression patterns of three estrogen receptor genes during zebrafish (Danio rerio) development: evidence for high expression in neuromasts. Gene Expression Patterns. 4, 561-568.
    
    [4] Chen Hao, Yang Jian, Wang Yuexiang, et al. 2006. Development of a Transgenic Zebrafish in Which The Expression of EGFP Is Driven by vtgl Promoter. Progress in Biochemistry and Biophysics. 33, 965-970.
    
    [5] Desbrow, C., Routledge, E.J., Brighty, G.C., Sumpter, J.P., Waldock, M. 1998. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ. Health Perspect. 32, 1549-1558.
    
    [6] H. Segner, K. Caroll, M. Fenske, C.R. Janssen, G. Maack, D. Pascoe, C.Sch.afers, G.F. Vandenbergh, M. Watts, and A. Wenzel. 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicology and Environmental Safety. 54, 302-314.
    
    [7] Lazier C, MacKay M. Vitellogenin gene expression in teleost fish. 1993. Biochemistry and Molecular Biology of Fishes. 2, 391 -405.
    [8] Li Lin, Zhou Ling, Zhang Yang, Hu Senke, Cheng Zhansheng. 1998. Study on the Pollution Caused by Benzene Hexachloride and Dichloro diphenyltrichloroethane in Drinking Water in Xian. Journal of Environment and Health. 15, 18-19.
    [9] Liu Jiang, Wang Wenhua, Wang Zijian. 1998. Sorts and contents of persistent pollutants in the sediment samples of the Second Songhua River. China Environmental Science. 18, 39-41.
    [10] Marin MG, Matozzo V. 2004. Vitellogenin induction as a biomarker of exposure to estrogenic compounds in aquatic environments. Mar Pollut Bull. 48, 835-9.
    [11] Muncke J. and Rik I.L. Eggen. 2006. Vitellogenin 1 mRNA as an early molecular biomarker for endocrine disruption in developing zebrafish (Danio rerio). Environmental Toxicology and Chemistry. 25, 2734-2741.
    [12] Muncke J, Junghans M, Eggen RI. 2007. Testing estrogenicity of known and novel (xeno-)estrogens in the MolDarT using developing zebrafish (Danio rerio). Environ Toxicol. 22, 185-93.
    [13] Nilsen BM, Berg K, Eidem JK, Kristiansen SI, Brion F, Porcher JM, Goksoyr A. Development of quantitative vitellogenin-ELISAs for fish test species used in endocrine disruptor screening. Anal Bioanal Chem. 2004, 378(3): 621-33.
    [14] Organization for Economic Cooperation and Development. 1992. Fish: Acute toxicity test. Guideline 203. Paris, France.
    [15] P-L Bardet, B Horard, M Robinson-Rechavi, et al. 2002. Characterization of oestrogen receptors in zebrafish (Danio rerio). Journal of Molecular Endocrinology. 28, 153-163.
    [16] Robert L. Hill, Jr., David M. Janz. 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquatic Toxicology. 63, 417-429.
    [17] Shao Bing, Hu Jianying, Yang Min. 2002. A survey of nonylphnol in aquatic environment of Chongqing valley. Acta Scientiae Circumstantiae. 22, 12-16.
    [18] Sumpter JP, Jobling S. 1995. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect. 7, 173-178.
    [19] Ternes, T.A., Stumpf, M., Mueller, J., Haberer, K., Wilken, R. D., Servos, M. 1999. Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 225, 81-90.
    [20] Tong Y, Shan T, Poh YK, Yan T, Wang H, Lam SH, Gong Z. 2004. Molecular cloning of zebrafish and medaka vitellogenin genes and comparison of their expression in response to 17β-estradiol. Gene, 328, 25-36.
    [21] Wu Pinggu, Han Guangen, Wang Huihua, Zhao Ying. 1999. An Investigation on Phthalates in Drinking Water. Journal of Environment and Health. 16, 338-339.
    [22] Wang H. Tan JT. Emelyanov A. Korzh V, Gong Z. 2005. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio. Gene. 356,91-100.
    [23] Williams, R.J., Jurgens, M.D., Johnson, A.C. 1999. Initial predictions of the concentrations of 17α-oestradiol, oestrone, and ethinyl oestradiol in 3 English rivers. Water Res. 33, 1663-1671.
    [24] Wahli W. Evolution and expression of vitellogenin genes. 1988. Trends Genet. 4, 227-232.
    
