用户名: 密码: 验证码:
Wnt拮抗因子对胚胎肝干细胞分化的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝功能衰竭(Liver failure)是临床最常见的死亡率极高的肝病症候群,严重威胁着人类的健康。据统计显示,我国每年因为重症肝功能衰竭导致死亡的人数为30-50万。治疗肝衰竭最有效的方法是肝移植,然而由于供肝来源缺乏,不到30%的患者能得到肝移植的机会。近年来,人们发现肝干细胞移植对急慢性肝功能衰竭有明确的治疗作用。肝干细胞(Hepatic stem cells,HSC)是体内存在的一种具有自我增殖能力和多向分化潜能的干细胞,能分化为肝细胞和胆管上皮细胞等多种细胞。肝干细胞可参与肝脏的修复与重建,也是肝细胞移植、生物人工肝的重要细胞来源。目前认为,肝干细胞的来源包括:胚胎干细胞、造血干细胞、骨髓间充质干细胞、胚胎肝干细胞、成体肝卵圆细胞及小肝细胞等。尽管许多文献报道不同来源的肝干细胞在体内外均可分化为具有一定功能的肝细胞,但是分化效率报道不一,细胞的终末分化及移植替代功能仍然未得到解决。研究发现,利用基因调控手段上调HSC分化基因表达,可改善其移植治疗效果。
     胚胎肝干细胞(Embryonic liver stem cells,ELSC)属于肝前体细胞,仅向肝细胞和胆管上皮细胞分化发育,这种中间状态是各种来源的干细胞向成熟肝细胞分化所必经的。胚胎肝干细胞分化机制的研究有助于阐明肝脏的发育机制,促进干细胞分化为成熟肝细胞,防止向肿瘤细胞分化,推进肝干细胞的临床应用。
     Wnt信号转导途径参与了细胞增殖、分化、生长、迁徙及氧化应激等多方面的复杂信号级联反应,在肝脏发育和肝细胞分化调控中具有重要作用。目前对Wnt信号通路与肝脏发育和肝细胞分化中的研究,主要集中于β-catenin,对Wnt信号其他成员,特别是Wnt拮抗因子的研究甚少。Wnt信号分子在肝脏发育过程中总的表达情况及变化趋势也未见报道。本课题以Wnt信号转导途径与肝脏发育的重要性为理论依据,以胚胎肝干细胞为研究对象进行以下研究:
     第一部分Wnt信号分子在不同发育阶段肝组织及细胞株中的差异性表达
     目的:检测不同发育阶段的肝组织及不同分化阶段肝细胞中所有Wnt配体、受体及拮抗因子的表达,分析Wnt信号分子在肝脏发育中的表达差异和变化趋势,为进一步探讨Wnt信号转导途径在肝脏发育及肝细胞分化中的作用提供重要信息。
     方法:分离胚胎12.5天至出生后4周共9个阶段的小鼠肝脏,建立胚胎肝干细胞株ELSC14-19及肝细胞株LC14d。提取RNA,RT-PCR检测19种Wnt配体,10种Fzd受体,2种共受体及8种Wnt拮抗因子的表达水平,分析变化趋势。
     结果:在不同阶段的肝组织中能检测到大多数Wnt配体基因的表达,其中Wnt2b、3a、4、8a、9b、10a和10b在几乎所有的肝脏发育阶段中有较高的表达,Wnt2和5a在晚期阶段表达,而Wnt6、16在早期阶段表达。所有的Fzd受体在肝脏组织中被检测到,随着肝脏发育,Fzd2、3、5、6、7、8表达呈现降低趋势,而Fzd1和4在出生后表达升高。LRP5、6在所有的肝脏中也能检测,LRP5持续高表达,LRP6在出生前低表达,出生后增高。SFRP1、4、5在不同阶段的肝组织中的表达无明显差异,SFRP1、4的表达稍高于SFRP5。SFRP2只在E12.5和14.5天的肝组织中表达,随后很快消失。Frzb/SFRP3只在E12.5至18.5天的肝脏中检测到,且表达水平较SFRP2低。DKK2仅在早期肝组织中检测到,而DKK1和DKK3在所有的肝组织中有较低表达,并无明显升高或降低的趋势。在ELSC14-19和LC14d中,Wnt配体的表达基本一致,能检测到9个Wnt基因的表达。Hepa1-6中,Wnt1和Wnt10a高表达,Wnt2消失,Wnt3a和Wnt6出现。大多数的Fzd受体和LRP5、6在ELSC14-19中高表达。5个SFRP拮抗因子中,SFRP2、4高表达,1、5低表达,Frzb在ELSC14-19中表达很低,在Hepa1-6中检测不到。DKK2在ELSC14-19中高表达,DKK1、3表达较低。SFRP2,DKK2在ELSC14-19中的表达高于14d,而SFRP4相反。Wnt信号下游靶基因c-Myc、Axin2、Sox9及Nanog在ELSC14-19中有表达。
     结论:Wnt信号转导途径在肝脏发育中被激活,Wnt信号各分子呈现差异性表达,其表达趋势在肝组织和细胞中不完全一致,正常肝细胞与肝肿瘤细胞的Wnt信号分子表达差异明显,提示不同的Wnt信号转导通路在肝脏发育和肝细胞分化中可能发挥不同的作用。其中Wnt拮抗因子SFRP2、Frzb、DKK2仅在发育早期的肝组织中检测到,其表达下调可能是肝脏发育和肝细胞分化所必需。
     第二部分胚胎肝干细胞体外诱导分化的研究
     目的:构建携带ALB全长启动子及Gaussia荧光素酶报告基因的胚胎肝干细胞,用于肝细胞体外诱导分化的动态检测及诱导方法的筛选。检测不同诱导因素对胚胎肝干细胞体外成熟分化的影响,优化诱导方案。
     方法:构建携带ALB全长启动子及Gaussia荧光素酶报告基因的逆转录病毒质粒pBGLuc-ALB,转染ELSC14-19、LC14d、Hepa1-6细胞,检测培养上清中的GLuc活性,并与ALB表达趋势比较。pBGLuc-ALB与pAmpho共转染HEK293细胞包装逆转录病毒,感染ELSC14-19构建稳定细胞株。ALB-GLuc活性检测10%FBS、2%HS、Dex、HGF、FGF4单一因素及不同配伍培养条件对胚胎肝干细胞体外成熟分化的影响,RT-PCR、免疫荧光、糖原染色及ICG摄取释放试验检测2%HS+Dex+HGF+FGF4体外联合诱导ELSC14-19成熟分化。
     结果:Gaussia荧光素酶活性与ALB表达趋势一致。胚胎肝干细胞在2%HS培养中增殖速度低于10%FBS,但是ALB-GLuc的表达更高,HGF、FGF4分别在10ng/ml、20ng/ml浓度下对胚胎肝干细胞ALB-GLuc的诱导作用最强,FGF4能促进细胞增殖。不同因素的配伍组合中,2%HS+0.1uM Dex+10ng/mlHGF+20ng/mlFGF4联合培养能最强诱导ALB表达。诱导后细胞DLK、AFP、CK19表达下调,ALB、CK18、UGT1A表达增强,诱导后第3天可以检测到晚期指标TAT的表达,第6天可以检测到ApoB的表达。糖原合成和ICG摄取释放功能在诱导第6天开始出现,并逐渐增强。
     结论:构建了携带ALB全长启动子及Gaussia荧光素酶报告基因的胚胎肝干细胞,ALB-GLuc活性能真实地反应细胞中ALB的表达水平。2%HS+0.1uMDex+10ng/mlHGF+20ng/mlFGF4联合培养能有效诱导胚胎肝干细胞体外成熟分化。
     第三部分Wnt拮抗因子对胚胎肝干细胞分化的影响及机制研究
     目的:检测并比较Wnt拮抗因子DKK2和Frzb对胚胎肝干细胞体外成熟分化的影响,并探讨其机制。
     方法:腺病毒DKK2、Frzb分别感染ELSC14-19,并用2%HS+Dex+HGF+FGF4体外诱导培养。于诱导后第12天,RT-PCR和WesternBlot检测肝细胞相关标志,糖原染色及ICG摄取释放试验检测肝细胞功能。pTop-Luc质粒转染ELSC14-19,用β-catenin,19种Wnt配体腺病毒分别配对DKK2,Frzb腺病毒共感染细胞,荧光素酶报告基因检测β-catenin活性。
     结果:Frzb作用后的ELSC14-19细胞,在体外诱导培养下,DLK、AFP、CK19表达较诱导对照组高,ALB、CK18、UGT1A、TAT、ApoB表达降低,糖原合成及ICG摄取功能阳性细胞比例明显减少,而DKK2处理组与对照组相比无明显差别。β-catenin,Wnt1、2、3、3a、7a、7b、10b处理组GLuc活性明显高于对照组。Frzb作用下β-catenin,Wnt1、2、3、3a、7a、7b诱导的Top-Luc活性降低,而Wnt10b诱导的Luc信号不受影响。DKK2作用下β-catenin,Wnt1、2、3、3a、7b诱导的Top-Luc活性降低,对Wnt 7a诱导的Luc增强没有抑制作用,而对Wnt10b诱导的Luc活性有轻微促进作用。总的来说,Frzb对Wnt配体诱导β-catenin活性的抑制作用强于DKK2。
     结论:Frzb能够抑制由2%HS+Dex+HGF+FGF4联合诱导的胚胎肝干细胞成熟分化,而DKK2没有影响。其机制可能在于Frzb和DKK2对Wnt信号转导途径的抑制作用不同。
Liver failure is the most common clinical liver syndrome with high mortality,which is a serious threat to human health.According to statistics, there are 30-50 million people dead because of severe liver failure every year.Liver transplantation is the most effective way to treat liver failure, however,only less than 30%of patients have the opportunity to receive liver transplantation because of donor source scarcity.In recent years,It has been found that liver stem cell transplantation has effectively therapeutic effect on acute and chronic liver failure.Hepatic stem cells (HSC) have the characteristic of self-renewal and multipotential differentiation,which can be differentiated into hepatocytes,bile duct epithelial cells and other cells.In liver injury,liver stem cells may be involved in liver repair and regeneration.HSCs can differentiate into mature functional hepatocytes,serving as a major cell source of liver cell transplantation and bioartificial liver