    [25] Weidinger, G. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Dev. 1999, 126: 5295-5307.
    [26] Braat, A.K. Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev. Dynamics. 1999, 216:153-167.
    [27] Kimmel, C.B. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995,203:253-310.
    [28] Knaut H, Steinbeisser H, Schwarz H, Nusslein-Volhard C. An evolutionary conserved region in the vasa 3'UTR targets RNA translation to the germ cells in the zebrafish. Curr Biol. 2002 Mar 19;12(6):454-66.
    [29] Yoshizaki G, Tago Y, Takeuchi Y, Sawatari E, Kobayashi T, Takeuchi T. Green fluorescent protein labeling of primordial germ cells using a nontransgenic method and its application for germ cell transplantation in salmonidae. Biol Reprod. 2005 Jul;73(1):88-93. Epub 2005 Mar 2.
    [30] Willey JB, Krone PH. Effects of endosulfan and nonylphenol on the primordial germ cell population in pre-larval zebrafish embryos. Aquat Toxicol. 2001 Sep;54(1-2): 113-23.
    [31] Yoshizaki G, Oshiro T, Takashima F. Preventing of hardening of chorion and dechorionation for microinjection into fish eggs. Nippon Suisan Gakkaishi 1989; 55: 369.
    [32] Meng A, Jessen JR, Lin S. Transgenesis. In: Detrich HW, Westerfield M, Zon LI (eds.), The Zebrafish: Genetics and Genomics, San Diego: Academic Press; 1999: 133-148.
    [33] Sass, J.B., Martin, C.C., Krone, P.H., 1999. Restricted expression of the zebrafish hsp90_ gene in slow and fast muscle fiber lineages. Int. J. Dev. Biol. 43, 835-838.
    [34] Knaut, H. Zebrafish vasa RNA but Not Its Protein Is a Component of the Germ Plasm and Segregates Asymmetrically before Germline Specification. The Jour. of Cell. Biol. 2000, Volume 149, 875-888
    [35] Weidinger G. Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development 2002, 129:25-36.
    [36] Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006 Apr 7;312(5770):75-9. Epub 2006 Feb 16.
    [37] Nash J.P., Kime D.E, Van der Ven L.T., Wester P.W., Brion F., Maack G., 2004. Stahlschmidt-Allner P, Tyler C.R. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17), 1725-33.
    [38] Segner H., Caroll K., Fenske M., Janssen C.R., Maack G., Pascoe D., et al., 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54, 302-314.
    [39] Weber L.P., Hill R.L. Jr., Janz D.M., 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63(4), 431-46
    [40] Saxena, P.K., Garg, M., 1978. Effect of insecticidal pollution on ovarian recrudescence in the fresh water teleost Channa punctatus. Indian Exp. Biol. 16, 689-691.
    [41] Saxena. P.K.. Mani. K., 1985. Quantitative study of testicular recrudescence in the freshwater teleost. Channa punctatus (BI) exposed to pesticides. Bull. Environ. Contam. Toxicol. 34, 597-607.
    [42] Campbell, P.M., Pottinger, T.G., Sumpter, J.P., 1992. Stress reduces the quality of gametes produced by rainbow trout. Biol. Reprod. 47, 1140-1150.
    [43] Campbell, P.M., Pottinger, T.G., Sumpter, J.P., 1994. Preliminary evidence that chronic confinement stress reduces the quality of gametes produced by brown and rainbow trout. Aquaculture 120, 151-169.
    [44] Guillette, L.J. Jr, Crain, D.A., Rooney, A.A., Pickford, D.B., 1995. Organization versus activation: the role of endocrine disrupting contaminants (EDCs) during embryonic development in wildlife. Environ. Health Perspect. 103 (Suppl. 7), 157-164.
    [45] Olsson, P.-E., Westerlund, L., Teh, S.J., Billsson, K., Hakan- Berg, A., Tysklind, M., Nilsson, J., Eriksson, L.-O., Hinton, D.E., 1999. Effects of maternal exposure to estrogen and PCB on different life stages of zebrafish (Danio rerio). Ambio 28, 100-106.
    [46] von Hofsten J, Olsson PE, 2005. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3, 63. Review.
    [47] Segner H., Caroll K., Fenske M., Janssen C.R., Maack G., Pascoe D., et al., 2003. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 54, 302-314.
    [48] Maack G., Segner H., 2003. Morphological development of the gonads in zebrafish. J Fish Bio 62, 895-905.
    [49] Larsson D.G.J, Adolfsson-Erici M., Parkkonen J., Pettersson M., Berg A.H., Olsson P.E., 1999. Ethinyloestradiol—an undesired fish contraceptive? Aquat Toxicol 45, 91-97.
    [50] Islinger M, Willimski D, Volkl A, Braunbeck T, 2003. Effects of 17a-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testes in male zebrafish. Aquat Toxicol 62(2). 85-103.
    [51] Hill R.L. Jr.. Janz D.M.. 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquat Toxicol 63(4), 417-29.
    [52] Brion F., Tyler C.R., Palazzi X., Laillet B., Porcher J.M., Game J., Flammarion P., 2004. Impacts of 17beta-estradiol, including environmentally relevantconcentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio).Aquat Toxicol 68(3), 193-217.
    [53] Van den Belt K, Verheyen R, Witters H., 2003. Effects of 17α-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio): effects on growth, gonads and female reproductive success. Sci Total Environ 309(1-3), 127-37.
    [54] Nash J.P., Kime D.E, Van der Ven L.T., Wester P.W., Brion F., Maack G., 2004. Stahlschmidt-Allner P, Tyler C.R. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112(17), 1725-33.
    [55] Weber L.P., Hill R.L. Jr., Janz D.M., 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63(4), 431-46.
    