cells.Embryonic stem cells, haemopoietic stem cell,bone marrow-derived mesenchymal stem cells, embryonic liver stem cells,hepatic oval cells can be used in live stem cell transplantation.Although there have been numerous reports indicating that different sources of liver stem cells can be differentiated in functional hepatocytes in vitro and in vivo,the differentiation efficiency was relatively low.How to achieve terminal differentiation and fully functional hepatocytes remains as a major challenge.Whether the transplanted cells can proliferate normally and replace liver mass functionally is still unknown.It has been reported that the up-regulation of HSC related genes could improve the efficiency of HSC transplantation in the treatment.
     Embryonic liver stem cells(ELSC) are the progenitor cells,which can only differentiate into hepatocytes and bile duct epithelial cells.The intermediate state is an essential process of differentiation from stem cells to mature hepatocytes.While investigations on embryonic liver stem cells are helpful to elucidate the mechanism of liver development,the directed differentiation of liver stem cells into mature liver cells,but not tumor cells, would significantly improve the efficiency and biosafety profile of clinical use of liver stem cell transplantation.
     During liver development,Wnt signaling is temporarily activated, triggering a complicated signaling cascade that regulates cell proliferation, differentiation,growth,migration,development and oxidative stress.Wnt signaling plays important roles in liver development and liver cell differentiation.Current studies on the role of Wnt signaling pathway in the liver development and differentiation mainly focus onβ-catenin,while the individual members of Wnt family and Wnt antagonists have been poorly studied.Furthermore,the expression profiles of all Wnts during liver development has not been studied.Thus,we are interested in studying the functional role of Wnt signaling and its antagonist in liver stem cell differentiation in the following three parts.
     Part One Expression Profiles of Wnt Signaling Molecules in Different Developmental Stages of Liver Tissues and Cell Lines
     Objective:To detect the expression levels of all Wnt ligands, receptors and antagonists in different developmental stages of liver tissues and stem cell lines,then to analyze the expression of differences and trends, for our further study on the role of Wnt signaling pathway in the liver development and cell differentiation.
     Methods:Liver tissues were isolated from 12.5 embryos to postnatal 4 weeks mouse liver,mouse embryonic liver stem cell 14-19 and liver cell 14d were isolated and established from post coitus day 14.5 and postnatal 14 days liver tissues,respectively.The expression profiles and trends of 19 Wnt ligands,10 Fzd receptors,two co-receptors and 8 antagonists were detected by RT-PCR.
     Results:Most of Wnt genes were detectable.Among them,Wnt2b,3a, 4,8a,9b,10a,and 10b were highly expressed at all of the tested stages of liver development.It is noteworthy that Wnt2 and 5a seemingly expressed at the later stages,while Wnt6 and 16 expressed at the early stage of liver development.All ten Fzd receptors were expressed in the isolated liver tissues,while the expression of Fzd2,3,5,6,7,and 8 slightly decreased during liver development.Fzd4 and 10 seemingly increased their expression postnatally.The expression of both LRP5 and LRP6 was readily detected in all liver tissues,although the expression of LRP6 increased after birth.SFRP1,4 and 5 were highly expressed during liver development. However,SFRP2 only expressed in E12.5 liver tissue,whereas the expression of SFRP3/FrzB was only detected in E12.5 through E14.5 liver tissues Accordingly,Dkk1 and Dkk3 were shown to express in all of the isolated liver tissues,whereas Dkk2 mostly expressed in E12.5 liver tissue.
     The expression of 9 of 19 Wnt genes was readily detected in ELSC14-19.In Hepa1-6,Wnt1,10a had higher expression,Wnt2 disappeared and Wnt3a,6 presented.Most of the 10 Fzd receptors and LRP5,6 co-receptors were highly expressed in ELSC14-19.Among the five SFRP antagonists,SFRP2 and 4 were highly expressed,SFRP1 and 5 lowerly expressed,while the expression of Frzb was almost not detectable in ELSC14-19.Dkk2 exhibited the highest level of expression in ELSC14-19,whereas Dkk1 was expressed at the lowest level and Dkk3 expression was readily detectable.The expression of SFRP2,DKK2 were higher in ELSC 14-19 than in LC14d,but SFRP4 lower.Furthermore,the expression of four known Wnt targets,c-Myc,Axin2,Sox9,and Nanog was readily detected in ELSC14-19 cells.