    [56] Schafers C, Teigeler M, Wenzel A, Maack G, Fenske M, Segner H., 2007. Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethinylestradiol, on reproductive capabilities of the zebrafish, Danio rerio. J Toxicol Environ Health A 70(9), 768-79.
    [57] Tyler C.R., Jobling S., Sumpter J.P., 1998. Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28(4), 319-61. Review.
    [58] Colborn T., vom Saal F.S., Soto A.M., 1993. Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ Health Perspect 101(5), 378-84. Review
    [59] Goldman J.M., Laws S.C., Balchak S.K., Cooper R.L., Kavlock R.J., 2000. Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid activity in the female rat. A focus on the EDSTAC recommendations. Crit Rev Toxicol 30(2). 135-96. Review.
    [60] Desbrow C. Routledge E.J.. Brighty G.. Sumpter J.P.. Waldock M.J.. 1998. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32, 1559-1565.
    [61] Lai K.M., Scrimshaw M.D., Lester J.N., 2002. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Sci Total Environ 289(1-3), 159-68.
    [62] Thorpe K.L., Cummings R.I., Hutchinson T.H., Scholze M., Brighty G., Sumpter J.P., et al., 2003. Relative potencies and combination effects of steroidal estrogens in fish. Environ Sci Technol 37, 1142-1149.
    [63] Hill R.L. Jr., Janz D.M., 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquat Toxicol 63(4), 417-29.
    [64] Larsson D.G.J, Adolfsson-Erici M., Parkkonen J., Pettersson M., Berg A.H., Olsson P.E., 1999. Ethinyloestradiol—an undesired fish contraceptive? Aquat Toxicol 45, 91-97.
    [65] Weber L.P., Hill R.L. Jr., Janz D.M., 2003. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63(4), 431-46
    [66] Islinger M, Willimski D, Volkl A, Braunbeck T, 2003. Effects of 17a-ethinylestradiol on the expression of three estrogen-responsive genes and cellular ultrastructure of liver and testes in male zebrafish. Aquat Toxicol 62(2), 85-103.
    [67] Brion F., Tyler C.R., Palazzi X., Laillet B., Porcher J.M., Garric J., Flammarion P., 2004. Impacts of 17beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio).Aquat Toxicol 68(3), 193-217.
    [68] Maack G., Segner H., 2004. Life-stage-dependent sensitivity of zebrafish (Danio rerio) to estrogen exposure. Comp Biochem Physiol C Toxicol Pharmacol 139(1-3), 47-55.
    [69] Ternes, T.A., Stumpf, M.. Mueller, J.. Haberer. K., Wilken, R.D. Servos, M., 1999. Behavior and occurrence of estrogens in municipal sewage treatment plants--I. Investigations in Germany, Canada and Brazil. Sci. Total Environ 225, 81-90.
    
    [70] Van den Belt K, Verheyen R, Witters H., 2003. Effects of 17alpha-ethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio): effects on growth, gonads and female reproductive success. Sci Total Environ 309(1-3), 127-37.
    
    [71] Rose J., Holbech H., Lindholst C., Norum U., Povlsen A., Korsgaard B., Bjerregaard P., 2002. Vitellogenin induction by 17beta-estradiol and 17alpha-ethinylestradiol in male zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 131(4), 531-9.
    
    [72] Tong Y., Shan T., Poh Y.K., Yan T., Wang H., Lam S.H., Gong Z., 2004. Molecular cloning of zebrafish and medaka vitellogenin genes and comparison of their expression in response to 17beta-estradiol. Gene 328, 25-36.
    [73] Bogers R., Mutsaerds E., Druke J., De Roode D.F., Murk A.J., Van Der Burg B., Legler J., 2006. Estrogenic endpoints in fish early life-stage tests: luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish. Environ Toxicol Chem 25(1), 241-7.
    
    [74] So Y. P., Idier D. R, H .Wang et al, 1985. Plasma vitellogenin in landlocked Atlantic salmon ( Salmosalar ouaniche): isolation, homologous radio immunoassay and immunological cross - reactivity with vitellogenin from other teleosts, Comp. Biochem. Physiol. Part B 81, 63-71.
    
    [75] Holly A. Field, Elke A . Ober, Tobias Roeser, et al, 2003. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Developmental Biology , 253, 279-290.
    
    [76] Carolyn J. Mattingly, John A. McLachlan, and William A. Toscano, 2001 .Green Fluorescent Protein (GFP) as a Marker of Aryl Hydrocarbon Receptor (AhR) Function in Developing Zebrafish (Danio rerio). Environmental Health Perspectivesn 109, 845-849.
    
    [77] Scott R. Blechinger. James T. Wan-en. Jr.. John Y. Kuwada, et al. 2002. Developmental Toxicology of Cadmium in Living Embryos of a Stable Transgenic Zebrafish Line.Environmental Health Perspectives 110:1041-1046.
    [1]Banrett - Connor E,Grady D.Hormone replacement therapy,heart disease,and other considerations[J].Annu Rev Public Health,1998,19(1):55-72.
    [2]Pace P.Taylor J.Suntharalingam S,et al.Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha [J ] . J Biol Chem , 1997 , 272 (41) :25832 - 25838.
    [3] Mosselman S , Polman J , Dijkema R. ER P : Identification and characterization of a novel human estrogen receptor [J ]. FEBS Lett, 1996 , 392(1): 49-53.
    [4] Mcinerney EM, Katzenellenbogen BS. Different regions in activation function - 1 of the human estrogen receptor required for antiestrogen - and estradiol - dependent transcription activation [J ] . J Biol Chem , 1996 , 271 (39): 24172 - 4178.
    [5] Denger S , Reid G, Brand H , et al. Tissue - specific expression of human ER - alpha and ER - beta in male [J ]. Mol Cell Endocrinol, 2001 , 178(1 - 2):155 - 160.
    [6] Pakdel F , Metivier R, Flouriot G, et al. Two estrogen receptor (ER) isoforms with different estrogen dependencies are generated from the trout ER gene [J ] . Endocrinology, 2000, 141 (2): 571 - 580.
    [7] Petersen DN , Tkalcevic GT, Koza - Taylor PH , et al. Identification of estrogen receptor ER P 2 , a functional variant estro2 gen receptor p expressed in normal rat tissues[J ] . Endocrinology , 1998 , 139(3): 1082 - 1092.
    [8] Hodges YK, Tung L , Yan XD , et al. Estrogen receptor α and β : prevalence of estrogen receptor P mRNA in human vascular smooth muscle and transcriptional effects [ J ] . Circulation, 2000, 101(15) : 1792 - 1798.
    [9] Hall JM, McDonnell DP. The estrogen P isoform (ER β ) of the human estrogenreceptor modulates ER α transcriptional activity and is a key regulator of the cellular response to estrogen and antiestrogens[ J ]. Endocrinology, 1999 , 140 ( 12): 5568-5578.
    
    [10] Pujol P , Rey JM, Nirde P , et al. Differential expression of estrogen receptor alpha and beta messenger RNAs as a potential marker of ovarian carcinogenesis [J ] . Cancer Res, 1998 , 58 (23) :5367 - 5373.
    
    [11] Dutertre M, Smith CL. Molecular mechanism of select estrogen receptor modulator ( SERM) action [J ] . J Pharmacol Exp Ther , 2000 , 295(2) :431 -437.
    [12] Pike AC , Brzozowski AM, Hubbard RE , et al. Structure of the ligand -binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist [J ]. EMBO J ,1999 , 18(17) : 4608 - 4618.
    