     Conclusion:Most of components of Wnt signaling pathway in the liver development were activated with different expression profiles,the trends of their expression in liver tissues and stem cells were not totally similar,while Wnts differentially expressed in the normal liver cell and liver tumor cell,suggesting that Wnt family members in differentiation of the liver may play different roles.Among them,Wnt antagonists SFRP2, Frzb,DKK3 only expressed in early stage of liver tissue,indicating that the down-regulation of them may be necessary in liver development and cell differentiation.
     Part Two Induced Differentiation of Embryonic Liver Stem Cell in vitro
     Objective:To construct ELSC14-19 stable cell line with ALB promoter and Gaussia luciferase reporter gene,for dynamic monitoring of differentiation status and factor screening.To detect the effect of different factors on ELSC induced differentiated in vitro.
     Methods:ALB promoter and Gaussia luciferase reporter gene were constructed in a retrovirus vector,then transfected ELSC14-19,LC14d,and Hepa1-6.Relative ALB expression level was detected by culture supernatant luciferase activity.Retrovirus was packaged in HEK293 cells with pAmpho co-transfection.ELSC14-19 ALB-GLuc stable cells pool was established by retrovirus infection.The effects of 10%FBS,2%HS, Dex,HGF,FGF4 single factors and different combinations of culture conditions on differentiation of ELSC14-19 in vitro were detected by ALB-GLuc activity assay.The effect of 2%HS + Dex + HGF + FGF4 combinations on differentiation of ELSC14-19 was also assessed by semi-quantitative RT-PCR,immunofluorescence,glycogen staining,and ICG uptake and release test.
     Results:Gaussia Luciferase activity reflected ALB expression.Cells proliferation slowed in 2%HS than that in 10%FBS culture condition,but ALB-GLuc activity higher.HGF,FGF4 at 10ng/ml,20ng/ml,respectively, could most effectively promote ALB expression.FGF4 improved cell proliferation.Compare with different combination,2%HS+0.1uMDex+ 10ng/ml HGF+20ng/ml FGF4 co-culture induced highest ALB expression, After inducted,the expression of DLK,AFP,CK19 decreased,ALB,CK18, UGT1A increased,and mature marker TAT was detected at 3 days of induction,and ApoB,at 6 days induction.ICG uptake and glycogen synthesis function of induced cells were present at 6 days induction,and gradually increased.
     Conclusion:We successfully constructed stable ELSC with ALB promoter-driven luciferase reporter gene.ALB-GLuc activity correlated the expression level of ALB.ELSC differentiation could be effectively induced in vitro by 2%HS+0.1uM Dex+10ng/ml HGF+20ng/mlFGF4.
     Part Three Effect of Wnt Antagonists on Embryonic Liver Stem Cell Differentiation
     Objective:To detect and compare the effects and mechanisms of Wnt antagonists DKK2 and Frzb on embryonic liver stem cells in vitro differentiation.
     Methods:ELSC14-19 cells were infected with Ad-DKK2,Ad-Frzb, respectively,and cultured in 2%HS+0.1uM Dex+10ng/ml HGF+ 20ng/ml FGF4 condition.Hepatic related markers were detected by RT-PCR,Western Blot at 12 days induction.The mature functions of ELSC were assessed by ICG uptake and glycogen synthesis tests. ELSC14-19 cells were transfected with pTop-Luc plasmid,then infected with adenovirus exprssingβ-catenin,19 Wnt ligands,DKK2,Frzb in different combinations.β-Catenin activity was detected by Luc-activity.
     Results:The expression of DLK,AFP,CK19 was higher in Adv-Frzb infected group than the control group.The expression of ALB,CK18, UGT1A,TAT,ApoB decreased after Frzb treatment.The ICG uptake and glycogen synthesis apparently reduced after Frzb treatment.However,there was no significantly difference between DKK2 treated induced group and induced control group.The Top-Luc activity(reflectingβ-catenin/TCF activity) ofβ-catenin,Wnt1,2,3,3a,7a,7b,10b treated groups were statistically higher than that in GFP control group.FrzB inhibitedβ-catenin, Wnt1,2.3,3a,7a,7b induced Top-Luc activity,and Luc activity induced by Wnt10b was not affected by FrzB.DKK2 inhibitedβ-catenin,Wnt1,2, 3,3a,7b induced Top-Luc activity,weakly improved Wnt10b induced Top-Luc activity,Luc-activity induced by Wnt7a was not affected by DKK2.Overall,the inhibition of Frzb on Wnt inducedβ-catenin activity was stronger than that of DKK2.
     Conclusion:Frzb could inhibit the differentiation induced by 2%HS +Dex+HGF+FGF4 co-culture,while DKK2 had no effect.These findings suggest that the inhibition of Frzb and DKK2 on Wnt signaling pathway in ELSCs may be different.
引文
[1].Chamuleau RA,Deurholt T,Hoekstra R.Which are the right cells to be used in a bioartificial liver?[J].Metab Brain Dis,2005 Dec;20(4):327-35.
    [2].Zdziarski P.Cellular transplantation--orthotopic liver transplantation alternative[J].Pol Merkur Lekarski.2007 Oct;23(136):297-301.Review.
    [3].Oertel M,Shafritz DA.Stem cells,cell transplantation and liver repopulation.Biochim Biophys Acta.2008 Feb;1782(2):61-74.Epub 2007 Dec 23.Review.
    [4].Gennero L,Mortimer P,Sperber K,et al.Stem cells:an alternative to organ transplantation in chronic,degenerative and infectious diseases?[J].New Microbiol.2006 Jul;29(3):151-67.Review.
    [5].Popp FC,Piso P,Schlitt HJ,et al.Therapeutic potential of bone marrow stem cells for liver diseases[J].Curr Stem Cell Res Yher.2006 Sep;1(3):411-8.Review.
    [6].Rountree CB,Wang X,Ge S,et al.Bone marrow fails to differentiate into liver epithelium during routine development and regeneration[J].Hepatology.2007May;45(5):1250-60.
    [7]. Zhang W, Chen XP, Zhang WG, et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration[J]. World J Gastroenterol. 2009 Feb 7;15(5):552-60.
    [8]. Duncan SA. Mechanisms controlling early development of the liver[J]. Mech Dev. 2003 Jan;120(1):19-33.Review.
    [9]. Sato Y, Araki H, Kato J,et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion.Blood[J]. 2005 Jul 15;106(2):756-63.
    [10]. Popp FC, Piso P, Schlitt HJ,et al. Therapeutic potential of bone marrow stem cells for liver diseases[J]. Curr Stem Cell Res Ther. 2006 Sep;1(3):411-8. Review.
    [11]. Wu CX, Zou Q, Zhu ZY,et al. Intrahepatic transplantation of hepatic oval cells for fulminant hepatic failure in rats[J]. World J Gastroenterol. 2009 Mar 28;15(12):1506-11.
    [12]. Mishra L, Banker T, Murray J, et al. Liver stem cells and hepatocellular carcinoma[J]. Hepatology. 2009 Jan;49(1):318-29. Review.
    [13]. Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors[J]. Front Biosci. 2004 May 1;9:1048-58.
    [14]. He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way[J]. Development. 2004 Apr;131(8):1663-77.
    [15]. Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription[J]. Proc Natl Acad Sci 1998;95:3020-3023.
    [16]. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors[J]. J Biol Chem. 2006 Aug ll;281(32):22429-33. Review.
    [17]. Moon RT, Brown JD, Yang-Snyder JA, et al. Structurally related receptors and antagonists compete for secreted Wnt ligands[J]. Cell. 1997 Mar 21;88(6):725-8.
    [18]. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators[J].Oncogene.2006 Dec 4;25(57):7469-81.
    [19].Brott BK,Sokol SY.Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J].Mol Cell Biol.2002 Sep;22(17):6100-10.
    [20].Kawano Y,Kypta R.Secreted antagonists of the Wnt signalling pathway[J].J Cell Sci.2003 Jul 1;116(Pt 13):2627-34.Review.
    [21].Yost C,Farr GH 3rd,Pierce SB,et al.GBP,an inhibitor of GSK-3,is implicated in Xenopus development and oncogenesis[J].Cell.1998 Jun 12;93(6):1031-41.
    [22].Luo J,Chen J,Deng ZL,et al.Writ signaling and human diseases:what are the therapeutic implications?[J].Lab Invest 2007;87:97-103.
    [23].Decaens T,Godard C,de Reynies A,et al.Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate[J].Hepatology.2008Jan;47(1):247-58.
    [24].Thompson MD,Monga SP.WNT/beta-catenin signaling in liver health and disease[J].Hepatology.2007 May;45(5):1298-305.
    [25].Ober EA,Verkade H,Field HA,et al.Mesodermal Wnt2b signalling positively regulates liver specification[J].Nature.2006 Aug 10;442(7103):688-91.
    [26].Micsenyi A,Tan X,Sneddon T,et al.Beta-catenin is temporally regulated during normal liver development[J].Gastroenterology.2004 Apr;126(4):1134-46.
    [27].Benhamouche S,Decaens T,Perret C,et al.Wnt/beta-catenin pathway and liver metabolic zonation:a new player for an old concept[J].Med Sci(Paris).2006Nov;22(11):904-6.
    [28].Myung SJ,Yoon JH,Gwak GY,et al.Writ signaling enhances the activation and survival of human hepatic stellate cells[J].FEBS Lett.2007 Jun 26;581(16):2954-8.
    [29].李瀚旻 高翔 晏雪生等.左归丸促进骨髓形成肝细胞的分子机制研究[J].中医杂志.2006年47卷10期:13(24):2818-2822.
    [30].Monga SP,Pediaditakis P,Mule K,et al.Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration[J].Hepatology.2001 May;33(5):1098-109.
    [31].Klein D,Demory A,Peyre F,et al.Wnt2 acts as a cell type-specific,autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway[J].Hepatology.2008 Mar;47(3):1018-31.
    [32].Apte U,Thompson MD,Cui S,et al.Wnt/beta-catenin signaling mediates oval cell response in rodents[J].Hepatology.2008 Jan;47(1):288-95.
    [33].高金昙,殷飞,姚树坤.苦参碱诱导大鼠肝卵圆细胞株W B-F 344细胞分化中Wnt-1信号通路的作用[J].世界华人消化杂志.2008年第16期(26):2935-2939.
    [34].Zeng G,Awan F,Otruba W,et al.Wnt'er in liver:expression of Wnt and frizzled genes in mouse[J].Hepatology.2007 Jan;45(1):195-204.
    [1].Ahuja D,Saenz-Robles MT,Pipas JM.et al.SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation[J].Oncogene,2005 Nov 21;24(52):7729-45.Review.
    [2].李君,李兰娟等.SV40LT抗原介导的人源性肝细胞系的构建[J].中华传染病杂志.2004年22卷3期;149-153.
    [3].Delgado JP,Parouchev A,Allain JE,et al.Long-term controlled immortalization of a primate hepatic progenitor cell line after Simian virus 40 T-Antigen gene transfer[J].Oncogene.2005 Jan 20;24(4):541-51.
    [4].Kobayashi N,Noguchi H,Westerman KA,et al.Cre/loxP-based reversible immortalization of human hepatocytes[J].Cell Transplant.2001;10(4-5):383-6.
    [5].Cai J,Ito M,Westerman KA,et al.Construction of a non-tumorigenic rat hepatocyte cell line for transplantation:reversal of hepatocyte immortalization by site-specific excision of the SV40 T antigen[J].J Hepatol.2000 Nov;33(5):701-8.
    [6].Tanimizu N,Nishikawa M,Saito H et al.Isolation of hepatoblasts based on the expression of Dlk/Pref-1[J].J Cell Sci.2003 May 1;116(Pt 9):1775-86.
    [7].Tanimizu N,Saito H,Mostov K,et al.Long-term culture of hepatic progenitors derived from mouse Dlk+ hepatoblasts[J].J Cell Sci.2004 Dec 15;117(Pt 26):6425-34.
    [8].Saez-Lara MJ,Frecha C,Martin F,et al.Transplantation of human CD34+ stem cells from umbilical cord blood to rats with thioacetamide-induced liver cirrhosis[J].Xenotransplantation.2006 Nov;13(6):529-35.
    [9].Evdokimova VN,Butterfield LH.Alpha-fetoprotein and other tumour-associated antigens for immunotherapy of hepatocellular cancer[J].Expert Opin Biol Ther.2008 Mar;8(3):325-36.Review.
    [10].Teramoto K,Asahina K,Kumashiro Y,et al.Hepatocyte differentiation from embryonic stem cells and umbilical cord blood cells[J].J Hepatobiliary Pancreat Surg.2005;12(3):196-202.
    [11].郑水莲,李新,曾苏.尿苷二磷酸葡醛酸转移酶的代谢类型及影响因素[J].中国药理学与毒理学杂志.2005年第19卷第01期.
    [121].高金昙,殷飞,姚树坤.苦参碱诱导大鼠肝卵圆细胞株W B-F 344细胞分化中Wnt-1信号通路的作用[J].世界华人消化杂志.2008年第16期(26):2935-2939.
    [13].Klein D,Demory A,Peyre F,et al.Wnt2 acts as a cell type-specific,autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway[J].Hepatology.2008 Mar;47(3):1018-31.
    [14].Corrigan PM,Dobbin E,Freeburn RW,et al.Patterns of Wnt/Fzd/LRP Gene Expression during Embryonic Hematopoiesis[J].Stem Cells Dev.2008 Sep 18. [Epub ahead of print]
    [15]. Luis TC, Weerkamp F, Naber BA, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation[J]. Blood. 2009 Jan 15;113(3):546-54.
    [16]. Komiya Y, Habas R. Wnt signal transduction pathways[J]. Organogenesis. 2008 Apr;4(2):68-75.
    [17]. Gros J, Serralbo O, Marcelle C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres[J], Nature. 2009 Jan 29;457(7229):589-93.
    [18]. Carmon KS, Loose DS. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells[J]. Mol Cancer Res. 2008 Jun;6(6):1017-28.