    [13] Metivier R , Penot G, Flouriot G, et al. Synergism between ER alpha transactivation function 1 (AF - 1) and AF - 2 mediated by steroid receptor coactivator protein - 1 : requirement for the AF - 1 alpha - helical core and for a direct interaction between the N - and C - terminal domains [J ]. Mol Endocrinol, 2001 , 15(11) :1953 -1970.
    
    [14] Grese TA , Sluka JP , Bryant HU , et al. Molecular determinants of tissue selectivity in estrogen receptor modulators [J ] . Proc Natl Acad Sci USA , 1997, 94(25) .14105 -14110.
    
    [15] El - Ashry D , Chrysogelos SA , Lippman ME , et al. Estrogen induction of TGF - alpha is mediated by an estrogen response element composed of two imperfect palindromes[J ]. J. Steroid Biochem Mol Biol, 1996 , 59(3 - 4) :261 -269.
    
    [16] Yang NN , Bryant HU , Hardikar S , et al. Estrogen and raloxifene stimulate transforming growth factor - beta 3 gene expression in rat bone : a potential mechanismfor estrogen -or raloxifene - mediated bone maintenance[J]. Endocrinology , 1996 ,137(5) :2075 - 2084.
    
    [17] Wood JR ,Greene GL , Nardulli AM. Estrogen response element function as allosteric modulators of estrogen receptor conformation[J] . Mol Cell Biol, 1998 ,18(4): 1927- 1934.
    
    [18] Misiti S , Schomburg L , Yen PM, et al. Expression and hormonal regulation of coactivator and copressor genes[J ] . Endocrinology ,1998 ,139(5) :2493 -2500.
    
    [19] Kobayash Y, Kitamoto T, Masuhiro Y, et al. P300 mediates functional synergism between AF - 1 and AF - 2 of estrogen receptor α and β by interacting directly with the N - terminal A/ B domains[J ] . J Biol Chem . 2000.275(21): 15645-15651.
    
    [20] Speir E . Yu ZX. Takeda K. et al. Competition for p300 regulates transcription by estrogen receptors and nuclear factor -kappa B in human coronary smooth muscle cells [J ] . CircRes, 2000 ,87(11): 1006 - 1011.
    [21] Chen Z, Yuhanna IS , Gargova ZG, et al. Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen[J ] . J Clin Invest, 1999 ,103(3) :401 - 406.
    [22] Russell KS , Haynes MP , Caulin - Glaser T, et al. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxidesynthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release[J ]. J Biol Chem , 2000 ,275 (7) :5026 - 5030.
    [23] ShawL , Taggart MJ , Austin C. Mechanisms of 17 β - oestradiol induced vasodilatation in isolated pressurized rat small arteries[J ] . Br J Pharmacol, 2000 , 129(3): 555 - 565.
    [24] Gu Q , Moss RL. Novel mechanism of non - genomic action of 17 3 -oestradiol on kainite - induced current on isolated rathippocampal neurones[J ] . J Physiol, 1998 ,506(pt 3) :745- 754.
    [25] Bentem WPM ,Lieberherr M, Giese G, et al. Estradiol binding to cell surface raises cytosolic free calcium in T cell [J ]. FEBS Lett, 1998 , 422(3) :349 - 353.
    [26] Luconi M, Bonaccorsi L , Forti G, et al. Effects of estrogenic compounds on human spermatozoa : evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane[J ] . Mol Cell Endocrinol, 2001 , 178(1 - 2) :39- 45.
    [27] Pappas TC , Gametchu B ,Waston CS. Membrane estrogen receptors identified by multiple antibody labelling and impeded - ligand binding[J ] . FASEB J , 1995,9(5):404-410.
    [28] Razandi M, Pedram A , Greene GL , et al. Cell membrane and nuclear estrogen receptors originate from a single transcript: studies of ER α and ER β expressed in Chinese hamster ovary cells[J ] . Mol Endocrinol, 1999 ,13(2) :307-319.
    [29] Jayachandran M, Hayashi T, Sumi D . et al. Temporal effects of 17{beta} - estradiol on caveolin - 1 mRNA and protein in bovine aortic endothelial cells [ J ] . Am J Physiol, 2001 ,281(3) :H1327 - H1333.
    
    [30] Crustis SW, Washburn T, Sewall C , et al. Physiological coupling of growth factor and steroid receptor signaling pathway : estrogen receptor knockout mice lace estrogen - like response to epidermal growth factor[J ]. Proc Natl Acad Sci USA ,1996 , 93(22): 12626 - 12630.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700