    [19]. Schmidt C, McGonnell IM, Allen S, et al. Wnt6 controls amniote neural crest induction through the non-canonical signaling pathway[J]. Dev Dyn. 2007 Sep;236(9):2502-11.
    [20]. He F, Xiong W, Yu X, et al. Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development[J]. Development. 2008 Dec;135(23):3871-9.
    [21]. Matsumoto K, Mild R, Nakayama M, et al. Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium[J]. Dev Biol. 2008 Jul 15;319(2):234-47.
    [22]. Collavin L, Kirschner MW. The secreted Frizzled-related protein Sizzled functions as a negative feedback regulator of extreme ventral mesoderm[J]. Development. 2003 Feb;130(4):805-16.
    [23]. Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns[J]. Bioessays. 2002 Sep;24(9):811-20.
    [24]. Uren A, Reichsman F, Anest V, et al. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling[J]. J Biol Chem. 2000 Feb 11;275(6):4374-82.
    [25].Banyai L,Patthy L.The NTR module:domains of netrins,secreted frizzled related proteins,and type Ⅰ procollagen C-proteinase enhancer protein are homologous with tissue inhibitors of metalloproteases[J].Protein Sci.1999Aug;8(8):1636-42.
    [26].Chong JM,Uren A,Rubin JS,et al.Disulfide bond assignments of secreted Frizzled-related protein-1 provide insights about Frizzled homology and netrin modules[J].J Biol Chem.2002 Feb 15;277(7):5134-44.Epub 2001 Dec 10.
    [27].Zhong X,Desilva T,Lin L,et al.Regulation of secreted Frizzled-related protein-1by heparin[J].J Biol Chem.2007 Jul 13;282(28):20523-33.
    [28].Veeck J,Niederacher D,An H,et al.Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis[J].Oncogene.2006 Jun 8;25(24):3479-88.
    [29].Satoh W,Matsuyama M,Takemura H,et al.Sfrp1,Sfrp2,and Sfrp5 regulate the Wnt/β-catenin and the planar cell polarity pathways during early trunk formation in mouse[J].Genesis.2008 Feb;46(2):92-103.
    [30].Terry K,Magan H,Baranski M,et al.Sfrp-1 and sfrp-2 are expressed in overlapping and distinct domains during chick development[J].Mech Dev.2000Oct;97(1-2):177-82.
    [31].Galli LM,Barnes T,Cheng T,et al.Differential inhibition of Wnt-3a by Sfrp-1,Sfrp-2,and Sfrp-3[J].Dev Dyn.2006 Mar;235(3):681-90.
    [32].Wang S,Krinks M,Moos M Jr,et al.Frzb-1,an antagonist of Wnt-1 and Wnt-8,does not block signaling by Wnts -3A,-5A,or -11[J].Biochem Biophys Res Commun.1997 Ju118;236(2):502-4.
    [33].Kress E,Rezza A,Nadjar J,et al.The frizzled-related sFRP2 gene is a target of thyroid hormone receptor alphal and activates β-catenin signaling in mouse intestine[J].J Biol Chem.2009 Jan 9;284(2):1234-41.
    [34].Krupnik VE,Sharp JD,Jiang C,et al.Functional and structural diversity of the human Dickkopf gene family.Gene[J].1999 Oct 1;238(2):301-13.
    [35].Aravind L,Koonin EV.A colipase fold in the carboxy-terminal domain of the Wnt antagonists--the Dickkopfs[J].Curr Biol.1998 Jul 2;8(14):R477-8.
    [36].Brott BK,Sokol SY.Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J].Mol Cell Biol.2002 Sep;22(17):6100-10.
    [37].Nakamura T,Nakamura T,Matsumoto K.The functions and possible significance of Kremen as the gatekeeper of Wnt signalling in development and pathology[J].J Cell Mol Med.2008 Apt;12(2):391-408.
    [38].Glinka A,Wu W,Delius H,et al.Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J].Nature.1998 Jan 22;391(6665):357-62.
    [39].Mao B,Wu W,Davidson G,et al.Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling[J].Nature.2002 Jun 6;417(6889):664-7.
    [40].Wang J,Shou J,Chen X,et al.Dickkopf-1,an inhibitor of the Writ signaling pathway,is induced by p53[J].Oncogene.2000 Mar 30;19(14):1843-8.
    [41].Katoh Y,Katoh M.Comparative genomics on DKK2 and DKK4 orthologs[J].Int J Mol Med.2005 Sep;16(3):477-81.
    [42].Yue W,Sun Q,Dacic S,et al.Downregulation of Dkk3 activates β-catenin/TCF-4signaling in lung cancer[J].Carcinogenesis.2008 Jan;29(1):84-92.
    [43].Brott BK,Sokol SY.Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J].Mol Cell Biol.2002 Sep;22(17):6100-10.
    [44].Mao B,Niehrs C.Kremen2 modulates Dickkopf2 activity during Wnt/LRP6signaling[J].Gene.2003 Jan 2;302(1-2):179-83.
    [45].Zeng G,Awan F,Otruba W,et al.Wnt'er in liver:expression of Writ and frizzled genes in mouse[J].Hepatology.2007 Jan;45(1):195-204.
    [1].Wolff JA,Budker V.The mechanism of naked DNA uptake and expression[J].Adv Genet.2005;54:3-20.Review.
    [2].Kealy B,Liew A,McMahon JM,et al.Comparison of Viral and Nonviral Vectors for Gene Transfer to Human Endothelial Progenitor Cells[J].Tissue Eng Part C Methods.2009 Jan 20.
    [3].Shao N,Bock R.A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii[J].Curr Genet.2008 Jun;53(6):381-8.
    [4].Gavrilescu LC,Van Etten RA.Production of replication-defective retrovirus by transient transfection of 293T cells[J].J Vis Exp.2007;(10):550.
    [5].Braga GW,Bordin JO,Moreira Junior G,et al.Laboratory diagnosis of auto-immune hemolytic anemia:characteristics of the manual direct test of Polybrene[J].Rev Assoc Med Bras.1998 Jan-Mar;44(1):16-20.
    [6].Jacobsen F,Hirsch T,Mittler D,et al.Polybrene improves transfection efficacy of recombinant replication-deficient adenovirus in cutaneous cells and burned skin[J].J Gene Med.2006 Feb;8(2):138-46.
    [7].Landazuri N,Gupta M,Le Doux JM.Rapid concentration and purification of retrovirus by flocculation with Polybrene[J].J Biotechnol.2006 Oct 1;125(4):529-39.
    [8]. Aubin RA, Weinfeld M, Taghavi M, et al. Highly effective delivery of foreign DNA to adherent cells via polybrene/DMSO-assisted gene transfer[J]. Methods Mol Biol. 1997;62:319-42.
    [9]. Hayakawa J, Washington K, Uchida N, et al. Long-term vector integration site analysis following retroviral mediated gene transfer to hematopoietic stem cells for the treatment of HIV infection[J]. PLoS ONE. 2009;4(1):e4211.
    [10]. Luskin MB. Gene transfer to the rodent embryo by retroviral vectors[J]. Methods Mol Biol. 2008;461:201-20. Review.
    [11]. Roelants V, Labar D, de Meester C, et al. Comparison between adenoviral and retroviral vectors for the transduction of the thymidine kinase PET reporter gene in rat mesenchymal stem cells[J]. J Nucl Med. 2008 Nov;49(11):1836-44.
    [12]. Kumasaka T, Yamamoto M, Furuichi M, et al. Crystal structures of blasticidin S deaminase (BSD): implications for dynamic properties of catalytic zinc[J]. J Biol Chem. 2007 Dec 21;282(51):37103-11.
    [13]. Cone MC, Yin X, Grochowski LL, et al. The blasticidin S biosynthesis gene cluster from Streptomyces griseochromogenes: sequence analysis, organization, and initial characterization[J]. Chembiochem. 2003 Sep 5;4(9):821-8.
    [14]. Kimura M, Sekido S, Isogai Y,et al. Expression, purification, and characterization of blasticidin S deaminase (BSD) from Aspergillus terreus: the role of catalytic zinc in enzyme structure[J]. J Biochem. 2000 Jun;127(6):955-63.
    [1].You WK,McDonald DM.The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis[J].BMB Rep.2008 Dec 31;41(12):833-9.Review.
    [2].Nishino M,Iimuro Y,Ueki T,et al.Hepatocyte growth factor improves survival after partial hepatectomy in cirrhotic rats suppressing apoptosis of hepatocytes[J].Surgery.2008 Sep;144(3):374-84.
    [3].周一鸣,胡大荣,姚鹏等小鼠骨髓干细胞诱导分化为肝细胞的实验研究.中华肝脏病杂志[J].2004年12卷12期:722-725
    [4].Oh SH,Witek RP,Bae SH,et al.Bone marrow-derived hepatic oval cells differentiate into hepatocytes in 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration[J].Gastroenterology.2007Mar;132(3):1077-87.
    [5].Itch N,Ornitz DM.Functional evolutionary history of the mouse Fgf gene family[J].Dev Dyn.2008 Jan;237(1):18-27.Review.
    [6].Farre J,Roura S,Prat-Vidal C,et al.FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells[J].Growth Factors.2007 Apt;25(2):71-6.
    [7].Prudhomme WA,Duggar KH,Lauffenburger DA.Cell population dynamics model for deconvolution of murine embryonic stem cell self-renewal and differentiation responses to cytokines and extracellular matrix[J].Biotechnol Bioeng.2004 Nov 5;88(3):264-72.
    [8].Sekhon SS,Tan X,Micsenyi A,et al.Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors[J].Am J Pathol.2004Jun;164(6):2229-40.
    [9].裴海云,王韫芳,杨印祥,等.人胚胎干细胞体外诱导分化为肝脏细胞[J].科学通报,2007,52(18):2135-2139.
    [10].Li BL,Qu Q,Zhao YP,et al.Expression of albumin during hepatocyte differentiation by human bone marrow stem cells[J].Zhonghua Wai Ke Za Zhi.2005 Jun 1;43(11):713-5.[Article in Chinese]
    [11].Kang XQ,Zang WJ,Bao LJ,et al.Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes[J].World J Gastroenterol.2005 Dec 21;11(47):7461-5.
    [12].Tang LJ,Gao Y,Zhang Z,et al.Human bone marrow multipotent adult progenitor cells differentiate into hepatocyte-like cells with hepatocyte growth factor plus fibroblast growth factor-4 in vitro[J].Zhonghua Gan Zang Bing Za Zhi.2005 Sep;13(9):652-5.Chinese.
    [13].Ishii T,Fukumitsu K,Yasuchika K,et al.Effects of extracellular matrixes and growth factors on the hepatic differentiation of human embryonic stem cells[J].Am J Physiol Gastrointest Liver Physiol.2008 Aug;295(2):G313-21.
    [14].Snykers S,Vanhaecke T,Papeleu P,et al.Sequential exposure to cytokines reflecting embryogenesis:the key for in vitro differentiation of adult bone marrow stem cells into functional hepatocyte-like cells[J].Toxicol Sci.2006Dec;94(2):330-41.;discussion 235-9.
    [15].Qi W,Ding D,Salvi RJ.Cytotoxic effects of dimethyl sulphoxide(DMSO) on cochlear organotypic cultures[J].Hear Res.2008 Feb;236(1-2):52-60.
    [16].Baribault H,Marceau N.Dexamethasone and dimethylsulfoxide as distinct regulators of growth and differentiation of cultured suckling rat hepatocytes[J].J Cell Physiol.1986 Oct;129(1):77-84.
    [17].Choi S,Sainz B Jr,Corcoran P,et al.Characterization of increased drug me,tabolism activity in dimethyl sulfoxide(DMSO)-treated Huh7 hepatoma cells[J].Xenobiotica.2009 Mar;39(3):205-17.
    [18].何文艳,刘树贤,姜慧卿.不同诱导条件对大鼠骨髓间充质干细胞体外诱导类肝细胞的影响[J].世界华人消化杂志.2008年2月18日;16(5):473-478
    [19].李文晰,段芳龄,马军,等.HGF和FGF4体外诱导人骨髓CD45-CD117-细胞向肝细胞分化的研究[J].世界华人消化杂志.2004 March;12(3):697-701
    [20].Gahrton G,Yataganas X.Quantitative cytochemistry of glycogen in blood cells.Methods and clinical application[J].Prog Histochem Cytochem.1976;9(1):1-30.
    [2l].Ito T,Newkirk C,Strum JM,et al.Modulation of glycogen stores in epithelial cells during airway development in Syrian golden hamsters:a histochemical study comparing concanavalin A binding with the periodic acid-Schiff reaction[J].J Histochem Cytochem.1990 May;38(5):691-7.
    [22].Tichy,JA,Loucka M,Trefny,ZM,et al.New clearance evaluation method for hepatologic diagnostics[J].Clinical study.Physiol Res.2007 Oct 11.[Epub ahead of print]
    [23].Chimalakonda AP,Mehvar R.Effects of duration of ischemia and donor pretreatment with methylprednisolone or its macromolecular prodrug on the disposition of indocyanine green in cold-preserved rat livers[J].Pharm Res.2004 Jun;21(6):1000-8.
    [1]. Bovolenta P, Esteve P, Ruiz JM, et al. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease[J]. J Cell Sci. 2008 Mar 15;121(Pt6):737-46. Review.
    
    [2]. Guo Y, Xie J, Rubin E,et al. Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling[J]. Cancer Res. 2008 May l;68(9):3350-60.
    [3]. Hoang B, Moos M Jr, Vukicevic S,et al. Primary structure and tissue distribution of FRZB, a novel protein related to Drosophila frizzled, suggest a role in skeletal morphogenesis[J]. J Biol Chem. 1996 Oct 18;271(42):26131-7.
    [4]. Leyns L, Bouwmeester T, Kim SH, et al. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer [J]. Cell. 1997 Mar 21;88(6):747-56.
    [5]. Hoang BH, Thomas JT, Abdul-Karim FW,et al. Expression pattern of two Frizzled-related genes, Frzb-1 and Sfrp-1, during mouse embryogenesis suggests a role for modulating action of Wnt family members[J]. Dev Dyn. 1998 Jul;212(3):364-72.
    [6]. Corr M, Lane NE. FRZB: a bone and joint connection. Arthritis Rheum. 2007 Dec;56(12):3881-3.
    [7]. Berndt SI, Huang WY, Yeager M,et al. Genetic variants in frizzled-related protein (FRZB) and the risk of colorectal neoplasia[J]. Cancer Causes Control. 2009 May;20(4):487-90.
    
    [8]. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis[J]. Genes Dev. 2001 Feb l;15(3):304-15.
    [9]. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis[J].Genes Dev. 2001 Feb 1;15(3):304-15.
    [10]. Borello U, Coletta M, Tajbakhsh S,et al. Transplacental delivery of the Wnt antagonist Frzbl inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos[J]. Development. 1999 Oct;126(19):4247-55.
    [11]. Brott BK, Sokol SY. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J]. Mol Cell Biol. 2002 Sep;22(17):6100-10.
    [12]. Mao B, Wu W, Davidson G, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling[J]. Nature. 2002 Jun 6;417(6889):664-7.
    [13]. Hassler C, Cruciat CM, Huang YL,et al. Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling[J]. Development. 2007 Dec;134(23):4255-63.
    [14]. Mao B, Niehrs C. Kremen2 modulates DickkopO activity during Wnt/LRP6 signaling[J]. Gene. 2003 Jan 2;302(1-2): 179-83.
    [15]. Katoh M, Katoh M. WNT antagonist, DKK.2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates[J]. Int J Mol Med. 2007 Jan; 19(1): 197-201.
    [16]. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway[J]. J Cell Sci. 2003 Jul 1;116(Pt 13):2627-34. Review.
    [17]. Steinbeisser H, Swain RK.Wnt-frizzled interactions in Xenopus[J]. Methods Mol Biol.2008;469:451-63.
    [18]. Liu BY, Kim YC, Leatherberry V,et al. Mammary gland development requires syndecan-1 to create a beta-catenin/TCF-responsive mammary epithelial subpopulation[J]. Oncogene. 2003 Dec 18;22(58):9243-53.
    [19]. Dorsky RI, Sheldahl LC, Moon RT. A transgenic Lefl/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development[J]. Dev Biol. 2002 Jan 15;241(2):229-37.
    [20]. Barker N. The canonical Wnt/beta-catenin signalling pathway[J]. Methods Mol Biol. 2008;468:5-15. Review.
    [21]. Bafico A, Gazit A, Pramila T,et al. Interaction of frizzled related protein (FRJP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling[J]. J Biol Chem. 1999 Jun 4;274(23): 16180-7.
    [22]. Wang S, Krinks M, Lin K,et al. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8[J]. Cell. 1997 Mar 21;88(6):757-66.
    [23]. Schneider VA, Mercola M. Wnt antagonism initiates cardiogenesis in Xenopus laevis[J]. Genes Dev. 2001 Feb 1;15(3):304-15.
    [24]. Wu C, Zeng Q, Blumer KJ, Muslin AJ. RGS proteins inhibit Xwnt-8 signaling in Xenopus embryonic development[J]. Development. 2000 Jul;127(13):2773-84.
    [25]. Wang S, Krinks M, Moos M Jr, et al. Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -11[J]. Biochem Biophys Res Commun. 1997 Jul 18;236(2):502-4.
    [26]. Scardigli R, Gargioli C, Tosoni D,et al. Binding of sFRP-3 to EGF in the extra-cellular space affects proliferation, differentiation and morphogenetic events regulated by the two molecules[J]. PLoS ONE. 2008 Jun 18;3(6):e2471.
    [27]. Carmon KS, Loose DS. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells[J]. Mol Cancer Res. 2008 Jun;6(6):1017-28.
    [28]. Brott BK, Sokol SY. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J]. Mol Cell Biol[J]. 2002 Sep;22(17):6100-10.
    [29]. Wu W, Glinka A, Delius H,et al. Mutual antagonism between dickkopf1 and dickkopf2 regulates Wnt/beta-catenin signalling[J]. Curr Biol. 2000 Dec 14-28;10(24):1611-4.
    [30]. Katoh Y, Katoh M. Comparative genomics on DKK2 and DKK4 orthologs[J]. Int J Mol Med. 2005 Sep; 16(3):477-81.
    [31]. Li L, Mao J, Sun L,et al. Second cysteine-rich domain of Dickkopf-2 activates canonical Wnt signaling pathway via LRP-6 independently of dishevelled[J]. J Biol Chem. 2002 Feb 22;277(8):5977-81.
    [32]. Chen L, Wang K, Shao Y,et al. Structural insight into the mechanisms of Wnt signaling antagonism by Dkk[J]. J Biol Chem. 2008 Aug 22;283(34):23364-70. Epub 2008 Jun 3.
    [33]. Lin K, Wang S, Julius MA,et al. The cysteine-rich frizzled domain of Frzb-1 is required and sufficient for modulation of Wnt signaling[J]. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11196-200.
    [1]. Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature 2005;434:843-850.
    [2]. Luo J, Chen J, Deng ZL, et al. Wnt signaling and human diseases: what are the therapeutic implications? [J]. Lab Invest 2007;87:97-103.
    [3]. Clevers H. Wnt/beta-Catenin Signaling in Development and Disease[J]. Cell 2006; 127:469-480.
    [4]. Burke ZD, Thowfeequ S, Tosh D. Liver specification: a new role for Wnts in liver development[J]. Curr Biol. 2006 Sep 5;16(17):R688-90.
    [5]. Decaens T, Godard C, de Reynies A, et al. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate[J]. Hepatology. 2008 Jan;47(1):247-58.
    [6]. Monga SP, Pediaditakis P, Mule K, et al. Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration[J]. Hepatology. 2001 May;33(5):1098-109.
    [7]. Thompson MD, Monga SP.WNT/beta-catenin signaling in liver health and disease[J]. Hepatology. 2007 May;45(5):1298-305.
    [8]. Takigawa Y, Brown AM. Wnt signaling in liver cancer[J]. Curr Drug Targets. 2008 Nov;9(11):1013-24.
    
    [9]. Kim YD, Park CH, Kim HS, et al. Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma[J]. J Gastroenterol Hepatol. 2008 Jan;23(1):110-8.
    [10]. Malbon CC. Frizzleds: new members of the superfamily of G-protein-coupled receptors[J]. Front Biosci. 2004 May 1;9:1048-58.
    [11]. He X, Semenov M, Tamai K, et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way[J]. Development. 2004 Apr;131(8): 1663-77.
    [12]. Sakanaka C, Weiss JB, Williams LT. Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription[J]. Proc Natl Acad Sci 1998;95:3020-3023.
    [13]. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors[J]. J Biol Chem. 2006 Aug 11;281(32):22429-33. Review.
    [14]. Moon RT, Brown JD, Yang-Snyder JA, et al. Structurally related receptors and antagonists compete for secreted Wnt ligands[J]. Cell. 1997 Mar 21 ;88(6):725-8.
    [15]. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators.Oncogene[J]. 2006 Dec 4;25(57):7469-81.
    [16]. Brott BK, Sokol SY. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins[J]. Mol Cell Biol. 2002 Sep;22(17):6100-10.
    [17]. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway[J]. J Cell Sci. 2003 Jul 1;116(Pt 13):2627-34. Review.
    [18]. Yost C, Farr GH 3rd, Pierce SB, et al. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis[J]. Cell. 1998 Jun 12;93(6): 1031-41.
    [19]. Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin[J]. Cell Signal. 2008 Oct;20(10): 1697-704.
    [20]. Semenov MV, Habas R, Macdonald BT, et al. SnapShot: Noncanonical Wnt Signaling Pathways[J]. Cell. 2007 Dec 28;131(7): 1378.
    [21]. Yamanaka H, Nishida E. Wnt11 stimulation induces polarized accumulation of Dishevelled at apical adherens junctions through Frizzled7[J]. Genes Cells. 2007 Aug;12(8):961-7.
    [22]. Hardy KM, Garriock RJ, Yatskievych TA, et al. Non-canonical Wnt signaling through Wnt5a/b and a novel Wnt11 gene, Wnt11b, regulates cell migration during avian gastrulation[J]. Dev Biol. 2008 Aug 15;320(2):391 -401.
    [23]. Carmon KS, Loose DS. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells[J]. Mol Cancer Res. 2008 Jun;6(6):1017-28.
    [24].Nagayama M,Iwamoto M,Hargett A,et al.Wnt/beta-catenin signaling regulates cranial base development and growth[J].J Dent Res.2008 Mar;87(3):244-9.
    [25].Apte U,Zeng G,Thompson MD,et al.beta-Catenin is critical for early postnatal liver growth[J].Am J Physiol Gastrointest Liver Physiol.2007Jun;292(6):G1578-85.
    [26].Geetha-Loganathan P,Nimmagadda S,Scaal M,et al.Wnt signaling in somite development[J].Ann Anat.2008;190(3):208-22.Review.
    [27].Haegel H,Larue L,Ohsugi M,et al.Lack of beta-catenin affects mouse development at gastrulation[J].Development.1995 Nov;121(11):3529-37.
    [28].Ober EA,Verkade H,Field HA,et al.Mesodermal Wnt2b signalling positively regulates liver specification[J].Nature.2006 Aug 10;442(7103):688-91.
    [29].Micsenyi A,Tan X,Sneddon T,et al.Beta-catenin is temporally regulated during normal liver development[J].Gastroenterology.2004 Apr;126(4):1134-46.
    [30].Monga SP,Mars WM,Pediaditakis P,et al.Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes[J].Cancer Res.2002 Apr 1;62(7):2064-71.
    [31].Theard D,Steiner M,Kalicharan D,et al.Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/beta-catenin-based adherens junctions[J].Mol Biol Cell.2007 Jun;18(6):2313-21.
    [32].Benhamouche S,Decaens T,Perret C,et al.Wnt/beta-catenin pathway and liver metabolic zonation:a new player for an old concept[J].Med Sci(Paris).2006Nov;22(11):904-6.
    [33].Myung SJ,Yoon JH,Gwak GY,et al.Wnt signaling enhances the activation and survival of human hepatic stellate cells[J].FEBS Lett.2007 Jun 26;581(16):2954-8.
    [34].Zeng G,Awan F,Otruba W,et al.Wnt'er in liver:expression of Wnt and frizzled genes in mouse[J].Hepatology.2007 Jan;45(1):195-204.
    [35].李瀚旻 高翔 晏雪生等.左归丸促进骨髓形成肝细胞的分子机制研究[J].中医杂志.2006年47卷10期:13(24):2818-2822.
    [36].Monga SP,Pediaditakis P,Mule K,et al.Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration[J].Hepatology.2001May;33(5):1098-109.
    [37].Klein D,Demory A,Peyre F,et al.Wnt2 acts as a cell type-specific,autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway[J].Hepatology.2008 Mar;47(3):1018-31.
    [38].Sodhi D,Micsenyi A,Bowen WC,et al.Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration[J].J Hepatol.2005 Jul;43(1):132-41
    [39].Apte,U,Thompson MD,Cui S,et al.Wnt/beta-catenin signaling mediates oval cell:response in rodents[J].Hepatology.2008 Jan;47(1):288-95.
    [40].Hu M,Kurobe M,Jeong YJ,et al.Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells[J].Gastroenterology.2007Nov;133(5):1579-91.
    [4l].高金昙,殷飞,姚树坤.苦参碱诱导大鼠肝卵圆细胞株W B-F 344细胞分化中Wnt-1信号通路的作用[J].世界华人消化杂志2008年第16期(26):2935-2939.
    [42].Tsukamoto H,She H,Hazra S,et al.Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation[J].J Gastroenterol Hepatol.2006 Oct;21 Suppl 3:S102-5.
    [43].Myung SJ,Yoon JH,Gwak GY,et al.Wnt signaling enhances the activation and survival of human hepatic stellate cells[J].FEBS Lett.2007 Jun 26;581(16):2954-8.
    [44].Jiang F,Parsons CJ,Stefanovic B.Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation[J].J Hepatol.2006 Sep;45(3):401-9.
    [45].Cheng JH,She H,Han YP,et al.Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis[J].Am J Physiol Gastrointest Liver Physiol.2008Jan;294(1):G39-49.
    [46]. Kordes C, Sawitza I, Haussinger D. Canonical Wnt signaling maintains the quiescent stage of hepatic stellate cells[J]. Biochem Biophys Res Commun. 2008 Feb 29;367(1):116-23.
    [47]. Wong CM, Fan ST, Ng IO. Beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance[J]. Cancer.2001 Jul 1;92(1):136-45.
    [48]. Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology[J]. Future Oncol. 2008 Oct;4(5):647-60.
    [49]. Tien LT, Ito M, Nakao M, et al. Expression of beta-catenin in hepatocellular carcinoma[J]. World J Gastroenterol. 2005 Apr 28;11(16):2398-401.
    [50]. Tokumoto N, Ikeda S, Ishizaki Y, et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas[J]. Int J Oncol. 2005 Oct;27(4):973-80.
    [51]. Kim M, Lee HC, Tsedensodnom O, et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells[J]. J Hepatol. 2008 May;48(5):780-91.
    [52]. Lee HC, Kim M, Wands JR. Wnt/Frizzled signaling in hepatocellular carcinoma[J]. Front Biosci. 2006 May 1; 11:1901-15.
    [53]. Liu XH, Pan MH, Lu ZF, et al. Expression of Wnt-5a and its clinicopathological significance in hepatocellular carcinoma. Dig Liver Dis. 2008 Jul;40(7):560-7.Review.
    [54]. Wirths O, Waha A, Weggen S, et al. Overexpression of human Dickkopf-1, an antagonist of wingless/WNT signaling, in human hepatoblastomas and Wilms' tumors. Lab Invest. 2003 Mar;83(3):429-34.
    [55]. Shih YL, Hsieh CB, Lai HC, et al. SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer. 2007 Sep l;121(5):1028-35.
    [56]. Takagi H, Sasaki S, Suzuki H, et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol. 2008;43(5):378-89.
    [57]. Das AV, Bhattacharya S, Zhao X, et al. The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with Notch signaling. Dev Neurosci. 2008;30(6):389-409.
    [58]. Campbell C, Risueno RM, Salati S, et al. Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr Opin Hematol. 2008 Jul;15(4):319-25.
    [59]. Yanai K, Nakamura M, Akiyoshi T, et al. Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 2008 May 8;263(1): 145-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700